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INTRODUCTION 
 

Much of modern scientific enterprise is concerned with the 
question of model choice. An experimenter or researcher 
collects data, often in the form of measurements on many 
different aspects of the observed units, and wants to study how 
these variables affect some outcome of interest. Which 
measures are important to the outcome? Which aren’t? Are 
there interactions between the variables that need to be taken 
into account? 
 

Statisticians are also naturally involved in the question of 
model selection, and so it is should come as no surprise that 
many approaches have been proposed over the years for 
dealing with this key issue. Both frequentist and Bayesian 
schools have weighed in on the matter, with methods such as F 
tests for nested models, AIC, Mallows Cp, exhaustive search, 
stepwise, backward and forward selection procedures, cross-
validation, Bayes Factors of various flavors (partial, intrinsic, 
pseudo, posterior), BIC, Bayesian model averaging, to name 
some of the more popular and well-known methods. Some of 
these, such as stepwise selection, are algorithms for picking a 
“good” (or maybe useful) model; others, for example AIC, are 
criteria for judging the quality of a model. 
 

Given this wealth of choices, how is a statistician to decide 
what to do? An approach that cannot be implemented or 
understood by the scientific community will not gain 
acceptance. This implies that at the very least we need a 
method that can be carried out easily and yields results that can 
be interpreted by scientifically and numerically literate end-
users. From a statistical point of view, we want a method that is 
coherent and general enough to handle a wide variety of 
problems. Among the demands we could mane on our method 
would be that it obeys the likelihood principle, that it has some 
frequentist (asymptotic) justification, and that it corresponds to 
a Bayesian decision problem. Naturally, not all of these 
desiderata can be met at once, and this paper will do little to 
influence the ongoing discussion of their relative importance. 
An attempt to bring coherence to the field from a decision-
theoretic perspective was given by Ney, Pericchi and Smith 
(1999). For an entertaining and readable loon at the subject of 
Bayesian model selection from the scientist’s perspective, we 
recommend the article by Mackay (1992). We aim to give a 
more general overview.    
 

Why Model Selection? 
 

Before getting into a review of methods of how to choose a 
model, it is important to address the question of “why?” At 
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heart we think that the reasons are pragmatic, having to do with 
saving computer time and analyst attention. Viewed this way, 
however, there is no particular reason to choose a single best 
model according to some criterion. Rather it makes more sense 
to “deselect” models that are obviously poor, maintaining a 
subset for further consideration. Sometimes this subset might 
consist of a single model, but sometimes perhaps not. 
Furthermore, if it is indeed the case that model choice is driven 
by consideration of costs, perhaps these can be included 
explicitly into the process via utility functions, as suggested by 
Winkler (1999). Hence we think there are good reasons to 
challenge the traditional formulations of this problem. 
 

A Conceptual Frame worn 
 

Consider the following general setting. Suppose there are N 
models, indexed by n, with prior probabilities ��, parameters 
�� ∈ Ω�, likelihood �(�|��) and priors ��(��) for n = 1 … N. 
We are in the M – closed framework of Bernardo and Smith 
(1994), that is, we assume that one of the N models is the 
“truth” (or, at least, a reasonable enough approximation thereof 
that we would be willing to use it in practice). This in itself is a 
somewhat controversial outlook, positing as it does not only 
that a true model exists, but that it is one of those under 
consideration. However, it is a helpful stance for at least 
thikning through the ramifications of a true Bayesian model 
selection procedure and the qualities we would wish to demand 
of it. (see also Petrone,1997; Piccinato, 1997). The posterior on 
the model M = n and �� is proportional to ��(�|��)��(��)��, 
and the posterior probability of M = n is 
 

	�(��|�) ∝ 	��∫��
��(�|��)��(��)���					                      ...  (1) 

 

=	
��∫��

��(�|��)��(��)���

∑ ��∫��
��(�|��)��(��)���

�
���

	                                               … (2) 

 

In a full Bayesian analysis, the priors �� on each model and 
��(��) on the parameters of model n are proper and subjective. 
Another important element of the full Bayesian paradigm is the 
utility, or loss, function. The first question to ask is what the 
contem-plated decision space is, among what set of decisions is 
the choice to be made? As discussed in Section 2, the 
traditional decision space for model choice is to choose one of 
the N models, but we suggest there that it might be more 
faithful to most applied problems to consider choosing a subset 
of {1,… ,�} instead. 
 

`In addition to the space of decisions, utility functions also 
depend, in general, on the parameter space, which here consists 
in full generality of an indicator of a model, and all the ��. 
Many of the methods to be considered have utilities that 
depend only on �� if model n is under consideration; some do 
not depend on � at all. Finally, a full specification includes the 
functional form of the utility function. For a method to be 
useful, that utility function should represent how a statistician 
thinns about the model choice she confronts. This idea is 
developed to some extent by key, Pericchi and Smith(1999), 
for the so-called M-open perspective, in which it is desired to 
evaluate a set of models, none of which is believed to be true. 
Their approach, as mentioned previously, is decision-theoretic, 
taking explicit account of the utilities involved. On the other 
hand, they use only improper, “objective” priors, in their 
analyses and as such deviate from a purely Bayesian procedure 
(as pointed out by Bayarri, 1999). 

The Bayesian proposal is then to make the decision that 
maximizes expected utility, where the expectation is taken with 
respect to the posterior distribution of M and θ. It is from this 
perspective that we wish to evaluate the various schemes and 
criteria for model selection. In particular, one question of 
interest is how close do the different methods come to this 
framework. In a similar vein, insofar as some of the techniques 
are approximations, how close are these approximations to a 
coherent Bayesian model selection? 
 

