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 In this paper we consider the following initial-boundary problem. 
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Where ( )f s  is a positive, increasing, convex function for nonnegative value of s, (0 ) 0,f 

0
,  and 

( )

ds

f s



  is a positive diffusion parameter.  We find some conditions under 

which the solution of semi-discrete form of the above problem blows up in a finite time and estimate  
its semi-discrete blow up time. We also prove the convergence of the semidiscrete form blow-up 
time to the real one when the mesh size tends to zero. Finally, we give some numerical results to 
illustrate our analysis. 
 

 
  

  
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

 

 
 

 
 
 

 
 

 
 
 
 

 
 
  
 
 

 

INTRODUCTION 

Let   be a bounded domain in 
N�  with smooth boundary 

.  Consider the following initial-boundary value problem 
for a nonlinear equation with a nonlinear boundary condition of 
the form 
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which models the temperature distribution of a large number of 
physical phenomena from physics, chemistry and biology.  The 

initial data  0 ( ) u x  is a continious and increasing function in 

0,1   , f(s) is a positive, increasing, convex function for 

nonnegative values of s, (0) 0,f 

0
,  and 

( )

ds

f s



  is a positive diffusion parameter. 

Here (0, T) us Here (0, T) is the maximal time interval of 
existence of the solution u. The time T may be finite or infinite. 
When T is in_nite, we say that the solution u exists globally. 
When T is finite, then the solution u develops a singularity in a 

finite time, namely, lim (·, ) ,
t T

u t 


  ‖ ‖  

where  u(·,t) =max |u(x,t)|.
0

 
x 1  

 ‖ ‖  

 

In this case, we say that the solution u blows up in a finite time 

and the time  T is called the blow-up time of the solutionu.   
    

The theoretical study of the phenomenon of blow-up has been 
the subject of investigations of many authors (see [3], [9], [12], 
[15], [17], [22] and the references cited therein). 
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In particular, in [12], the authors have shown that if γ tends to 

zero, the above problem has been studied and existence and 
uniqueness of a classical solution has been proved. Under some 
assumptions, it is also shown that the classical solution blows 
up in a finite time and its blow-up time has been estimed. 
 

In this paper, we are investing in the numerical study of the 

above problem. Let I be a positive integer, where 
1

h
I

  is the 

mesh parameter and define the grid  =ih, 0 i I xi   or 
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When hT
b

  is finite we say that the solution  ( )U t
h

 exists 

globally if not, we say that the solution ( )U t
h

of (4)-(6) blows 

up on a finite time and the time hT
b

 is called the blow-up 

time of the 

Solution ( )U t
h

. 

 

In this paper we are interesting in the numerical study of the 
above problem.  Firstly, we show that the solution of a semi-
discrete form of (1)-(3) blows up in a finite time when   is 

small enough in addition, we prove that the semi discrete blow-
up time tends to the real one as $\gamma$ goes to zero. In the 
case where the blow-up occurs, we show that the semi discrete 
blow-up time converges to the real one when the mesh size 
goes to zero.  
 

Our work was motived by the paper in [1],[2],[9],[15],[19]. In 
[1] the authors have considered the problem (1)-(3) in the case 
where the parameter   equals one. They have prove that the  

solution of the semi discrete scheme (4)-(6) blows up in finite 
time and its semi discrete blow-up time converges to real one 
when the mesh size goes to zero in the case where the initial 
data, is symetric an large enough. Let us notice that in the case 
where   =1 we have shown for our problem that the semi 

discrete solution exists globally, and is bounded from above by 
one (see theorem, below...). In [19], the author has shown that 
the solution of a discrete form of the 

2( , ) ( , ) ( , )u x t u x t u x txxt    with dirichlet boundary 

conditions and large initial data blows up in a finite time 
converges to the real one when the mesh size goes to zero. In 
[2], semi discrete and discrete schemes have been used to study 
phenomenon of extinction (we say that a solution extincts in 
finite time if it reaches the values zero in a finite time).\\Our 
paper is written in the following manner. In the next section, 
we give some results about the discrete maximum principle, we 
give some results which will be used later, in the third section, 
under some assumptions, we show for small diffusion, the 
solution of (4)-(6) blows-up time converges to one when the 
parameter $\gamma$ tends to zeros we also show that for large 
diffusion the solution of (4)-(6) exist globally and is bounded 
from above, in the fourth section, we prove that the case where 
blow-up occurs, the semi discerete blow up time  convergences 
to the real one when the mesh size goes to zero. Finally, in the 
last section, we give some numerical results to illustrate our 
analysis. 
 

