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JO 1(s)

u(0,1)=0, u(l,t)=0, ¢in|0,T],
u(x,0)= U, (x), xin [O,l].
Where f (s) is a positive, increasing, convex function for nonnegative value of S, £ (0) > 0,

—— <+o0, and Y is a positive diffusion parameter. We find some conditions under

which the solution of semi-discrete form of the above problem blows up in a finite time and estimate
its semi-discrete blow up time. We also prove the convergence of the semidiscrete form blow-up
time to the real one when the mesh size tends to zero. Finally, we give some numerical results to
illustrate our analysis.

Copyright © Yekre B., Yoro.Gozo and Halima Nachid B, 2018, this is an open-access article distributed under the terms of
the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium,

provided the original work is properly cited.

INTRODUCTION

Let Q) be a bounded domain in L]~ with smooth boundary
0Q). Consider the following initial-boundary value problem
for a nonlinear equation with a nonlinear boundary condition of
the form

ut(x,t)—}/uxx(x,t):f(u(x,t)) x in(0,1), ¢in(0,T), ()
u(0,0)=0, u(1,t)=0, tin[0,T], )
u(x,O)zuO(x), X inl:(),l]. ?3)

which models the temperature distribution of a large number of
physical phenomena from physics, chemistry and biology. The

initial data U, (.X) is a continious and increasing function in

I:O,l:l, f(s) is a positive, increasing, convex function for

*Corresponding author: Yekre B

nonnegative values of S,

f(0) >0,

.[0 —<+OO and 7 is a positive diffusion parameter.
1)

Here (0, 7) us Here (0, 7) is the maximal time interval of

existence of the solution u. The time 7 may be finite or infinite.

When T is in_nite, we say that the solution u exists globally.

When T is finite, then the solution u develops a singularity in a

finite time, namely, lim || u(-,¢) (|, = +o,
t—>T
where || u(-,t)[loo =max,_. _ [u(x,t)l-
In this case, we say that the solution u blows up in a finite time

and the time T is called the blow-up time of the solution 4.

The theoretical study of the phenomenon of blow-up has been
the subject of investigations of many authors (see [3], [9], [12],
[15], [17], [22] and the references cited therein).
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In particular, in [12], the authors have shown that if Y tends to

zero, the above problem has been studied and existence and
uniqueness of a classical solution has been proved. Under some
assumptions, it is also shown that the classical solution blows
up in a finite time and its blow-up time has been estimed.

In this paper, we are investing in the numerical study of the

above problem. Let Ibe a positive integer, where } = l is the
1

mesh parameter and define the grid X; =th, 0 <i<I or

Was|

solution u of

ZXZ-+h and Atn =X.

i+l
()-3) by  the
U, () = Uy (0),U,(0),....U ()T of the following semi

discrete equations

X; approximate  the

solution

d
U0~ 12U (0= fU;0), 1<i<I, 10T, (4)
Up®)=0. U, (020, re.1h, (5)
U, (0) =9, 20, 1<i<l, (6)
Where

Pi 12 P 1<i<Il-],

U, (0=20,()+U,_{(t)

, 1<i<I-1.
)

52U, (1) =
Here (0, Tbh) is the maximal time interval on which
1U}, lloo< +o0 with | U, lloo=max,; ; 1U; ()

When Tbh is finite we say that the solution U. h(t) exists
globally if not, we say that the solution Uh(t) of (4)-(6) blows

up on a finite time and the time Tbh is called the blow-up

time of the

Solution U. h(t) .

In this paper we are interesting in the numerical study of the
above problem. Firstly, we show that the solution of a semi-
discrete form of (1)-(3) blows up in a finite time when ) is

small enough in addition, we prove that the semi discrete blow-
up time tends to the real one as $\gamma$ goes to zero. In the
case where the blow-up occurs, we show that the semi discrete
blow-up time converges to the real one when the mesh size
goes to zero.