Variations on this perspective are possible, even from the 
Bayesian point of view. While some practitioners, such as 
Raftery, Madigan and Hoeting (1997) emphasize posterior 
distributions, others focus instead on predictive distributions, as 
in Box (1980); Gelfand and Dey (1994); Laud and Ibrahim 
(1995). 
 

Bayesian Model Selections 
 

Bayes Factors – Variations on a Theme 
 

Returning to the conceptual framework from Section 3, recall 
equation (2) for the posterior probability of model ��; the 
posterior odds for model �� is therefore 
 

Odds(��|�) =
�(� �|�)

���(� �|�)
   …                                             … (3) 

 

=
��∫��

��(�|��)��(��)���

∑ ��∫��
��������������������

                                                … (4) 

In particular, when N = 2 
 

Odds(��|�) = 	�
��

��
� �	

∫��
��(�|��)��(��)���

∫��
��(�|��)��(��)���

	�                      … (5) 

 

The first factor is the prior odds for model 1; the second is 
called the Bayes Factor, written ��,�. The Bayes Factor has 
been the subject of much discussion in the literature in recent 
years; see the review by nass and Raftery (1995) and the 
references therein, for a summary of the issues, although it 
should be noted that even within the last five years, there have 
been new developments in the area. 
 

Despite its popularity, the Bayes Factor is relevant only in 
limited circumstances. Namely, the statistician (or scientist) is 
required to choose one particular model out of the two 
available and there must be a zero-one loss on that decision. 
The meaning of the second requirement is that if the statistician 
manes the wrong decision, it doesn’t matter how far off the 
choice is; this is contrary to the way that statisticians think 
about most problems. Nadane and Dickey (1980) show that 
Bayes Factors are sufficient if and only if a zero-one loss 
obtains.  
 

When N > 2,  (4) simplifies to 
  

Odds(��|�) = 	
��

∑ ����,����
                                                  … (6) 

 
 

In other words, the odds for the nth model is a function of the 
Bayes factor of that model with every other model. The prior 
probabilities ��,��,⋯,�� on the models do not come out of 
the sum. As contrasted with the case of inference, where often 
in practice the choice of prior is not crucial, for model 
selection, the prior continues to play a role, even 
asymptotically. 
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A similar phenomenon arises also within each model. Take the 
simple case where N = 2, working with a zero-one loss, and 
assume that model 1 has no parameters at all. 
 

Then  ��,� =
��(�)

∫ ��(�|��)��(��)���
,                                    … (7) 

 

which depends importantly on the prior over the alternative 
space, ��(��). An example is instructive. Consider the simple 
case where the first model for the data is normal, with mean 0 
and variance 1, and the second model is normal, with mean � 
and variance 1. Suppose that the mean of the data is 0.3. Priors 
on � are proper and normal. Depending on where the prior for 
� is centered, the Bayes factor might lead us to change our 
opinion about which model should be favored. In other words, 
the decision we mane will be heavily influenced by the prior, 
even for a large sample. The Bayes factor is not robust to the 
specification of prior, even when the prior is proper. If the prior 
��(��),	is allowed to be improper, it can be made to fit the data 
arbitrarily poorly, making model 2 unlikely no matter what the 
data turn out to be. This is the Jeffreys-Lindley paradox 
(Jeffreys, 1961; Good, 1950; Lindley, 1957; Shafer, 1982, 
among others). As a response to this paradox, Jeffreys 
proposed a Cauchy form for ��(��), with equal prior 
probability on both models, and a normal likelihood. 
 

Phenomena such as the Jeffreys-Lindley paradox, the 
dependence of the Bayes factor on the specified priors and the 
difficulties of calculating and interpreting the Bayes factor at 
all when improper priors are put on the parameters of the 
models, have led some authors to seen automatic Bayesian 
methods for model selection. According to Berger and Pericchi 
(1996), who advocate this position, automatic methods are 
essential because the statistician will often, at least initially, 
consider a wide range of models, for which it won’t usually be 
feasible to specify all priors subjectively (on this point, see also 
Laud and Ibrahim, 1995). On the other hand, as Lindley (1997) 
argues, impropriety (and “objective” priors, such as so-called 
“reference” and “noninformative” priors are often improper) 
rarely occurs in practice. In this perspective, with which we 
agree, a parameter is more than just an abstract mathematical 
construct; instead, it corresponds (at least we hope it does!) to 
something real, and, if the statistician were to think about the 
reality underlying the parameter, she should always be able to 
describe it reasonably well using a proper distribution. As 
Lindley (1997) phrases it, “It is unfortunately all too easy to 
slap on an improper prior and avoid having to think about 
drugs or yields….the problem [with improprieties] is not 
mathematical at all. It lies in the reality that is conveniently 
forgotten. Improper distributions in model choice have no 
sensible interpretation.”  
 