Properties of semi discrete problem  
 

In this section, we give some lemmas which will be used later, 
we prove some results about the semi discrete maximum 
principle and reveal certains properties concerning the operator  

.2     
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( ( ) ) ( ) 0,
0 00 0

a t Z ti i   which implies that  

( ) 0.
00

Z ti    

 

Therefore 
0 0( ) 0iV t m    and we have the desired result. �   

Another form of the maximum principle for semi discrete 
equation is the following comparison lemma. 
 

Lemma 2.2 
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The following lemma reveals property of the semi discrete solution.
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Lemma 2.6 
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Proof 

 
 

Lemma 2.8 
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Blow-up in the semi discrete problem 
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if U e U    

under some assumptions with respect to the parameter    and 

the initial data, we show that the solution  hU  of (4)-(6) blow-

up in a finite time and estimate its blow-up time. Our first 
result on blow-up is the following the theorem. 
 

Theorem 3.1  
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Remark 3.1  
 

Theorem 3.1 and 3.2 show that, the solution of the semi 
discrete as a function of    and the initial data blows up in a 

finite time 
h

bT   bounded from above and below.  If the 

parameter of the diffusion  and the initial data goes to zero we 

see that 
h

bT  goes to one.  It is not hard to see that one is also 

the blow-up time for the solution of the following differential 
equation 

' ( )( ) , (0) 0,tt e    

Thus from 3.1 and 3.2, we prove a well-known result for the 
continuous problem (see[12]). 
 

The following result shows that the solution of the semi 
discrete problem exists globally for    sufficiently large. 
 

Theorem 3.3 

 h

e
If  γ   then the solution  U (t) of (4)-(6) exist globally and we have.

8
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Proof 
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Remark 3.2  
 

The above theorem shows that for large diffusion, the solution 
of the semi discrete problem is bounded from above by one. 
We have seen that for large diffusion, the solution of the semi 
discret problem exists globally and is bounded from above. The 
following theorem reveals that in this case it approaches its 
stationary solution as t goes to infinity. 
 

Theorem 3.3 
 

h h h

h

Assume that the solution U (t)  of (4)-(6) exists globally and is bounded then U (t)  goes to V (t) 

as t approaches infinity where V (t)  is the stationary solution of (4)-(6).

 

 

Proof 
 

Introduce the vector ( )hW t  such that 
1

,
1

( ) ( )   is the discrete Green function defined by

1
(1 ) if 0

2

  

1
(1 ) if 0

2

I

i ij j h k
j

ij

W t G U t here G

ih jh i j I

G

jh ih j i I








   

 
    



 

Taking the derivative of ( )iW t   with respect to t and using (4), 

a straightforward computation reveals that  
1

( )2

1

( ) ( ( ) )j

I
U t

i ij j
j

d
W t G U t e

dt






    which implies that 

1
( )

1

( )
( ) .j

I
U t

i ij
j

dWi t
U t G e

dt






    

 

From lemma 2.6 ( )jU t   is strictly increasing. On the other 

hand, the last term on the right hand side of the above equality 

is bounded. Hence, we may conclude that  
( )idW t

dt
  goes to 

zero as t approaches infinity.  Setting lim ( ) .i i
t

U t V


   

We derive the following equality  

1

1

j

I
V

i ij
j

V G e




   which 

implies that   
2 0, 1 1,iV

pV e i I        

0 I and the proof is V =0, comp V = 0 let,  e. �    

 

Convergence of the blow-up time 
 

In this section, under some conditions, we show that the 
solution of the semi discrete problem blows-up time goes to the 
real one when the mesh size tends to zero. Firstly, let us prove 
the convergence of our scheme by the following theorem. 
 