Our work was motived by the paper in [1],[2],[9],[15],[19]. In
[1] the authors have considered the problem (1)-(3) in the case
where the parameter ) equals one. They have prove that the

solution of the semi discrete scheme (4)-(6) blows up in finite
time and its semi discrete blow-up time converges to real one
when the mesh size goes to zero in the case where the initial
data, is symetric an large enough. Let us notice that in the case
where 7 =1 we have shown for our problem that the semi
discrete solution exists globally, and is bounded from above by

one (see theorem, below...). In [19], the author has shown that
the solution of a discrete form of  the

,(x,8) = gy (x,6) + 1% (x,£)  with dirichlet boundary

conditions and large initial data blows up in a finite time
converges to the real one when the mesh size goes to zero. In
[2], semi discrete and discrete schemes have been used to study
phenomenon of extinction (we say that a solution extincts in
finite time if it reaches the values zero in a finite time).\\Our
paper is written in the following manner. In the next section,
we give some results about the discrete maximum principle, we
give some results which will be used later, in the third section,
under some assumptions, we show for small diffusion, the
solution of (4)-(6) blows-up time converges to one when the
parameter $\gamma$ tends to zeros we also show that for large
diffusion the solution of (4)-(6) exist globally and is bounded
from above, in the fourth section, we prove that the case where
blow-up occurs, the semi discerete blow up time convergences
to the real one when the mesh size goes to zero. Finally, in the
last section, we give some numerical results to illustrate our
analysis.

Properties of semi discrete problem

In this section, we give some lemmas which will be used later,
we prove some results about the semi discrete maximum
principle and reveal certains properties concerning the operator

52,
Lemma 2.1
Let ay «CO(0.11.0 )y and ter v, 1) el (0.70.0 ) such thar

%Vi(ﬂ—yézl/;.(t)Jrai(t)Vi(t)20, 1<i<i-1, te(0,T) (7)
K020, V020, 1e(0,7) 8
V(0)=0, 0<i</ )
then we have V(1) >0, 0<i <1, t(0,7).

Proof

Let TO <T and let m = min Vl.(l). Since for i €0,...,1, Vl-(t)

0<i<1,0<t<T
is continuous function, there exist 1)€[0,10] such that m=Vjy(10)
for ipe0,....I. If i0=0 or ip=I,we have m=0.

For igel,...,I-1 it is not hard to see that

dy o Vigto)Viglo=h)
Vo) Jim ‘ <0 (10)

Vig+1(10)-2Vjo (t0)+Vi0—1(to)>0

2. _
52Wj (10)= 0 > (1

Define the vector Zj, (t):eﬂ'th(t) where
A is large enough that ajjy(10)—A>0. A straighforward computer reveals that

dZj
’gt(m) —y52zi0 (1g) + (ajy (1) = D) Z; (1) 2 0 12)
We observe from (10)-(11) that
dzZ. (t.)
ZO 0 2
————<0and delt a Zi (tO) >0. Using (12) we
dt 0
arrive at
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(al- (l‘O) - ﬁ)Zl- (to) >0, which ~ implies  that
0 0

Z iO (tO) >0.

Therefore Vio (to) =m >0 and we have the desired result. [

Another form of the maximum principle for semi discrete
equation is the following comparison lemma.

Lemma 2.2

Let V,(t), U,(t)e C'([0,T],R"") and g € C*(Rx R, R)
such that for # € (0,7):

L1400}
dt
Vo)< Uy (0, V,(O< U, (®), (14)
V,(0)<U,(0), 1<i<I, 15)

then we have
Vt)y<U,(t) 0<i<l, te(0,7).

dU, (z)

-y () + gV, (t),t) < —LL—y5°U, () + g(U,(1),t) 1<i<I-1, (13)

Proof
Define the vector Z,(t) =U,(t)—V, (). Let ¢, be first t >0 such that
Z,(t)>0 forre(0,4,), i=0,...,I but Z, (¢,) =0 for certain condition because of (14).

If iel,...,] -1, we observe that
az, ) Z,6)=Z, k)

o =lim ‘o

dt =
t)—2Z (t,)+Z, (¢
57,9 = D@ A D)
which implies that
az, (&) .,
(;t —76°Z, (1) + S8 (U, () t) — gV, (1):1,) < 0.

But this inequality contradicts (13).
The lemma below is a discrete version of the Green's formula.

Lemma 2.3
Let V,(t)and U, (t) two vectors such that U (t)=0,
U, (1)=0, V,(t)=0, V, (t)=0. Then we have

ZhU 5, ZhV52

Proof :
A routine calculation yields

Zhl] 52V ZhV§2 I/1(]1—1 _UII/I—I +I/0U1 _UOI/I
i=1 h

and the result follows using the assumptions of the lemmal]

The lemma below give us a property of the operator 7.
Lemma 2.4

Let U, (t) be the solution of (4)-(6). Then we have
U(t)>0, 1<i<I-1,1te(0,T)).

Proof
From lemma2.1, U,(¢)>0, for t€(0,T}).