No doubt the controversy will continue. Both the objective and 
the subjective schools of prior specification are a part of the 
statistical landscape and their proponents will continue to 
develop methodologies for the critical activity of model 
selection. Many proposals have been made from the advocates 
of objective or noninformative priors, as a way of avoiding the 
difficulties associated with the dependence of Bayes factors on 
the priors in general, and with vague priors in particular. Berger 
and Pericchi (1996), for example, define the intrinstic Bayes 
factor. Divide the data into two parts, a training sample and a 
testing sample. On the training set, convert the (improper) prior 
distributions to proper posterior distributions. Compute the 

Bayes factor using the testing data, and the posterior 
distributions from the training set as the new priors. Letting 
�(�) denote a minimal training set, and �(−�) the rest of the 
sample, a Bayes factor can be defined as  
 

���(�) = 	
��(�(��)|�(�))

��(�(��)|�(�))
                                                         … (8) 

 

where ��(�(−�)|�(�)) is the marginal density of the 
remainder of the sample, using the prior calculated from the 
training set. An important point is that the training set cannot 
increase with the sample size; rather, a minimal training sample 
needs to be found. For a given data set, there will be many 
minimal training samples (made up of different combinations 
of the data points); the intrinsic Bayes factor can be calculated 
for each one, and then an average of these, either arithmetic or 
geometric, is taken, yielding the arithmetic intrinsic and 
geometric intrinsic Bayes factor, respectively. Further 
modifications of these Bayes factors, such as the trimmed and 
median variants, are possible; see Berger and Pericchi (1996). 
A version of the geometric intrinsic Bayes factor is an 
approximate Bayesian solution to the well-posed decision 
problem, from within the M-open perspective, of selecting a 
model, on the basis of which a terminal action will be taken 
(predicting a single future observation), with a particular utility 
attached (Ney, Pericchi and Smith, 1999). 
 

What is intrinsic about the intrinsic Bayes factor? Berger and 
Pericchi (1996) give the following motivation. Suppose we 
have data Xi which are iid �(�,��) under the model M2, 
whereas under M1 they are �(0,��). Possible noninformative 
priors for the two models are 1/�� for M2 (the Jeffreys prior) 
and 1/� for M1 (this is the standard noninformative prior for 
the normal problem). Minimal training sets are any two distinct 
observations. Jeffreys (1961) proposed using the standard 
noninformative prior for the variance, but argued for the use of 
a Cauchy (0 , ��) conditional prior for � given �� for M2. The 
intrinsic Bayes factor analysis gives results that are very similar 
to those obtained using the Cauchy prior in M2. In general, the 
argument is that intrinsic Bayes factors reproduce Bayes factors 
based on “sensible” noninformative priors. However, since we 
question whether noninformative priors can ever really be 
sensible, we are still left with the question “What is intrinsic 
about intrinsic Bayes factors?” 
 

If the data set is large, there will be many minimal training sets 
over which to average, making the Berger and Pericchi 
approach rather cumbersome. An alternative is suggested by 
O’Hagan (1995) in the form of the fractional Bayes factor. Let 
m denote the size of the training sample, n the size of the entire 
data set, and � = �/�. For large m and n, the likelihood based 
on the training set only will approximate the likelihood based 
on all of the data, raised to the bth power. Define 
  

��(�) = 	��(�	,�)/��(�	,�),                                           … (9) 
 

where  
    

��(�,�) = 	
∫ ��(��)��(�|��)���

∫ ��(��)��(�|��)
����

.                                          … (10) 
 

��(�) is the fractional Bayes factor. Note that the motivation 
for the fractional Bayes factor is asymptotic (in m and n ), 
although O’Hagan proposes it more generally for all sizes of 
data set. 
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Fractional Bayes factors have several desirable properties in 
common with ordinary Bayes factors that are not, however, 
shared by intrinsic Bayes factor (O’Hagan, 1997). The 
fractional bayes factor satisfies the likelihood principle, 
whereas intrinsic bayes factors don’t. Invariance to 
transformations of the data is another property of fractional 
bayes factors which is not always enjoyed by the intrinsic 
version. When the two models being compared aren’t nested, 
the arithmetic intrinsic bayes factor is not well-defined, 
because the researcher needs to determine which model is 
complex. Using an encompassing model, in which both 
candidates are nested, doesn’t always solve the problem. 
O’Hagan further shows that  there can be difficulties with the 
minimal training sample for some problems the minimal 
training sample requires the use of all or most of the data, in 
which case the intrinsic bayes factor cannot discriminate 
between models. 
 

In response to the critique by O’Hagan (1997) and another, 
along similar lines,by Bertolino and Racugno (1997), Berger 
and Pericchi (1998) advocate the use of the median intrinsic 
bayes factor, which, they claim, may not be optimal for all 
situations, but is “a good IBF in virtually any 
situation,….”(Berger and Pericchi,1998,). There are two 
version of the median intrinsic bayes factor. The first is the 
median over training samples (instead of an arithmetic or 
geometric mean,take a median),that is 
 

	���
� = ��� ����(�)�,                                                        … (11) 

 

with Bij(�) defined as above. The second is a ratio of medians, 
 

���
�� = 	

���[��(�(��)|�(�)]

���[��(�(��)|�(�)]
.                                                  … (12) 

 

Note that  ���
��  doesn’t have to correspond to a Bayes factor 

arising from one of the training samples (the sample which 
gives the median value in the numerator might not be the same 
as the sample which yields the median value in the 
denominator). Berger and Pericchi argue that ���

�  and  ���
��   

satisfy many of the desiderata outlined by O’Hagan (1997) and, 
in addition, are stable in a variety of situations where the 
arithmetic intrinsic Bayes factor fails. 
 

Taking the general idea of splitting the data into a training set 
and a testing set to an extreme, Aitkin (1991) defines the 
posterior Bayes factor, by replacing the prior distribution 
��(��) with the posterior distribution ��(��|�) in the definition 
of the Bayes factor. In effect, this compares the posterior means 
under the two models and uses the entire data set as the training 
sample. This method is open to a number of criticisms, not the 
least of which is using the data twice, once to compute the 
posterior (to be used as a prior) and once to calculate the Bayes 
factor. Furthermore, as pointed out by Lindley (1991) in his 
discussion, use of the posterior Bayes factor can lead to 
paradoxes in inference. The method does not correspond to any 
sensible prior, nor is it a coherent Bayesian procedure 
Goldstein(1991);O’Hagan(1991). 
 

