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The concept of mean labeling was introduced by Somasundaram and Ponraj in 2003. Many research 
papers have published in this topic. In this paper we have established a general format for labelling 
the cycle, [Pm; Cn], Cn⊗Pr and K2, n graphs. 

 
 
 
 
 
 
 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 
 
 
 
 
 
 

 
 

 
 
 

 
 

 
 

 
 

 
  
 
 
 

INTRODUCTION 
 

Let G = (V, E) be a graph which is finite, simple and 
undirected. The graph G has vertex set V = V(G) and edge set 
E = E(G). The graph labeling is an assignment of numbers to 
the vertices or edges or both subject to certain condition. If the 
domain of the mapping is the set of       vertices /edges then the 
labeling is called a vertex / edge labeling .Graph labeling have 
enormous applications in mathematics as well as to several 
areas of computer science and communication network. 
 

Definition 
 

A graph G is an ordered pair (V(G),E(G)) consisting a non-
empty set V(G) of vertices and a set E(G) disjoint from V(G) of 
edges, together with an incident function ᴪG that associate with 
each edge of G, an unordered pair of vertices of G. If e is an 
edge u and v are vertices of G such that ᴪG(e) = {u,v} then e is 
said to joint u and v and the vertices u and v are called the ends 
of e. 
 

Definition 
 

A Path is a simple graph whose vertices can be arranged in a 
linear sequence in such a way that two vertices are adjacent if 
they are consecutive in the sequence and are non-adjacent. 

A closed path is called a Cycle. A Cycle with n vertices is 
denoted by Cn.  
 

Definition 
 

A graph is bipartite if its vertex set can be partitioned into two 
subsets, X and Y so that every edge set has one end in X and 
one end in Y. 
 

A bipartite graph G is said to be complete if every elements of 
X is adjacent with all elements of Y. A complete bipartite 
graph with m,n vertices is denoted by Km, n. 
 

Definition 
 

The cartesian product of simple graphs G and H is the graph 
G⊗H whose vertex set is V(G)⊗V(H) and  whose edge set of 
all pairs (u1,v1),(u2,v2) such that either u1u2 �	E(G) and         v1 = 
v2 or  v1v2  ϵ	E(H) and u1 = u2. 
 

Definition 
 

A labeling or valuation of a graph G is an assignment f of 
labels to the vertices of G that induced for each edge xy a label 
depending on the vertex labelled by f(x) and f(y). 
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Definition 
 

A function f is called a mean labeling of a graph G if  f : V(G) 
→ {0,1,2,…,q} is injective and  the induced function  f* : E(G)  
→ {1,2,3,…,q} defined as, 

f*(uv) =  �

�(�)��(�)

�
,													if			f(u) + f(v)			is	even

�(�)��(�)��

�
,									if			f(u) + f(v)		is	odd

� 

is bijective. A graph that admits mean labeling is called a mean 
graph. 
 

Definition 
 

Let G be a graph with fixed vertex v and let [Pm; G] be the 
graph obtained from m copies of G connected the common 
vertices of  vi	ϵ Gi by path  Pm. 
 

Theorem 
 

Any cycle Cn of length n  ≥ 3 is mean graph. 
 

Proof 
 

Let G = Cn be the cycle with n vertices and the vertex set of G 
is denoted by V(G) = {vi/i =1,2,3,…,n} and represented in 
(Figure : 1) as below we can label the vertices of G as 
 

L(Vn-i) 
=

	�
� − (� − �)				/			� = � − 1	��	 �

���

�
� 		���				� = 2	��	 �

���

�
�

		� − (� − �)			/						� = 	 �
���

�
� 	��			0					���				� = �

���

�
� 	��	�					

�                              

…..(A) 
 

Hence, Cn for all n ≥ 3 is a mean graph. 
 

 
Figure 1 

Note  
 

 

The labeling pattern defined in (A) can be used to label any 
cycle in both directions. 
 