Assume that there exist a time ¢, € (0,7, ) such that U, (¢,) = 0 for a certain

i, €1,...,] -1, we observe that

dU, (1) . U, ()~U,(t,k)
=lim <0
dt k>0 k
2U, (t,)+U, (¢
50, < Ler® U)o
h
We deduce that
4, (t)

0 2
—-vo-U. (¢,)<0.
PR L (&)

But this contradicts (4) and we have the desired result.

The following lemma reveals property of the semi discrete solution.
Lemma 2.5
Let U, € R such that U, >0 then we have

2 2 .
S fU)= f(U)SU,, 1<i<I-I.
Proof
Apply Taylor's expension to obtain
()‘zf(U‘)=f‘(U‘)é'ZUI(t)+(U”‘Z;ZU’)Z f"(HI)Jr( “2 U,y (), 1<i<l,

where @, is an intermediate value between U, and U,,, and 7, is the one between U,_, and U,.
Use the fact U, > 0 to complete the rest of the proof ]

The lemme below shows that if U, (t) is the solution of the semidiscrete problem, then

d . . ..

7 U, (t) is positive when i is between 1 and / 1.

Lemma 2.6

Let U,(t) be the solution of (4)-(6). Then we have
d

~U.@)>0, 1<i<I-I.
dt

Proof
Setting W, (t) :%U!(t), 1<i<I-1, it is not hard to see that
L= 550+ £ O a6)
Wy(0) =0.,() =0, 10,1, an
W,0)>0, 1<i<I-1. (18)

Lett, be the first t=0 such that W, (t;)=0 foracertainiyel,...J -1

without loss of generality, we may suppose that i, is the smallest i, which ensure the equality,

we get
@) W ()W, (-0
=lim <
dr k>0 k
W, ) =20, (&) +W, (¢
AR A

which guarantees that
dw, 1) )
LW (1) - U, @), <.

Therefore, we have a contradiction because of (16). The following lemma
shows that the solution U, (f) of the semidiscrete problem is symefric and

&7 (U (1)is positive when i is between 0 and [ 1-1. [ ] is the integer part of the number 5

Lemma 2.7

Let U, be the solution of (4)-(6). Then we have for t € (0,7,
U, @0)=U[p). 1<i<I.

S (U#)=0, 0<i< [g] ~1, for te (0,T))
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Proof

Introduce the vector ), defined as follows V,(z) =U,_(f)for 0=i <]
It is not hard to see that V, ()3 is a sclution of (4)-(6). Now. define the vector
Z, such that Z,()=U,(t)-V,(t) Itis not hard to see that

%Zm = Z O+ EEZE). 1<i<I-1, 19
Z,(0=0. Z,(0=0. (20)
Z(D=g. (2D

Where &,(t) is an intermediate value between U, (t) and Vi(t). It follows from lemma2.1
that V, (t)=U (t) Now let us prove that the second part of lemma. Since U,(t)>0fort € (OI;'):
we observe that & U/;(f) > 0 Let t, be the first t=0 such that 5 U, (t)=0 for #  (0.z,) but

&'U, (t,)=0for acertain i, whichis between Oand [—5]-1. As seen vet. i, =0 without loss

of the generalinty, we assume that i, is the smallest integer which gnarantees the quality. Setting,

dZ. (1, Z () —Z (t,—k
SR A e A P
dr k=0 k

L) 2Z, () 2 4(2)

A

b i

=0,if 1555[%]72

and we kmow that if i,=[£]-1:

622[1,_1 (t) = 525'_[17 (t)— 5257[17_1(13) =

)~ ()+U; () ~Us )+ 2 ()T

77
Using the fact that the discrete solution is symetric, we have either U[L,l(t)zt[l— l(t) or

@

[3-1

L'[I;l (t):L'[L (t) in both cases we find that

Z[;'._, ()
§Z, (t)=—"1t—>0.
[%:_1 ( :)) h.
the above inequality imply that
d 3 .
EZE (2) =¥ Z, (1) + (&G DZ, (1) <0
which is contradict becauseof(19)0

Lemma 2.8

Let U, be the solution of (4)-(6). Then we have for ¢ € (0,7}")

Let U, and U, € C'([0,T],R™") if " (U,)6*(¥;)=0and 5 (U,)5 (V,) >0
SFUYViH=2US (V) +V,8*(U,),

U

where 5*(U‘v):% and 5*(U‘):M_

h
Proof

A straightfoward computation yields

W& UF)=U oy =207, 4 U Yy = Uy UV =P+ V(U ~U)+ U, (Vg =T)
UV =200+ Uy = Uy =V + U ~ UV + UV, =P+ UV,

Which implies that

S UF) =6 U5 (M) +5 (U)S @) +F5 (U).