Consideration of Bayes factors also leads to two of the more 
common criteria used for model selection-the Bayes 
Information Criterion (or BIC) and the Akaike Information 
Criterion (or AIC). The Schwarz Criterion is defined as 
 

� = log ��(�|��) − log ��(�|��) −
�

�
(�� − ��) log(�),   … (13) 

 

Where ��� is the maximum likelihood estimates under model n, 
�� is the dimension of �� and n is the sample size 
(Schwarz,1978). Minus two times this quantity is the BIC. 
Asymptotically, as the sample size increases, 
 

��������

������
→ 0,                                                                     … (14) 

 

thus the Schwarz criterion gives a rough approximation to the 
logarithm of the Bayes factor, without having to specify the 
priors ��(��) (Nass and Raftery,1995). however, even for very 
large samples exp(S) is not equal to B12, as the relative error 
tends to be of order O(1). that is, the approximation does not 
achieve the correct value of the Bayes factor. Nass and Raftery 
(1995) note, though, that the Schwarz criterion should, for large 
samples, give an indication of the evidence for or against a 
model. 
 

The AIC is given by AIC= -2(log maximized likelihood) 
+2(number of parameters); as a model selection criterion, the 
researcher should choose the model that minimizes AIC 
(Akaike, 1973). One justification for the AIC is Bayesian 
(Akaike, 1983), namely, that asymptotically, comparisons 
based on Bayes factors and on AIC are equivalent, if the 
precision of the prior is comparable to the precision of the 
likelihood. This requirement that the prior change with the 
sample size is unusual asymptotic, and furthermore is usually 
not the case. Rather, the data tend to provide more information 
than the prior. In this situation, the model which minimizes  
 

BIC= -2(log maximized likelihood) + (log n) (number of 
parameters) has the highest posterior probability. As can be 
seen by comparing the expressions for AIC and BIC, these two 
criteria differ only by the coefficient multiplying the number of 
parameters, in other words, by how strongly they penalize large 
models. In general, models chosen by BIC will be more 
parsimonious than those chosen by AIC. The latter has been 
shown to overestimates the number of parameters in a model 
(see, for example, Gewene and Meese, 1981; Natz, 1981; 
Noehler and Murphree, 1988). It’s also worth pointing out that, 
even though AIC has a Bayesian justification, nowhere does a 
prior appear in the expression for the criterion itself. 
 

Smith and Spiegelhalter (1980) study the relation between the 
ordinary Bayes factor and selection criteria such as AIC and 
BIC in the setting of nested regression models. 
 

Denote by β2 the vector of regression coefficients unique to the 
encompassing model, that is, the parameters which are in the 
larger model, but not in the smaller model. The choice of prior 
on β2 is crucial in the form of the Bayes factor. Letting the 
matrix of additional (assumed orthogonal) columns in the 
encompassing model be X2, Smith and Spiegelhalter consider 
priors on β2, given the error variance σ2, that have covariance 
matrix of the form ���(�)(��

���)
��. Minus twice the 

logarithm of the approximate Bayes factor obtained from priors 
of this sort is the type 
 

⋀(�) = 	� − �(�� − ��)                                                … (15) 
 

where � =
�

�
+ log �(�) ,�	 is the likelihood ratio test statistic 

and �� − �� is the dimension of β2. Taking ρ(n) to be е1/2 leads 
to AIC, and other value could just as easily be chosen. As ρ(n) 
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increases, support for the simpler model also rises. When the 
elements of ��

��� are of order n for large n, the choice ρ(n) = n 
corresponds to taking a fixed prior, with variance that does not 
shrink with n. under this settings, we get BIC ,since � ≈
log(�). AIC and BIC represent the extremes of taking ρ(n) to 
be  constant (in n) and  taking ρ(n) = n. looking at the criteria in 
this way, it is obvious that other choices for ρ(n), which would 
impose different penalties on the larger model, are possible and 
perhaps desirable. 
 

Bayesian Model Averaging 
 

When working with Bayes factors, the decision space involves 
the choice of a model, or possibly several models, which are 
then used for inference or prediction. If the chosen model is 
only one of many possibilities, the statistician runs the risk that 
model uncertainty will be ignored (Draper, 1995). In this light, 
it makes sense to look at the panoply of models and the 
inferences or predictions they would give. A formal Bayesian 
solution to this problem, as outlined in the conceptual 
framework posed in the opening sections, was proposed by 
Leamer (1978). Suppose there is a quantity of interest, denoted 
∆; the posterior distribution of this quantity, given the data is 
      

�(∆|�) = 	∑ �(∆|��	,�
�
��� ) P(��|�).                            …   (16) 

 

This is a weighted average of the posterior probabilities of ∆ 
under each model, where the weights are given by the posterior 
probabilities of the models in question. Raftery, Madigan and 
Hoeting (1997) call this approach Bayesian model averaging 
(Draper, 1995, does not use this specific terminology, but 
advocates the same idea). As pointed out by those authors, 
averaging over all models increases predictive ability, 
compared to basing conclusions about ∆ on any of the single 
models under consideration; however, the process itself can be 
very difficult, since it often involves integrals that are hard to 
evaluate, and the number of terms in the sum (that is, the 
number of models, N) may be too large to be easily handled. 
 