Theorem 4.1  

 

Proof: Introduce the vector ( )hW t  such that 

 
Remark 4.1  
 

 
The proof of the above theorem allows us to establish the 
estimation of Remark 4.1 which is crucial to prove the 
convergence of the semi discrete blow-up time. Unfortunately, 
the result of Theorem 4.1 is not optimal to determine the semi 
discrete blow-up solutions because of the restriction on the 
parameter of diffusion $\gamma$. Theorem 3.1 is more 
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acceptable to have semidiscrete blow-up solutions. In order to 
prove the convergence of the semidiscrete blow-up time, we 
need to show that the semidiscrete scheme converges, and state 
the result on the convergence of the scheme by the following 
 

Theorem 4.2 
 

Proof 
 

 
Theorem 4.3 
 

 
Proof 

2
bγπ T2 -y

2

b 1 1 b

1

-1 η
ln(1-2γπ e e )< ,foryÎ[N,+¥).

γπ 2

η
Since u blows up at the time T then there exists a time T such that |T -T

There exists a positive consta

|  and
2

( , ) 2    [ , ].

Lett

nt N such that

  

i

bU x t N for t T T



 ‖ ‖

2

1 b
2 2

h

[0, ]

T +T
ng T = ,we see that u is bounded on the interval [0,T ]. It follows from theorem4.2

2

that the problem (4)-(6) has a solution U (t) which obeys

sup ( ) ( ) .   Applying the triangle inh h
t T

U t u t N


 ‖ ‖

h
2 h b

2 2

equality, we get 

( ) ( ) ( ) ( ) ,  which leads to ( )

for t [0,T ]. From theorem 3.1, U (t) blow up at the time T . We deduce from (26) and Remark4.1 that

| | | | |

h h h h h

h h
b b b b

U t u t U t u t U t N

T T T T T T

     



    

‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖

| ,and we have the desired result.
2 2

 
   �

 

Numerical Experiments 
 

In this section, we give some computational experiments to 
confirm the theory developed in the previous section, we 
consider the following explicit scheme 

( ) ( ) ( )( 1) ( ) ( )21 1 , 1
2

( ) ( )
0 ,   0 ,0

0 0 , 0 .

n n nn n nU U UU U Uii i i i ie i I
t hn

n n
U U I

U i Ii i





       


 

   

å  

And the following implicit scheme 
( 1) ( 1) ( 1)( 1) ( ) ( )2

1 1 , 1
2

( 1) ( 1)
0,  0,

0
0 0, 0 .

n n nn n nU U UU U Uii i i i ie i I
t hn

n n
U UI

U i Ii i





         


 
 

   

 

(n) 2- U n-1h2 * nhWhere n 0, Δt =h e and  Δt =min{ ,Δt }, t = Δt.n n n2 j=0

The explicit scheme may be written as follows:

 


 
‖ ‖
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2
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2( 1) ( ) ( ) ( ) ( )
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Lead us to the linear system below 
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  
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Definition 5.1  
 

(n)
h

+
(n)
h n

n +
n=0

+

n
n=0

The discrete solution U of the explicit or of the implicit scheme blows up in a finite time if

lim U =+  and the series Δt converges.

The quantity Δt is called the

 

 

  numerical b



 



  



‖ ‖

(n)
hlow-up time of the solution  U .

 

 

In the following tables, in rows, we present the numerical 
blow-up times, the numbers of iterations n, the CPU times and 
the orders of the approximations corresponding to meshes of 
16, 32, 64, and 128. 

We take for the numerical blow-up time 

1

0

n

n

j
j

t t




   which is 

computed at the first time when 
16

1| | 10n n nt T T 
     . 

The order s of the method is computed from 
 

log(( ) / ( ))
4 2 2 .

log(2)

T T T T
h h h hs
 

   

 

Numerical experiments for  
( )( ) (0)( ) ,  0,   
n

iUn
i i if U e U     

Here, we take ( )

2 2

min{ , }
4

n
h

n U

h h
t

N e 

 
‖ ‖

 for the explicit 

scheme and ( )

2

n
h

n U

h
t

e 

 
‖ ‖

  for the implicit scheme 

First case:   
1

10
   

Table 1 Numerical blow-up times, numbers of iterations, CPU 
times (seconds) and orders of the approximations obtained with 

the explicit Euler method. 
 

temps CPU

16 1.235838 8442

32 1.234929 32669

64 1.234708 125123 1 2.04

128 1.234655 483657 8 2.04

256 1.234642 1851864 72 2.04

512 1.234639 7083689 483 2.03

nI t n S

 