Using the assumption of the lemma We obtien the desired result[]

Blow-up in the semi discrete problem

fU)=¢ and U(0)=0,

under some assumptions with respect to the parameter Y and

In the section, we choose

the initial data, we show that the solution Uh of (4)-(6) blow-

up in a finite time and estimate its blow-up time. Our first
result on blow-up is the following the theorem.

Theorem 3.1

Let U, be the solution of (4)—(6) and suppose that y < . with
a

2(1-cos(h))

WET

5 . Then the solution U, blow-up in a finite time 7," which is estimated as follows

e

h

T'<
e-a,y

Proof

Since (0,7;") be the maximal time interval on which || U, (¢)]|, is finite,
our aim is to show that T} is finite and satisfies the above inequality. Introduce the vector w(t)

defined as follows

w(t) = i tan(%h) sin(izh)U, (1)

Ui®

Taking the derivative of w and t and using (4), with f(U,(t))=e™",we find that

s zh, . . ) & zh, . . o)
w= yz tan(T) sin(izh)o~U,(t) + z tan(7) sin(izh)e
i=1 i=l
Due to lemma?2.3 and the fact that §’sin(inh)=-0, sin(inth), we obtain

-1
w(t)=—a,yw(t)+ Z tan(%h) sin(izh)e” .
i=l

1-1 h

A routine computation reveals that ZIan(%)sin(inh)Zl .Therefore, applying Jensen's inequality,
=1

we arrive at

w(t) > —yoy, w(t) +e""

w(t)

20

which implies that

)

w(t)>e"(1-ya,
: s _1 | wit) (1 YO

Using the fact sup—=—, we find that w'(t) > ™" (1-—).
20 € e e

The above estimate may be written as follows e"“dw>e"“ (1 —&)dt
e
Integrating this inequality over (0,T}'), we get 7' < %
(-7
e

Hence T, is finite and the proof is complete. [1

Theorem 3.2
Let U, be the solution of (4)-(6). Then we have $T) > 1.

Proof:
Let i, be such that U, ®=1U,(t)|l, we observe that

Ui,,+1 (t)7 2Ui0 (t) + Ui,,—! (t)
B2

8, (1) =

dUiD ® < eU,D(l)’
dt
that is to say ¢ mdU|D dt. Integrating this inequality over (0,T;), we get T} > 1.

<0 whicih implies that

Remark 3.1
Theorem 3.1 and 3.2 show that, the solution of the semi
discrete as a function of ) and the initial data blows up in a

finite time Yb'h bounded from above and below. If the

parameter of the diffusion }and the initial data goes to zero we

see that Tbh goes to one. It is not hard to see that one is also

the blow-up time for the solution of the following differential
equation

A=, A0)=0,

Thus from 3.1 and 3.2, we prove a well-known result for the
continuous problem (see[12]).

The following result shows that the solution of the semi
discrete problem exists globally for } sufficiently large.

Theorem 3.3
If y2 g then the solution U, (t) of (4)-(6) exist globally and we have.

0<U,(t)<4ih(1-ih), t>0, 0<i<I.
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Proof

Introduce the vector ¢, defined by ¢,=4ih(1-ih), 0<i<I.
We have (p[,](t) <1. It is not hard to see that.
2

</’l
% y5¢,—8y>e>ez>e 1<i<I-1.
t
Setting Z, (t)=0,-U, (t), we find.
dj"—yézz,.—eé‘”zizo, 1<i<I-1,

Z,()=0, Z,(t)=0.

From lemma 2.1, we deduce that Z, (t)>0 for te (O,Tbh) that is to say
0<U,(t)<4ih(1-ih), t>0,0<i<I,te(0,T}),

this implies that T}'=+ o and the proof is complete[]

Remark 3.2

The above theorem shows that for large diffusion, the solution
of the semi discrete problem is bounded from above by one.
We have seen that for large diffusion, the solution of the semi
discret problem exists globally and is bounded from above. The
following theorem reveals that in this case it approaches its
stationary solution as t goes to infinity.

Theorem 3.3
Assume that the solution U, (t) of (4)(6) exists globally and is bounded then U, (t) goes to V, (t)

as t approaches infinity where V, (t) is the stationary solution of (4)-(6).

