

Available Online at http://www.recentscientific.com

CODEN: IJRSFP (USA)

International Journal of Recent Scientific Research Vol. 9, Issue, 5(I), pp. 27124-27127, May, 2018 International Journal of Recent Scientific Re*r*earch

DOI: 10.24327/IJRSR

Research Article

POINT DEFECT GRAPHIC MODEL USING SPREADSHEET PROGRAM

Fita Permata Sari^{1*}., Danis Alif Oktavia² and Heru Kuswanto³

^{1,2}Physics Education Student, Postgraduate Program, Yogyakarta State University ³Physics Education Lecturer, Yogyakarta State University

DOI: http://dx.doi.org/10.24327/ijrsr.2018.0905.2192

ARTICLE INFO

ABSTRACT

Article History: Received 24th February, 2018 Received in revised form 19th March, 2018 Accepted 16th April, 2018 Published online 28th May, 2018

Key Words:

Point Defect, Materials, Physics, Spreadsheet, graphic

Point Defect is known as imperfections, grouped by space.Point defects have zero dimension; line defects, also known as dislocations, are one dimensional; and planar defects such as surface defects and grain boundary defects have two dimensions. Point defects have equilibrium concentrations that are determined by temperature, pressure, and composition. Point Defect on semiconductors and insulators govern a variety of mechanical, transport, electronic, and optoelectronic properties. This article describes how to know Point Defect values of some metals in the form of graphs using the Spreadsheet application. Point Defect value against temperature is seen through graph. The value of some metals can be known. The data entered produces a different graph, ie Al metal has the largest Point Defect value among Au, Cu, and Pt metals.

Copyright © **Fita Permata Sari** *et al*, **2018**, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Now that the most important aspects of perfect crystals have been described, it is time to recognize that things are not always perfect, even in the world of space lattices. This is not necessarily a bad thing. As we will see, many important materials phenomena that are based on defective structures can be exploited for very important uses. These defects, also known as imperfections, are grouped according to spatial extent. Point defects have zero dimension; line defects, also known as dislocations, are one dimensional; and planar defects such as surface defects and grain boundary defects have two dimensions. These defects may occur individually or in combination.

Point defects have equilibrium concentrations that are determined by temperature, pressure, and composition. This is not true of all types of dimensional defects that we will study.

$$N_d = N \exp(E_d / k_B T) \tag{1}$$

In equation (1), N_d is the equilibrium number of point defects, N is the total number of atomic sites per volume or mole, E_d is the activation energy for formation of the defect, k_B is Boltzmann's constant (1,38 x 10⁻²³ J/atom.K), and T is absolute temperature. Equation (1) is an *Arrhenius-type expression* and many of these Arrhenius expressions can be derived from the Gibbs free energy, ΔG (Mitchell, 2004).

Figure 1 Representation of a vacancy and self-interstitial in a crystalline solid. FromK. M. Ralls, T. H. Courtney, and J. Wulff, *Introduction to Materials Science and Engineering*. Copyright © 1976 by John Wiley & Sons, Inc. This material is used by permission of JohnWiley & Sons, Inc.

^{*}Corresponding author: Fita Permata Sari

Physics Education Student, Postgraduate Program, Yogyakarta State University

Figure 2 Representation of interstitial and substitutional impurity atoms in a crystalline solid. From K. M. Ralls, T. H. Courtney, and J. Wulff, *Introduction to Materials Science and Engineering*. Copyright © 1976 by John Wiley & Sons, Inc. This material is used by permission of John Wiley & Sons, Inc.

Point Defect is a defect that only happens around a single lattice point. Point Defect on semiconductors and insulators govern a variety of mechanical, transport, electronic, and optoelectronic properties. The fact that the properties of Point Defect is difficult to fully characterize from the experiments of computing tools that have been widely applied. Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage (Broberg, Medasani, Zimmermann, Yu, Canning, Haranczyk, Asta,& Hautier, 2018). The collective behavior of point defects formed on the free surfaces of ionic crystals under redox conditions can lead to initiation of local breakdown by pitting(Herbert, Krishnamoorthy, Ma, Van Vliet, & Yildiz, 2014).

The chart is the visualization of the observed data table. Graphs are a useful type of representation in summarizing data, processing and interpreting new information from complex data. Chartsare often regarded as mathematical devices, because communicating through graphical representations requires math competencies such as visual perception, logical thinking, data ploting, line movement improvements, deduction of relationships between variables and others(Subali, Rusdiana, Firman, & Kaniawati, 2015).