Example 
 

C5 is labelled in (Figure: 2) by (A). 
V = {v1,v2,v3,v4,v5} 
L(vn-i) = n– (i –j), where  n = 5, i = {4,3}  and j = {2,3}. 
L(v5-4)  =  v1 = 5–(4–2) = 5–2 = 3 
L(v5-3)=  v2 = 5–(3–3) = 5–0 = 5 
L(vn-i) = n– (j–i),  where   i  = {2,1,0}  and  j = {3,4,5} 
L(v5-2) =  v3 = 5–(3 –2) = 5 – 1 = 4 
L(v5-1) =  v4 = 5– (4–1) = 5–3 = 2       
 
 

 
 

Figure 2 
 

 

L(v5-0) =  v5 = 5– (5–0) = 5–5 = 0 
 

Example 
 

C8 is labelled in (Figure: 3) by (A) 
V = {v1,v2,v3,v4,v5,v6,v7} 
L(vn-i) = n–(i– j) ; where n = 8,  i ={7,6,5} and  j = {2,3,4}. 
L(v8-7)  =  v1 = 8–(7–2) = 8–5 = 3 
L(v8-6)  =  v2 = 8–(6–3) = 8–3 = 5 
L(v8-5)  =  v3 = 8 – (5–4) = 8–1 = 7 
L(vn-i) = n–(j– i) ;  where  i ={4,3,2,1,0} and  j = {4,5,6,7,8} 
L(v8-4)  =  v4 = 8–(4–4) = 8–0 = 8 
L(v8-3)  =  v5 = 8–(5–3) = 8–2 = 6        
 

 
 

Figure 3 
 

L(v8-2)  =  v6 = 8– (6–2)= 8–4 = 4 
L(v8-1)  =  v7 = 8–(7–1)= 8–6 = 2 
L(v8-0)  =  v8 = 8–(8–0)= 8–8 = 0 
 

Theorem 
 

Let G = [Pm; Cn] is m copies of Cn which are connected by a 
unique path Pm is a mean graph. 
 

Proof 
 

The graph G is given in (Figure: 4) as below. 
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Figure 4 
 

The vertex set of G is denoted by 
V(G) = {vi,j  /  i =1,2,3,…,m;  j = 1,2,3,…,n} 
The vertices of G can be divided in to two sets V1 and V2 such 
that 
V1 (G) ={vi,j  /  i= 1,2,3,…,m;   j =1,2,3,…,n}    if    i  is odd 
V2(G) ={vi,j / i=1,2,3,…,m;  j=1,2,3,…,n}    if    i is even 
Now, we label the vertices of G as below  
L(v2r+1, j) = 2r(n +1) + v1,j         where  r=1,2,3,…, ⌈���/2⌉  
 L(v2r+2, j) = 2r(n +1) + v2,j where  r=1,2,3,…,⌈���/2⌉                                                               
…..(B)                                                                                                                                                                
Hence, G = [Pm; Cn] is mean graph. 
 

Example 
 

G = [P4; C5] is labelled in (Figure: 5) as below by 
 

 
Figure 5 

 

labeled by using (A), L(v1,1) = 0 ; L(v1,2) = 3 ; L(v1,3) = 5 ; 
L(v1,4) = 4 ; L(v1,5) = 2; 
L(v2,1) = 6 ; L(v2,2) = 9; L(v2,3) = 11 ;L(v2,4) = 10 ; L(v2,5) = 8 ;  
labeled by using (B), L(v3,1) =  2r(n+1)+v1, j = 2×1(5+1)+0  = 
12+0 = 12; 
 

L(v3,2) = 2r(n+1)+v1,j  = 2×1(5+1)+3 = 12+ 3 = 15;  
L(v3,3) = 2r(n+1)+v1, j  =  2×1(5+1)+5 = 12+5  = 17 ; 
L(v3,4) = 2r(n+1)+v1,j  = 2×1(5+1)+4  = 12+4  = 16 ; 
L(v3,5) = 2r(n+1)+v1,j  = 2×1(5+1)+2  = 12+2  =14 ; 
L(v4,1) =  2r(n+1)+v2,j = 2×1(5+1)+6 = 12+6 = 18;  
L(v4,2) = 2r(n+1)+v2,j  =2×1(5+1)+9  = 12 + 9 = 21;                
L(v4,3) = 2r(n+1)+v2,j  = 2×1(5+1)+11 = 12+11 = 23 ; 
 L(v4,4) = 2r(n+1)+v2,j = 2×1(5+1)+10 =12 + 10 =  22 ;          
L(v4,5) = 2r(n+1)+v2,j  = 2×1(5+1)+8 = 12 + 8 = 20 ; 
 

Theorem 
 

K2, n is a mean graph for all n ≥ 1. 
 