Proof

Introduce the vector %(t) such that

-1
W.(t) = Z G,U,(t) here G, is the discrete Green function defined by

j=1
%ih(l—jh) if 0<i<j<I
i T
Sy if 0<jsisi

Taking the derivative of W{(t) with respect to t and using (4),

a straightforward computation reveals that

d I-1 .
Z Wi(t) = z G, (752Uj 0+ e’ (t)) which implies that
=

AWi(?)

1-1
=—yU,()+Y.Ge"".
dt ]':1

From lemma 2.6 l]J(f) is strictly increasing. On the other
hand, the last term on the right hand side of the above equality

is bounded. Hence, we may conclude that @ goes to
t

zero as t approaches infinity. Setting lim Uu.@)=V.

We derive the following equality ZG ¢’ which

implies that
y5°V, +€ =0, 1<i<I-,
V,=0, V;= 0, and the proof is complete. [J

Convergence of the blow-up time

In this section, under some conditions, we show that the
solution of the semi discrete problem blows-up time goes to the
real one when the mesh size tends to zero. Firstly, let us prove
the convergence of our scheme by the following theorem.

Theorem 4.1

COS(*)
Suppose that y< 7[2

, then the solution of (4)-(6) blows-up in a finite time

R P s

T which satisfies the following estinmte 7, <— o 7
005(7)

Proof: Introduce the vector Wi(t) such that

Since (0.T7) is the maximal time interval on which 1| U,(t) 1, is finite, our aim is to show
that T;' is finite and satisfies the shove inequality.
Introduce the vector J, () defined as follows

f(r)——:—C() LN EIES 4

Where C;(t}=e ™ 'sin(inh) with %:2(1{;@). A direct calculation yields

J(f)_——C({)QL 9 0<i<l
d dU. [r)

‘j() ( aC(r) &

a—'r: ) _ e AU
Ta di

U - —C;i(t)e < 7 CE ).

We observe that C, (1) is symetric and §7°C, is positive for 0<i S[é]-l.
It follows from lemmas 2 5.2 7 and 2.8 that

FCe) = ce¥ 5, M5,

Use this inequality and the fact that chi 18°C,=0 to obtain

al, au, iU,

et BT A Sl gt SN © § S WG et B Y

= ¥5J; df(cﬁ ¥U)-Ce (cf( »U)

Taking in to account(4), we arrive at % —y[)‘jfi- = CieL-Ji-__ 12127-1Lre(0, ir"-,"’).

Obvioudly, J,(t=0, J,{t=0 and J,(0) =0, which applying lemma2 1,
we get T (t) > 0, which implies that

dU;

?3‘5111(1"’??)9 gt 1<i <1 Tisnot hard to see that qr_Snz and

[5]~h

sin| )= cos(—) We deduce that L > cos( )g’” g which implies that

ehdu, = cos(—)e‘“ (22)
where kt[% 1. Intergrating the above inequality over (O.Ig'):

T b

hy1- g <1 which implies that 7% 21—

we artive at cos(—)

cos(%) .

7 =0, hence T3 <——w3n(1 7"
COS( ) ,/“

This implies that T is finite and we have the desired result”

Remark 4.1

snce y < . ).
T co s(—h)

Integrating the inequality (22) over (t,,T1"), and using the fact that || U, (t) |l =U, (t) ,we get.

2 .
I 1, < —1, In(1-—=—— "™l Gince cos(n—h )> 1 , we deduce that
2 7h 2° 2
005(7)

-1, < ;{m(l—zmle"* oM@y for t (0,7}
p=

The proof of the above theorem allows us to establish the
estimation of Remark 4.1 which is crucial to prove the
convergence of the semi discrete blow-up time. Unfortunately,
the result of Theorem 4.1 is not optimal to determine the semi
discrete blow-up solutions because of the restriction on the
parameter of diffusion $\gamma$. Theorem 3.1 is more
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acceptable to have semidiscrete blow-up solutions. In order to
prove the convergence of the semidiscrete blow-up time, we
need to show that the semidiscrete scheme converges, and state
the result on the convergence of the scheme by the following

Theorem 4.2

Proof
Sinceu e C*!, there exist two positive consant K and M such that
"Ll+"= KU ILEK, o™ <M. 23)

The problem(4)— (6)has for each b a unique solution U, = C'([0.T¢JR™).
Let t(l) the greatest value of t={ such that
N, (@ —w (D=1, fort = (0.10H). 24
Since the value of the term on the left hand side of the above inequality isnull when tis equal
to zero, we deduce that t(h)=0 such for h sufficently small.
Let t"(h)=min (t(h). T). By the triangle inequality, we obtain
N, OIS (xe HI, + N0, () —u (O, fort e 0.1 ()
which implies that
WU, @ILE1+K,  fort e (0,2 (). 235)
Lete, (= U, (f)-u,(x.t) be the emor of discretization.
Using Taylor's expansion. we have,

%e_.(fl—;"e_.(fl =:i; U__(R.0+e"¥e (@), 1<isI-lte (0.0'(h).