Chart is a form of representation used to describe material concepts and phenomena in physics learning (Docktor & Mestre, 2014). Interpretations using graphs are influenced by several factors such as aspects of characteristics, content, and knowledge of graphs (Glazer, 2011). It is as written in the results of research (Nixon, Godfrey, Mayhew, & Wiegert, 2016) which shows that interpretation of data using graphs can be used to reduce experimental errors, determine the value of a variable, and explain the relationship between variables. The results (Susac, Bubic, Martinjak, Planinic, & Palmovic, 2017)suggest that graphic representation has advantages in interpreting measurement data and comparison data. Problems in physics learning such as mathematical formulas can be interpreted using charts using Spreadsheet. Based on the description above, the authors want to know the value of Point Defect some metal in the form of graphics by using Spreadsheet application. Spreadsheets have been around since the 1970s and have become an important part of teaching and learning tools because they are transparent, dynamic and easily modified (LoSchiavo, 2016).

METHODS

This section shows how the spreadsheet program can be used to simulate a physics problem.

Table 1 Energy Establishment of Vacancies for Selected
Elements and Equilibrium Concentrations at Various
Temperatures

Element	E _d (kJ/mol)	Melting Point,	N_d (vacancies/ cm^3)					
		<i>T_m</i> (°C)	25°C	300°C	600°C	T_m		
Ag	106.1	960	1.5x10 ⁴	1.5x10 ¹³	3.0x10 ¹⁶	7.8x10 ¹⁷		
Al	73.3	660	1.0x10 ¹⁰	1.2x10 ¹⁶	2.4x10 ¹⁸	5.0x10 ¹⁸		
Au	94.5	1063	1.5x10 ⁶	1.5x10 ¹⁴	1.5x10 ¹⁷	1.2x10 ¹⁹		
Cu	96.4	1083	1.1x10 ⁶	1.4x10 ¹⁴	1.4x10 ¹⁷	9.0x10 ¹⁸		
Ge	192.9	958	<1	1.3x10 ⁵	1.3x10 ¹¹	8.2x10 ¹³		
Κ	38.6	63	2.1x10 ¹⁵	-	-	1.3x10 ¹⁶		
Li	39.5	186	4.7×10^{15}	-	-	1.4x10 ¹⁸		
Mg	85.8	650	4.4×10^{7}	6.4×10^{14}	3.5x1010 ¹⁷	5.7x10 ¹⁷		
Na	38.6	98	4.0×10^{15}	-	-	1.0x10 ¹⁷		
Pt	125.4	1769	8.7	2.7×10^{11}	2.0x10 ¹⁵	4.2x10 ¹⁹		
Si	221.8	1412	<1	3.1x10 ²	2.5x10 ⁵	8.0×10^{15}		

From equations (1) and Table 1 we can determine the value of each variable by varying the temperature of each element. Analysis using spreadsheet program. The energy formation of the vacancy of each element is selected and the equilibrium concentration at various temperatures.

The steps used to determine the number of points of equilibrium defects are shown in the following figure:

Figure 3Variables That Are Not Varied n, NA, kB, and N.

ata	Review	View	Develo	oper He	elp	Foxit PDF	Foxit Re	ader P	DF		ne what y						
=	= = *	P/ -	ab Wrap Te	ext	1	General	×	8				8 .	*		ΣΑ	utoSum	· AT
11	= = •	1	🛗 Merge	& Center	•	\$ - % ,	00. 0.• 0.• 00.	Cond Forma	litional atting *	Format as Table -	Cell Styles *	Insert	Delete	Format	↓ Fi	ll * lear *	Sort 8 Filter
		Alignm	ent		r _i	Number	5		100	Styles			Cells			Ed	iting
	F		G	н		L	J		к		L.		м	,	V	o	1
	N		0.6		Г							1		1			
E	d (Al)		77300	j/mol	Ed	(Au)	9	4500	j/mol	Ed(C	u)		9640	0 Ed (P	rt)	12	25400
		1	2834E-19	j/atom			1.5689	9E-19	j/atom	1		1.6	0053E-1	9		2.0820	2E-19

Figure 4 Input The Activation Energy

ł	a • •	a ș								
F	ile Ho	me Inse	rt Page Layou	ut Formula	is Data					
\bigwedge CutCalibri $11 \rightarrow A^* A^*$ Paste \checkmark Format Painter $B I \ U \rightarrow \Box \rightarrow \Delta \rightarrow A^*$ Clipboard r_2 Font										
F4			× √ fx							
	Α	В	С	D	E					
1										
2			n	1						
3			NA	6.023E+23						
4			kB	1.38E-23						
5			Т	273						
6	T (C)	T (K)	Nd (Al)	Nd (Au)	Nd (Cu)					
7	0	273	9.62382E-16	4.9132E-19	2.13E-19					
8	50	323	1.87743E-13	3.0987E-16	1.53E-16					
9	100	373	8.90805E-12	3.4703E-14	1.88E-14					
10	150	423	1.6972E-10	1.2738E-12	7.42E-13					
11	200	473	1.73412E-09	2.183E-11	1.35E-11					
12	250	523	1.13614E-08	2.173E-10	1.4E-10					
13	300	573	5.36189E-08	1.4484E-09	9.72E-10					
14	350	623	1.97258E-07	7.12E-09	4.93E-09					
100	1993	100000		and the second second						