 
 

 

Table 2 Numerical blow-up times, numbers of iterations, CPU 
times (seconds) and orders of the approximations obtained with 

the first implicit Euler method 
 

temps CPU

16 1.238175 8460 1

32 1.235513 32595 1

64 1.234854 125248 2 2.02

128 1.234691 480080 11 2.01

256 1.234651 1835541 83 2.01

512 1.234641 6999689 625 2.00

nI t n S




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Second case:  
1

50
   

Table 3 Numerical blow-up times, numbers of iterations, CPU 
times (seconds) and orders of the approximations obtained with 

the explicit Euler method. 

temps CPU

16 1.004838 8082

32 1.003633 30920

64 1.003636 118139 1 1.99

128 1.003627 450231 8 2.00

256 1.003621 1711544 69 2.00

512 1.003820 6490830 446 2.00

nI t n S

 

 
 

 

Table 4 Numerical blow-up times, numbers of iterations, CPU 
times (seconds) and orders of the approximations obtained with 

the first implicit Euler method 

temps CPU

16 1.006768 8012

32 1.004548 30643

64 1.004003 116966 1 2.00

128 1.003865 445465 10 2.00

256 1.003830 1692245 75 2.00

512 1.003822 6410389 573 2.00

nI t n S

 

 
 

Third case:  
1

100
   

Table 5 Numerical blow-up times, numbers of iterations, CPU 
times (seconds) and orders of the approximations obtained with 

the explicit Euler method. 
 

     

temps CPU

16 1.001804 8066

32 1.000499 30843

64 1.000179 117686 1 2.01

128 1.000103 448045 8 2.00

256 1.000091 1701423 59 2.00

512 1.000086 6442522 444 2.00

nI t n S

 

 

 
 

Table 6 Numerical blow-up times, numbers of iterations, CPU 
times (seconds) and orders of the approximations obtained with 

the first implicit Euler method 
 

      

temps CPU

16 1.002217 7988 1

32 1.000613 30528 1

64 1.000216 116434 2 2.02

128 1.000117 443029 11 2.01

256 1.000093 1681313 75 2.00

512 1.000086 6362082 563 2.00

nI t n S




 

 

Fourth case:  
1

1000
   

Table 7 Numerical blow-up times, numbers of iterations, CPU 
times (seconds) and orders of the approximations obtained with 

the explicit Euler method. 
 

temps CPU

16 1.001653 8064

32 1.000413 30836 1

64 1.000103 117662 1 2.00

128 1.000026 447926 8 2.00

256 1.000006 1700844 59 2.00

512 1.000002 6439966 437 2.00

nI t n S

 

  

 

Table 8 Numerical blow-up times, numbers of iterations, CPU 
times (seconds) and orders of the approximations obtained with 

the first implicit Euler method 

temps CPU

16 1.001954 7986

32 1.000488 30522

64 1.000122 116404 1 2.00

128 1.000031 442898 10 2.00

256 1.000008 1680734 74 2.00

512 1.000002 6359526 557 2.00

nI t n S

 

   

 

Remark 5.1  

In the case where the initial data is null, 0,i    and the 

reaction term increases as a function of  ( ) uf u e  it is not 

hard to see that the blow-up time of the solution  goes to one 
(Tables 1-8) when the value of     decays to zero as we have 

shown in Remark 3.1. 
 
 

In the following, we also give some plots to illustrate our 
analysis. In Figures 1 to 4, we can appreciate that the discrete 
solution blows up globally. Let us notice that, theoretically, we 
know that the continuous solution blows up globally under the 
assumptions given in the introduction of the present paper. 
 

 

Evolution of the discrete solution, source

u
f(u)=e , γ=1/10, 0,  I=16 (implicitscheme)

:

i 

Figure1
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Evolution of the discrete solution, source

u
f(u)=e , γ=1/10, 0,  I=16 (explicite scheme)

 2 :

i 

Figure

 

 
 

 

Evolution of the discrete solution, source

u
f(u)=e , γ=1/50, 0,  I=32 (implicit sch

 

e)

3

m

:

ei 

Figure

 

 

Evolution of the discrete solution, source

u
f(u)=e , γ=1/50, 0,  I=32 (explicite scheme)

 4 :

i 

Figure
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