The latter problem can be tackled by using the Occam,s 
window algorithm for Bayesian model averaging (Madigan and 
Raftery, 1994). Based on two common-sense principles of 
model selection, namely (1) that if a model predicts the data 
much worse than the best model, it should be dropped from 
further consideration and (2) that models that predict the data 
less well than any of their nested submodels should be 
discarded, this algorithm often drastically reduces the number 
of models that need to be considered in the average. Now, the 
problem is one of finding the class of models to be included in 
the average. Occam’s window compares at each step two 
models, where one model, call it M0, is a submodel of the 
other, M1. Loon at the logarithm of the posterior odds for M0; if 
this is positive (or, in general, greater than some set constant), 
that is, the data give evidence in favor of the smaller model, 
reject M1; if it is negative but small, consider both models, 
since there isn’t enough evidence one way or another; if it is 
negative and large, then reject M0 from further consideration. If 
M0 is rejected, so are all of its submodels. Using either an “up” 
or a “down” procedure to move around the space of all possible 
models, models are eliminated, until the set of potentially 
acceptable models to go into the averaging is found. 
 

MCMC model composition (Madigan and York, 1995) is 
another approach for evaluating �(∆|�). A Markov chain is 

built on the model space, with stationary distribution �(��|�), 
and steps through it are taken by moving in a small 
neighborhood of the current model. More specifically, the 
neighborhood of a model consists of all those models with one 
variable more or one variable less than the one under 
consideration at a given stage of the chain. Transition 
probabilities are defined such that the probability of moving to 
a model outside of the neighborhood is zero, and the 
probability of moving to a model within the neighborhood is 
the same for all models in the neighborhood. If the chain is 
currently at stage ��, then we need to draw a model �� from 
the neighborhood. 
 

The model averaging method described by Raftery, Madigan 
and Hoeting (1997) uses flat priors over the range of 
“plausible” values of the parameters. Further, for some of the 
parameters the priors are data dependent, involving both the 
dependent and the independent variables from a linear 
regression model. In that sense, their approach is only an 
approximation to the fully Bayesian analysis that would be 
achieved by the use of subjective priors. Elicitation of expert 
opinion (see, for example, Nadane, Dickey, Winkler, Smith and 
Peters, 1980; Garthwaite and Dicney, 1992; Nadane and 
Wolfson, 1998) is a feasible way of obtaining proper, 
subjective priors to incorporate into the model averaging 
procedure. As shown by Ney, Pericchi and Smith (1999), 
model averaging is also a solution to a well-posed Bayesian 
decision problem from the M-closed perspective, specifically, 
that in which a terminal decision is made directly (for instance, 
predicting a new observation). 
 

Although our focus is not on computation, it is worth noting 
that several other schemes have been developed for the 
calculation of posterior probabilities over model spaces of 
varying dimension. In particular, the reversible jump approach 
(Green, 1995; Richardson and Green, 1997) has been gaining 
popularity in Bayesian circles in recent years. Chib (1995) 
proposes an alternative method, which is based on the 
computation of marginal likelihoods, and hence allows the 
computation of Bayes factors as well. See also Carlin and Chib 
(1995) and Carlin and Polson (1991). 
 

For the regression problem, Mitchell and Beauchamp (1988) 
propose a Bayesian approach to variable selection. They place 
“spine and slap” priors on each of the coefficients in the 
regression equation, i.e. a point mass on �� = 0 for each j, with 

the rest of the prior probability spread uniformly over some 
defined (and large) range. In a similar vein, George and 
McCulloch (1993) describe a Gibbs sampling technique for 
“stochastic search variable selection” in regression, which 
selects promising subsets of variables. George and McCulloch 
suggest embedding the problem in a hierarchical Bayes normal 
mixture model, with latent variables to identify subsets. Models 
with high posterior probabilities are picked out for additional 
study by the procedure. The prior on �� is a two-component 

normal mixture, with each component centered about zero, and 
having different variance. A latent variable determines to 
which component �� belongs. In contrast to Mitchell and 

Beauchamp’s prior, no point mass is placed on zero. Denoting 
the latent parameter by ��, the prior is  
 

��|��~�1− �����0,��
�� + ����0,��

���
��.                       … (17) 



Mariyappan P and Arumugam P., Methods of Bayesian Model Selection 
 

27802 | P a g e  

The latent variable is equal to 1 with probability pj. In this 
formulation, the statistician needs to devote some thought to 
the values of �� and ��. The former should be small, so that if 

�� = 0, �� is small and might be closely estimated by zero. On 

the other hand, �� should be large. Thus if �� = 1, a non-zero 

estimate of �� would lead to including this variable in a model. 

Under this interpretation, �� can be thought of as the prior 

probability that variable j should be in the model. 
 

Building on the worn of George and McCulloch (1993), Kuo 
and Mallick (1998) also explore the use of Markov Chain 
Monte Carlo to identify models with high posterior probability. 
Where the former build a hierarchical model, Kuo and Mallick 
start from a regression equation that embeds all models within 
it. Taking �� to be the indicator for the jth variable being in the 

model, the regression for subject � is written as 
 

�� = 	∑ ������� + ��
�
��� .                                                    … (18) 

 

When �� = 1,	predictor j is included in the model and when 

�� = 0, we omit predictor j. Standard priors are assumed on the 

parameters – normal for the vector of coefficients, inverse 
gamma for the variance of the errors, and the �� are 

independent Bernoullis. Note that in this formulation, the prior 
on ���� is a mixture – it has a point mass at 0 with a certain 

probability, and the rest of the mass is normally distributed. 
Instead of a “spine and slap” prior, we have a “spine and bell”. 
Therefore, as in Mitchell and Beauchamp (1998), a privileged 
position is given to the particular hypothesis that �� = 0. The 

posterior distribution of the vector of indicators is supported on 
each of the 2p submodels, and gives a measure of the 
probability of each. In this way, it is possible to evaluate the 
models and consider the ones with highest posterior 
probability. The model with the highest posterior probability 
corresponds to a Bayes decision rule with zero-one loss (see 
also discussion of Bayes factors). Calculation of the posterior 
distributions is via Gibbs sampling. 
 