Where & is an intermediate value between U, (f) and u(x, .f).

Using (23) and (25), we amrive at

%e__(r)—,ﬁ:e__(r) LM |e ()| <ER', 1€i€T-1, t=(0.0*%).

Let Z, the vector defined by

Z = IUT —u, (D) I, +ERY), 0<i<Ite(0.8%).

A direct calaulation vields

%Z__ - Z > M|Z ()| +Ki, 1€i<]-11e 0.7 (k).

Z,»e, Z.re., Z(D=e(0), 0<i<]

It follows from lemme2.2 that Z > (f) for t=(0.t°(h), 0<i<I.By the same way,
we also prove that Z,>-¢,(t) for te (04 (), 0 <i <1, which impies that

I, (€)= 1, () I Z ™ (MU —u, (0)I =&)Y, (0.2 ()
Letus show that t'(h)=T. Suppose that T=t(h). From (24), we cbiain

1=, ()=, (DN =™ WU —u, (0) L +Kk*). 12 (0.0 (h).

Since the term on the right hande side of the above inequality goes to zero 2 h tendsto zero,

we deduce that 1 <0, which is impossible. Consequently t"(h)=T, and we obtain the desired result=
Now.we are in a position to prove our main theorem of the section.

Theorem 4.3

Suppose that the problem(1)-(3) has a solution u which blows-up in a finite time T,
such that ue C*'([0,1]x[0,I]). Under the assumption of the theoremd4. 1,
the problem (4)-(6) has a solution U, (t) which blow-up in a finite time T,"
and the following relation holds Eir(} T =T,
Proof
There exists a positive constant N such that

L na12yme e )< foryiN,+9),
Y 2

Since u blows up at the time T, then there exists a time T, such that [T,-T,| S% and
NU@,01N,>2N for te[T,T,]

+
Letting T, =¥ ,we see that u is bounded on the interval [0,T, ]. It follows from theorem4.2

that the problem (4)-(6) has a solution U, (t) which obeys
sup | U, (t)—u,(t)II.< N. Applying the triangle inequality, we get
{0.1,]

WU, O 120w, (O, =1U, (1) =, () 1l,, which leads to 1 U, () I N
for t €[0,T, ]. From theorem 3.1, U, (t) blow up at the time Thh. We deduce from (26) and Remark4.1 that

| ];” -7, < Th” -L|+|T,-T, |§g+% =n,and we have the desired result/]

Numerical Experiments

In this section, we give some computational experiments to
confirm the theory developed in the previous section, we
consider the following explicit scheme

1
Ui(n+ ) - Ui(n) _ Ui(-:ll) - 2Ui(n) + Ui(fl) + eUi(n) 1<i<1I

At N 02
(n) _ (n) _
uy' =0, u;" =o,
ud=¢,=0, 0<isI.
And the following implicit scheme

U-(n+1) B U.(n) U§n+1) B 2U.(n+l) 4 U§n+l) yn)
i i i+l l i-1 te ! 1<i<]

s

=7
Aty n?
(n+l) _ (n+l) _
U0 =0, U[ =0,

0o_ , ,
UY =¢;=0, 0<i<I.

AU, 2

2 * . h n D-1
Where n >0, At,=h"e and Atn=m1n{7,Atn},t =2 At
J=0

The explicit scheme may be written as follows:

u™ ™ ™y
4 e M = S Y

Ul(rH—l) _ Ui(n) +At,€;1 I i+l
h
) ) ) .
y g +yA;;? u® R O L O Atﬂan;( )
¥ i+ 2 i hZ i1

s 3 4 . um
g 20 0 =2 0
; 2 i 2 i 2 T

(n) _ (n) _
Ui =0, v =o,
3 3 3 )
Fori=1, U™ :%(UE'I)H[I—Z}%”JUI(") +%(U(()"))+At2e U or U™ =0 then

a a . U(")
Fori=1, U1(”+1) - l,ﬂ Ul(n)+&(U(n))+Atze 1
2 P22

\ \ \ )
iy ) G ) (20 ) A )y s Uy
For i=2, Uy 77(111 )41 =2 Uy Jrhfz(U3 Y+Ade

5

2 2 2 (n)
. +1) A 2pAty P 5 U
Fori=3, U{"™) 1% (Ué"))ﬁ-(l—iz” U§ + 0 ) 4 agde 3
h h h
R R . )
. n Al 2At8 AtS 4 U(ﬁ
Fori=1-1, U}’f{— ) =Lhz" (U}’I))+(177};12n U}’i)l +Lhz" (U}’i)z)JrAtze I o U}") =0 then