Figure 5 Input Temperature Variations

Figure 6 Equations and Results The Equilibrium Number of Point Defects

RESULTS AND DISCUSSION

Each variable is determined from Equations (1) and Table 1, so that it matches the value of Point Defect analyzed using the Spreadsheet application.

Figure 7 EachGraph The Equilibrium Number Of Point Defects (Al, Au, Cu, Pt)

Figure 8 Combined Graph Point Defect

Point Defect value of some metals can be seen in Figure 8. Point Defect values vary depending on temperature, the greater the temperature the greater the Point Defect value. Al metal has the most significant Point Defect value among the others, of the four metal variations used. Then the next sequence is occupied by metal Au, Cu, and Pt. The chart above shows that Spreadsheets can be used easily in displaying data. Graphical depiction with Spreadsheet is more accurate and reliable because it can vary the variables quickly and easily. Various calculations can be done quickly and accurately by utilizing the facilities of internal functions available in the Spreadsheet application.

CONCLUSION

Spreadsheets can help in analyzing data in the form of graphs or simulations. Point Defect equations and known data are inserted into Microsoft Excel, by using the existing command, the result of a graph of differences in Point Defect appears and can be distinguished. Some metals can be known through the Point Defect value graph to temperature. According to the data and graphs discussed it is found that Al metal has the greatest Point Defect value among Au, Cu, and Pt metal.

References

For journal references

- Broberg, D., Medasani, B., Zimmermann, N. E. R., Yu, G., Canning, A., Haranczyk, M., Hautier, G. (2018).
 PyCDT: A Python toolkit for modeling *Point Defects* in semiconductors and insulators. *Computer Physics Communications*, 226, 165–179. https://doi.org/10.1016/j.cpc.2018.01.004
- Docktor, J. L., & Mestre, J. P. (2014). Synthesis of discipline-based education research in physics. *Physical Review Special Topics Physics Education Research*, 10(2), 1–58. https://doi.org/10.1103/PhysRevSTPER.10.020119
- Glazer, N. (2011). Challenges with graph interpretation: A review of the literature. *Studies in Science Education*, 47(2), 183–210. https://doi.org/10.1080/03057267.2011.605307

- Herbert, F. W., Krishnamoorthy, A., Ma, W., Van Vliet, K. J., & Yildiz, B. (2014). Dynamics of *Point Defect* formation, clustering and pit initiation on the pyrite surface. *Electrochimica Acta*, *127*, 416–426. https://doi.org/10.1016/j.electacta.2014.02.048
- LoSchiavo, F. M. (2016). How to Create Automatically Graded Spreadsheets for Statistics Courses. *Teaching of Psychology*, 43(2), 147–152. https://doi.org/10.1177/0098628316636293
- Nixon, R. S., Godfrey, T. J., Mayhew, N. T., & Wiegert, C. C. (2016). Undergraduate student construction and interpretation of graphs in physics lab activities. *Physical Review Physics Education Research*, 12(1), 1– 19.

https://doi.org/10.1103/PhysRevPhysEducRes.12.01010 4

- Subali, B., Rusdiana, D., Firman, H., & Kaniawati, I. (2015). Analisis Kemampuan Interpretasi Grafik Kinematika pada Mahasiswa Calon Guru Fisika, 2015(Snips), 269-272.
- Susac, A., Bubic, A., Martinjak, P., Planinic, M., & Palmovic, M. (2017). Graphical representations of data improve student understanding of measurement and uncertainty: An eye-tracking study, 020125. https://doi.org/10.1103/PhysRevPhysEducRes.13.02012

For book reference

Mitchell, B.S. (1962). An Introduction to Materials Engineering and Science: for Chemical and Materials Engineers. New Jersey: A John Wiley & Sons, Inc.

How to cite this article:

Fita Permata Sari *et al.*2018, Point Defect Graphic Model Using Spreadsheet Program. *Int J Recent Sci Res.* 9(5), pp. 27124-27127. DOI: http://dx.doi.org/10.24327/ijrsr.2018.0905.2192