Predictive Methods 
 

The framework proposed in Section 4.2 looks at the posterior 
probability assigned to each model. Alternatively, it should be 
possible to look at the predictions from the various models. 
Now the question of interest shifts slightly, from “Which 
models best explain the observed data?” to “Which models 
give the best predictions of future observations generated from 
the same process as the original data?” Ideally, we would like 
to compare predictions and choose the model which gives the 
best overall predictions of future values. However, we don’t 
know these “future values”- if we did, we could just use them 
directly. Most predictive methods, then, use some sort of 
jacknkife approach, under the assumption that future 
observations from the process that generated the data would be 
similar to those actually in the sample. That is, the data are 
assumed to be exchangeable. This is the idea behind the “quasi-
Bayes” approach of Geisser and Eddy (1979), a blend of 
Bayesian and sample-reuse ideas. For each model, compute the 
likelihood as the product of “predicting densities”, that is, the 
density of the jth observation, calculated on the rest of the data 
with the jth observation deleted, under a specific model (this 
gives a predicted value for observation j based on the rest of the 

data). The model for which this likelihood is maximized is 
chosen as the most suitable of those models being considered. 
San Martini and Spezzaferri (1984) give a different twist on the 
predictive approach to model selection, defining their criterion 
in terms of utility. Here, priors on the models and the 
parameters are incorporated. They define an average criterion, 
which, like those of Akaike and Schwarz, corrects the 
likelihood ratio statistic by taking account of the differences in 
model dimension. It differs from other similar criteria in that it 
also accounts for the distance between two models. Assume 
that the models under consideration are ��,… ,��, �� is the 
probability that model �� is true and ��(�) is the predictive 
density of a future observation y based on the model ��. Now 
let �(�(∗),�) be a utility function for choosing the density 
�(∗) as the predictive distribution of y (the unknown future 
observation). The procedure picks the model whose expected 
utility is the largest. If there are two models, for example, the 
first will be chosen if  
 

��[�(��(∗),�) − �(��(∗),�)]��

> ��[�(��(∗),�) − �(��(∗),�)]��, 
 
expectations �� being taken with respect to the predictive 
distribution ��(∗). In addition, San Martini and Spezzaferri 
(1984) show that their criterion fits into the frameworn of 
Smith and Spiegelhalter (1980), with a penalty term that 
increases as the distance between the two models (as measured 
by the linelihood ratio statistic) increases. 
 

A predictive version of a general Bayesian model selection  
framework is given in Gelfand and Dey (1994). Observed 
(independent) data are ��,… ,��, which under model �� have 
likelihood �(�|��). For simplicity, Gelfand and Dey restrict 
attention to the case where only two models are being 
considered; as they point out, comparisons are generally done 
pairwise, so nothing is lost by this. Denote by �� the index set 
{1,2,…,n} and let S be a subset of ��. Define 
 

�(��|��) = ∏ �(��|��)�
��

��� ,                                          …   (19) 
 

where �� is the indicator for � ∈ �. As before, we denote the 
prior for �� under model �� by ��(��). For prediction 
purposes, Gelfand and Dey propose consideration of the 
conditional density 

�����
����

,��� = ∫ �(��|���
)��(��|���

)��� 

=
∫ �(��|���)�(��|���)��(��)���

∫ �(��|���)��(��)���
                                           … (20) 

 

This conditional density is a predictive density; it averages the 
joint density of ���

 with respect to the prior ��(��), updated by 

���
. Both S1 and S2 are taken to be subsets of S, and different 

choices correspond to predictive techniques in the Bayesian 
literature. For instance, S1 ={r} and S2 = S - {r} gives the 
Geisser and Eddy (1979) cross-validation density and hence the 
pseudo-Bayes factor 
 

∏ �(��|��,��)/� ∏ �(��|��,��).�                                   … (21) 
 

S1 = S2 = S results in Aitkin’s (1991) posterior predictive 
density and the posterior Bayes factor. When S2 is a minimal 
subset and S1 = S - S2, we can obtain the different versions of 
the intrinsic Bayes factor. 
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Gelfand and Ghosh (1998) also adopt a predictive outlook to 
model selection, building on the observation by Nadane and 
Dickey (1980) that Bayes factor correspond to a 0 – 1 loss. 
Other loss functions are possible, and they base their method 
on the idea of evaluating models by comparing observed data 
to predictions. For each model, minimize the expected posterior 
loss over all possible predictions as the observed data; then, 
choose the model for which this minimum is minimized. Note 
that in this framework, as opposed to our general outline of the 
model selection process, there is no notion of one of the models 
being “true”; furthermore, there are priors assigned to the 
models themselves. 
 

The goal of this approach is to obtain good predictions for 
replicates of the observed data, but at the same time to be 
faithful to the observed values. In order to attain this objective, 
a loss of the general form 
 

������,�; ����� = ������,�� + ��(����,�)                    … (22) 
 

for � ≥ 0 is proposed, where ���� are the observed data, ���� 

are the replicates to be predicted (assumed to come from the 
same distribution as the observed data) and � is the “action” or 
estimate. The action is a compromise between the observation 
and the prediction, with the weight, n, expressing how 
important it is to be close to ����, relative to ����. Gelfand and 

Ghosh show that for a range of models and appropriate choices 
of the loss �(�,�), the form above results (asymptotically or 
approximately) in a goodness of fit term plus a penalty term, 
similar to criteria such as AIC and BIC. 
 