U(")

. +1 }’At;l Z}Nf1 a Y
Fori=1-1, U("l ):—hz” (U}'PZH(FTZ” U}'i)lmzﬁe L

Lead us to the linear system below

U =AU + (F"”) where AisalxI tridiagonal matrix defined as follows

I—M ﬂ 0 0
h* h*
yAt ZyAtf yAL, 0
I h? h*
A= 0 - 0
rht,
h2
implies that
a, b, 0 - 0
¢, a, by 0
A=[0 . 7 .
b,
0 0 ¢ a,
with ay =1-2y Aht:: , by = }/2;: , i=L.,1-2,¢)= 725,‘,' , i=1.,1-1,

(F‘”’), = Atfe”'w and A a three-diagonal matrix verifying thefollowing properties:
A, =1-2780 20, 0<i<y

and 4, ,=—"=4 2<i<I-2 so thatAUZZA,J

i#)

i,i+12

It follows that U,"” exists for n > 0. In addition, since U|" is non negative,

U," is also non negative for n > 0.
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According to the implicit scheme, it may be written in the following form
(n+l) 2U(n+l) +U(n+]}

" . U, o
Ui =U" + Ar, (y = e +e’),
U‘(um :Ui(n) 72% Ul(frn Z;Atn U(nH} 7:% U(n+l) +ALe Ul ” or
1+ 2yAt, )U(”“) yAL, U(flﬂ) 7Atn U(nm U(n +AL U " or

h? /A h?

At 2yAt At
S goe 4 Sy e 12 o oy o U with

hz i-1 h hz i+l
U =0, UM =0
Fori=1, _%Uén+1)+(l+2}’Alﬂ o Vil,, U™ =™ 4 AL A or U™ =0 then

Fori=1, (1+22A[ Y Pl st _ gy pg M

Fori=2, 7%U;"*”+(1+27At UL — 72" U U 4 Azt

For i=3, ffﬂu‘"*lw(n =g - 72” U <UL + A e
Fori=1-1, h z U,‘”;‘>+(1+27At” O B gy o) 4 oy o2

w
or U™V =0 then

AL

2701 .
Fori=1-1, == U +(1+ = 2Uf = U™ + At

lead us to the linear system below BU™"=E, where B is a Ix tridiagonal

matrix defined as follows

1+2% _yiztn 0 0
__}/ 2;” 1 +2 }/ 2571 _ }/ 2571 O
AL,
_ hZ
0 0 _}/ﬁztn 1+2}/22t”
implies that
a b, 0 -+ 0
cO aO bo 0
B=|0 . .
bO
0O --- 0 c, @,
h
——yAt” | = _ m\ _grn u™m
6 =="3" i=1,..,1-1, (E )i—Ul. +At e

and B a three-diagonal matrix verifying the following properties:

(B),= (H 2tht j>o, 0<i<I and (B),, :-Yﬁf":(B)mzo,

),; - It follows that U} exists for n>0.

2<i<I2 sothat (B) >>|(B

In addition, since U is nonnegative, U is also nonnegative for n > 0.

We need the following definition.

Definition 5.1

The discrete solution U" of the explicit or of the implicit scheme blows up in a finite time if
lim || Uﬁ‘“’ || co=+o0 and the series ZAt“ converges.
it 2
The quantity EAt“ is called the numerical blow-up time of the solution U®.

n=0
In the following tables, in rows, we present the numerical
blow-up times, the numbers of iterations n, the CPU times and
the orders of the approximations corresponding to meshes of
16, 32, 64, and 128.

n—1

We take for the numerical blow-up time #, = ZAZ‘ ; which is
=0
—16
computed at the first time when Al =| il |§10 .
The order s of the method is computed from
L loelly, ~Tp) Ty —Ty)
log(2)
Numerical experiments for
(n)
fUM) =", UP =¢ =0,
2 2
Here, we take Af, =min{——,——~=—} for the explicit
AN Uil
2
scheme and Af, 0o for the implicit scheme
h Moo
. 1
First case: y = —
10

Table 1 Numerical blow-up times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with
the explicit Euler method.