Proof 
 

Let G = K2, n and  V(G) ={vi  / i=1,2,3,...,n+2} 
Now V(G) can be partitioned into two sets V1 and V2 such that 
      V1 = {v1,vn+2};  V2 = {vi  /  i=2,3,…,n+1} 
 

Now, the vertices of  V(G) are labelled  as  
 

L(vi)=		�
2� − 2	,							� ≤ � + 1
2� − 1	,					� = � + 2

�                                          …..(C) 

 
 
  
                                                                                                                                                               

 
Figure 6 

 

Hence, K2, n is a mean graph. 
 

Example 
 

Let G = K2, 4 is represented in (Figure: 7) and L(V(G)) is 
labelled by using (C)  as  below, 
V = {v1,v2,v3,v4,v5,v6} 
L(v1) = 2i–2 = 2×1–2= 2–2 = 0 
L(v2) = 2i–2 = 2×2–2 = 4–2 = 2 
L(v3) =2i–2 = 2×3–2 = 6–2 = 4 
L(v4) = 2i–2 = 2×4–2 = 8–2 = 6 
 L(v5) = 2i–2 = 2×5–2 = 10–2 = 8                          
 

 
Figure 7 

 

L(v6) = 2n–1 =2×4–1 = 8–1 = 7       
                                              

Theorem 
 

The graph G = Cn⊗Pris a mean graph.  
Proof: 
The graph G = Cn⊗Pr is given (Figure: 8) as below. 

 
Figure 8 
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The vertex set of G is denoted by V(G) = {vi ,j  / i=1,2,3,...,m;  
j=1,2,..,.n} 
 

Now V(G) can be divided in to two sets V1and V2 
V1(G) = {vi, j  /  i=1,2,...,m;   j=1,2,3,...,n}   where   i  is odd 
V2(G)={vi, j  /  i=1,2,3,…,m ; j=1,2,3,...,n}  where  i  is even. 
 

L(vn-i)=	�
� − (� − �)				/			� = � − 1	��	 �

���

�
� 		���				� = 2	��	 �

���

�
�

		� − (� − �)			/						� = 	 �
���

�
� 	��			0					���				� = �

���

�
� 	��	�					

�             …..(A) 

 

L(v2, j) = { 2n + v1, j  / j = 1,2,3,…,n}                                …..(D) 
 

L(vi, j) = 2n(i–1) + v1, j , for  all vi, j �	V1(G) and 
L(vi, j) = 2n(i–2) + v2,j, for all vi, j	�	V2(G)                          …..(E) 
                                                     

Hence, Cn⊗Pr is a mean graph. 
 

Example 
 

G = C4⊗P4 is labelled using (E) is given in (figure: 9) as below 
By using (A) L(v1,1) = 3 , L(v1,2) = 4 , L(v1,3) = 2 , L(v1,4) = 0, 
Using (D)L(v2,1) = 11 ,L(v2,2)= 12 ,L(v2,3)= 10, L(v2,4)= 8, 
By using (E) 
L(v3,1) = 2n(i–1)+v1,j= 2×4(3–1) +3= 19 ,  
L(v3,2) = 2n(i–1)+v1,j = 2×4(3–1) +4 = 20 , 
L(v3,3) = 2n(i–1)+v1,j=  2×4(3–1)+2= 18, 
L(v3,4) = 2n(i–1)+v1,j = 2×4(3–1) + 0= 16, 
L(v4,1) = 2n(i–2)+v2,j = 2×4(4–2)+8 =26, 
L(v4,2) = 2n(i–2) + v2, j= 2×4(4–2)+ 8 = 27, 
L(v4,3) = 2×4(4–2)+11 = 16+12 = 28, 
L(v4,4) = 2×4(5–1)+ 12 = 16 + 10 = 26, 
L(v5,1) = 2×4(5–1) + 0 = 32 + 3 = 35, 
L(v5,2) = 2×4(5–1) + 3 = 32 + 4 = 36, 
L(v5,3) = 2×4(5 – 1) + 4 = 32 + 2 = 34, 
L(v5,4) = 2×4(5–1) + 2 = 32 + 0 = 32.                
                                             
 
 

 
Figure 9 

 

Hence, Theorem: 2.9 is verified. 
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