Let’s consider a simple example in more detail; this example is 
given in Gelfand and Ghosh (1998) and we repeat it here to 
highlight the essentials of the method, which is somewhat 
different in spirit than others we have considered so far. Take 
 

��(�) = ∑
���
��

���,���\����,�
����,���,��; �����;

�
���         …  (23) 

 

m represents the model relative to which calculations are 
carried out. For the general form of the loss described above, 
this becomes 
 

��(�) =

∑
���
��

{���,���\����,�
����,���,��� + �����,���,���

�
��� }.    … (24) 

 

For a fixed ��, and �(�,�) = (� − �)�, the ��� term in this sum 
is  
��

� + (�� − ��)
� + �(�� − ��,���)

�,                                  … (25) 
 

where ��
� is the variance of ��,��� given ���� and �, and �� is 

the expected value of ��,��� given ���� and �; in both of these 

we have suppressed the dependence on the model in the 
notation for simplicity. 
 

The minimizing �� is (� + 1)��(�� + ���,���). If this is 
inserted bacn into the expression for ��(�), the result is 
 

��(�) =
�

���
∑ (�� − ��,���)

� + ∑ ��
�.�

���
�
���                    .,.. (26) 

The first summand can be thought of as a goodness-of-fit 
measure (how close are the predictions to the observed data) 
and the second is a type of penalty term. If ��  comes from a 
normal distribution, the first term is equivalent to the likelihood 
ratio statistic with �� replacing the MLE of the mean of �� . 
Extending the example, suppose that y comes from a normal 

linear model. Put as a prior on the parameters � a �(��,�) 
distribution. If the prior is very imprecise, that is Σ is large, 

then ����\���� has an approximate �(���,��[� +

�(���)����]) distribution. The two summands in ��(�) 

become (again, approximately) (� − ���)�(� − ���) and 
��(� + �). 
 

As pointed out in Gelfand and Ghosh (1998), this is one 
example where the calculation of ��(�) can be explicitly 
made. In general, however, a combination of asymptotic 
expansions and Monte Carlo simulation for the evaluation of 
integrals will need to be employed. 
 

Akaike Information Criterion (AIC) 
 

The Akaike information criterion (AIC) is a measure of the 
relative quality of a statistical model, for a given set o data. As 
such, AIC provides a means for model selection. AIC deals 
with the trade-off between the goodness of fit of the model And 
the complexity of the model .It is founded on information 
entropy: AIC does not provide a test of a model in the sense of 
testing a null hypothesis; i.e. AIC can tell nothing about the 
quality of the model in an absolute sense .If all the candidate 
models fit poorly, AIC will not give any warning of that. 
 

In the general case, the AIC is 
 

��� = 2� − 2ln	(�)                                                         … (27) 
 

Where n is the number of parameters in the statistical model 
and L is the maximized value of the likelihood function for the 
estimated model. Given a set of candidate models for the data, 
the preferred model is the one with the minimum AIC value. 
Hence AIC not only rewards goodness of fit, but also includes 
a penalty that is an increasing function of the number of 
estimated parameters. This penalty discourages over fitting 
(increasing the number of free parameters in the model 
improves the goodness of the fit, regardless of the number of 
free parameters in the data-generating process). 
AICc 
AICc is AIC with a correction for finite sample sizes: 
 

���� = ��� +
��(���)

�����
                                                      … (28) 

 

Where n denotes the sample size. Thus, AICc is AIC with a 
greater penalty for extra parameters. Burnham & Anderson 
(2002) strongly recommend using AICc, rather than AIC, if n is 
small or n is large. Since AICc converges to AIC as n gets 
large, AICc generally should be employed regardless. Using 
AIC, instead of AICc, When n is not many times larger than 
��, increases the probability of selecting models that have too 
many parameters, i.e. of over fitting. The probability of AIC 
over fitting can be substantial, in some cases. Brockwell & 
Davis (1991) advise using AICc as the primary criterion in 
selecting the orders of an ARMA model for time series. 
McQuarrie & Tsai (1998) ground their high opinion of AICc on 
extensive simulation worn with regression and time series. 
 

AICc was first proposed by Hurvich & Tsai (1989). Different 
derivations of it are given by Brockwell & Davis (1991). 
Burnham & Anderson, and Canvanaugh (1997). All the 
derivations assume a univariate linear model with normally 
distributed errors (conditional upon regressors); if that 
assumption does not hold, then the formula for AICc will 
usually change. Further discussion of this, with examples of 
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other assumptions, is given by Burnham & Anderson (2002). In 
particular, bootstrap estimation is usually feasible. Note that 
when all the models in the candidate set have the same	�, then 
AICc and AIC will give identical (relative) valuations. In that 
situation, then, AIC can always be used. 
 

History of Akaike Information Criterion 
 

The Akaike information criterion was developed by Hirotugu 
Akaike , under the name of “ an information criterion”. It was 
first published by Akaike in 1974. The original derivation of 
AIC relied upon some strong assumptions. Takeuchi (1976) 
showed that the assumptions could be made much weaker. This 
worn, however, was in Japanese, and was not widely known 
outside Japan for many years. 
 