1 t" n temps CPU | S
16 [1.235838 | 8442 - -
32 | 1.234929 | 32669 - -
64 | 1.234708 | 125123 1 2.04
128 | 1.234655 | 483657 8 2.04
256 | 1.234642 | 1851864 72 2.04
512 | 1.234639 | 7083689 483 2.03

Table 2 Numerical blow-up times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with
the first implicit Euler method

1 t" n temps CPU | S
16 | 1.238175 | 8460 1 -
32 | 1.235513 | 32595 1 -
64 |1.234854 | 125248 2 2.02
128 | 1.234691 | 480080 11 2.01
256 | 1.234651 | 1835541 83 2.01
512 | 1.234641 | 6999689 625 2.00
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Second case: y = L

50
Table 3 Numerical blow-up times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with

1
7= 1000

Table 7 Numerical blow-up times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with

Fourth case:

the explicit Euler method.

1 t" n temps CPU | S
16 | 1.004838 | 8082 - -
32 [1.003633 | 30920 - -
64 |1.003636 | 118139 1 1.99
128 [ 1.003627 | 450231 8 2.00
256 | 1.003621 | 1711544 69 2.00
512 | 1.003820 | 6490830 446 2.00

the explicit Euler method.

1 t" n temps CPU | S
16 | 1.001653 | 8064 - -
32 | 1.000413 | 30836 1 -
64 | 1.000103 | 117662 2.00
128 | 1.000026 | 447926 8 2.00
256 |1.000006 | 1700844 59 2.00
512 | 1.000002 | 6439966 437 2.00

Table 4 Numerical blow-up times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with
the first implicit Euler method

Table 8 Numerical blow-up times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with

1 t" n temps CPU | S
16 |1.006768 | 8012 - -
32 [1.004548 | 30643 - -
64 | 1.004003 | 116966 1 2.00
128 | 1.003865 | 445465 10 2.00
256 | 1.003830 | 1692245 75 2.00
512 11.003822 | 6410389 573 2.00

the first implicit Euler method

Third case: y = L

100

Table 5 Numerical blow-up times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with
the explicit Euler method.

1 t" n temps CPU | S
16 | 1.001804 | 8066 - -
32 [1.000499 | 30843 - -
64 [1.000179 | 117686 1 2.01
128 [ 1.000103 | 448045 8 2.00
256 | 1.000091 | 1701423 59 2.00
512 | 1.000086 | 6442522 444 2.00

Table 6 Numerical blow-up times, numbers of iterations, CPU
times (seconds) and orders of the approximations obtained with
the first implicit Euler method

1 t" n temps CPU | §
16 |[1.002217 | 7988 1 -
32 | 1.000613 | 30528 1 -
64 | 1.000216 | 116434 2 2.02
128 | 1.000117 | 443029 11 2.01
256 | 1.000093 | 1681313 75 2.00
512 | 1.000086 | 6362082 563 2.00

1 t" n temps CPU | S

16 |[1.001954 | 7986 - -
32 | 1.000488 | 30522 - -
64 | 1.000122 | 116404 1 2.00
128 | 1.000031 | 442898 10 2.00
256 | 1.000008 | 1680734 74 2.00
512 | 1.000002 | 6359526 557 2.00

Remark 5.1

In the case where the initial data is null, ¢ = 0, and the

. . . — M. .
reaction term increases as a function of f (U) =€ itis not

hard to see that the blow-up time of the solution goes to one
(Tables 1-8) when the value of ¥ decays to zero as we have

shown in Remark 3.1.

In the following, we also give some plots to illustrate our
analysis. In Figures 1 to 4, we can appreciate that the discrete
solution blows up globally. Let us notice that, theoretically, we
know that the continuous solution blows up globally under the
assumptions given in the introduction of the present paper.

Vs o mngue Lk

Figurel :

Evolution of the discrete solution, source

f(u):eu ,v=1/10, ¢; = 0, 1=16 (implicitscheme)
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Vissche rumeecpos LN

Figure 2 :

Evolution of the discrete solution, source

f(u)=eu ,v=1/10, ¢; = 0, =16 (explicite scheme)

VERSc Pu e UN

Figure 3 :

Evolution of the discrete solution, source

f(u)=eu ,Y=1/50, ¢; = 0, 1=32 (implicit scheme)

Vilssse Py msncus Lih

Nombie O pas 08 Wigm 0
Figure 4 :
Evolution of the discrete solution, source

f(u)=eu , ¥=1/50, ¢; = 0, 1=32 (explicite scheme)
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