AICc was originally proposed for linear regression (only) by 
Sugiura (1978).That instgated the worn of Hurvich &Tsai 
(1989), and several further papers by the same authors, which 
extended the situations in which AICc could be applied. The 
worn of Hurvich &Tsai contributed to the decision to publish a 
second edition of the volume by Brockwell & Davis (1991) 
which is the standard reference for linear time series; the new 
edition states, “Our prime criterion for model selection [among 
ARMA (p, q) models] will be the AICc. The volume by 
Burnham & Anderson (2002) was the first attempt to set out 
the information –theoretic approach in a general context. It 
includes an English exposition of the results of Takeuchi. The 
volume led to far greater use of the information-theoretic 
approach, and now has over 20000 citations on Google 
Scholar. 
 

Akaike originally called his approach an “entropy 
maximizations principal”. Burnham & Anderson (2002) 
discuss and expand on this, and trace the approach back to the 
worn of Ludwig Boltzmann on thermodynamics. Briefly, 
minimizing AIC in a statistical model is essentially equivalent 
to maximizing entropy in a thermodynamic system. In other 
words, the information –theoretic approach in statistics is 
essentially applying the second Law of thermodynamics. 
 

Comparison with BIC 
 

The AIC penalizes the number of parameters less strongly than 
does the Bayesian information criterion (BIC). A comparison 
of AIC/AICc and BIC is given by Burnham & Anderson 
(2002). The authors show that AIC and AICc can be derived in 
the same Bayesian framework as BIC, just by using a different 
prior. The authors also argue that AIC/AICc has theoretical 
advantages over BIC. First, because AIC/AICc is derived from 
principles of information; BIC is not, despite its name. Second, 
because the (Bayesian framework) derivation of BIC has a 
prior of 1 �⁄ (where R is the number of candidate model), 
which is “not sensible”, since the prior should be a decreasing 
function of n. Additionally , they present a few simulation 
studies that suggest AICc tends to have practical/performance 
advantages over BIC. See to Burnham & Anderson 
(2004).Further comparison of AIC and BIC, in the context of 
regression, is given by Yang (2005). In particular, AIC is 
asymptotically optimal in selecting the model with the least 
mean squared error, under the assumption that the exact “true” 
model is not in the candidate set (as is virtually always the case 
in practice);BIC is not asymptotically optimal under the 
assumption. Yang further shows that the rate at which AIC 
converges to the optimum is, in certain sense, the best Possible. 

Bayesian information criterion (BIC) 
 

The Bayesian information criterion was introduced by Schwarz 
(1978) as a competitor to the Akaike (1973, 1974) information 
criterion.Schwarz derived BIC to serve as an asymptotic 
approximation to a transformation of the Bayesian posterior 
probability of a candidate model.In large-sample settings, the 
fitted model favored by BIC ideally corresponds to the 
candidate model which is a posterior most probable; i.e., model 
which is rendered most plausible by the data at hand.The 
computation of BIC is based on the empirical log-likelihood 
and does not require the specification of priors.In Bayesian 
applications, pair wise comparisons between models are often 
based on Bayes factors.    Assuming two candidate models are 
regarded as equally probable a prior, a Bayes factor represents 
the ratio of the posterior probabilities of the models. The model 
which is a posterior most probable is determined by whether 
the Bayes factor is less than or greater than one. In certain 
settings, model selection based on BIC is roughly equivalent to 
model selection based on Bayes factors (Nass and Raftery 
,1995; Nass and Wasserman, 1995) 
The Bayesian information criterion is   
 

��� = −2����� ��
�⁄ � + � ln �.                                        … (29) 

 

AIC and BIC feature the same goodness-fit term. The penalty 
term of BIC is more stringent than the penalty term of AIC (For 
n	≥ 8,� ln �		�������	2�	).Consequently; BIC tends to favor 
smaller models than AIC. BIC provides a large-sample 
estimator of transformation Of the Bayesian posterior 
probability associated with the approximating model. BIC 
provides a large-sample estimator of a transformation of the 
Bayesian posterior probability associated with the 
approximating model. By choosing the fitted candidate model 
corresponding to the minimum value of BIC, one is attempting 
to select the candidate model corresponding to the highest 
Bayesian posterior probability.BIC was justified by Schwarz 
(1978) “for the case of independent, identically distributed 
observations, and linear models,” under the assumption that the 
likelihood is from the regular exponential family. 
 

An endeavor as basic to the pursuit of science as model choice 
and selection is bound to generate a plethora of approaches. 
Bayesian and classical statisticians have both put forth 
proposals for solving this most difficult, as we have argued, for 
a researcher to know what is the “proper” way to proceed. 
 

The unifying conceptual framework we proposed is an attempt 
to bring order to this often chaotic field. From this perspective, 
a “model” is just a discrete parameter in a larger super-model. 
Model averaging, with proper priors, provides a principled and 
coherent Bayesian  approach to the problem at hand. Regarding 
other Bayesian techniques, such as the various flavors of Bayes 
factors, while they may be solutions to specific decision 
theoretic problems, as described in Ney, Perrichi and Smith 
(1999), they are more narrow in focus and in applicability. 
Indeed, applicability of the “default prior” methods, embodied 
in intrinsic and fractional Bayes factors, needs to be checked on 
a case by case basis (Berger and Perrichi, 1997) and in that 
sense they don’t necessarily offer an advantage even over 
frequentist methods. 
 

Frequentist approaches to model selection of course do not fit 
neatly into the proposed Bayesian framework, and suffer from 
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the lack of a guiding principle. New methods are developed 
apparently on ad hoc grounds. To be fair, many of the so-called 
objective Bayesian techniques also seem to us to be derived 
more as a response to something else not working, than from 
proper Bayesian considerations, and this is perhaps not 
coincidental.  
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