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A steady incompressible axisymmetric flow in a circular annulus filled with non-Darcy porous 
medium is studied in the influence of a static magnetic field applied in radial direction. The Joule 
heating effect produced by the magnetic field is also included to analyze effect of magnetic field and 
fluid flow field on heat convection process. The governing equations of flow and heat transfer are 
non-linear coupled differential equations, are solved with Quasi-numerical method – the Differential 
Transform method (DTM). The velocity and temperature profiles for the porous region and clear 
fluid central region are derived and computed with the use of Matlab at various physical parameters 
and there effects are discussed through graphs. The skin-friction coefficient and Nusselt number at 
the surfaces of the porous annulus are computed and discussed through graphs.  
 
 
 
 
 
 

  

  
 
 

 

 
 

 
 

 
 

 
 
 
 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 
 
 
  
 
 
 

INTRODUCTION 
 

The flow through a semi porous medium is of great interest in 
oil refineries, chemical sciences, life sciences and medical 
sciences. In agriculture sector, the proper distribution of 
fertilizers and pesticides is insured using the cylindrical semi 
porous medium. The flow through semi porous cylindrical type 
configurations are encountered in many industries in one or 
other ways for cooling purposes or for heat connection 
processes. Loganathan et al. [7] studied MHD effects on free 
convective flow over moving semi-infinite vertical cylinder 
with temperature oscillation. Ziya Uddin et al. [12] studied heat 
and mass transfer characteristics and the flow behavior on 
MHD flow near the lower stagnation point of a porous 
isothermal horizontal circular cylinder. Chamkha A.J [4] 
investigated steady, laminar, hydromagnetic flow and heat and 
mass transfer over a permeable cylinder moving with a linear 
velocity in the presence of heat generation/absorption, chemical 
reaction, suction /injection effects developing a uniform 
transverse magnetic field. Abbas et al. [1] dealt with laminar 
flow and heat transfer of an electrically conducting viscous 
fluid over a stretching cylinder in the presence of thermal 
radiations through a porous medium. Nagaraju, et al. [8] 
investigated the steady flow of an electrically conducting, 
incompressible micropolar fluid in a narrow gap between two 

concentric rotating vertical cylinders with porous lining on 
inside of outer cylinder under an imposed axial magnetic field. 
Yadav et al. [11] found out numerical solution of MHD fluid 
flow and heat transfer characteristics of a viscous 
incompressible fluid along a continuously stretching horizontal 
cylinder embedded in a porous medium in presence of internal 
heat generation or absorption. Aldoss [2] studied the MHD 
mixed convection flow about a vertical cylinder embedded in a 
non-Darcian porous medium with variable heat transfer 
boundary. Suneetha et al. [10] analyzed the interaction of free 
convection with thermal radiation of a viscous incompressible 
unsteady MHD flow past a moving vertical cylinder with heat 
and mass transfer in a porous medium. Shihhao et al. [9] 
derived analytical solution for MHD flow of a magnetic fluid 
within a thick porous annulus. In present study, the effect of 
magnetic field and Joule heating in the flow and heat transfer in 
a circular tube having a concentric circular porous cylinder of 
non-Darcy behavior are investigated. 
 

Formulation of the problem 
 

Steady incompressible, axisymmetric flow of an electrically 
conducting viscous fluid through a circular cylinder with an 
annulus region of non-Darcy porous medium saturated with the 
fluid is undertaken. The radius of the outer cylinder is d and the 
radius of the inner cylinder is di (di< d) therefore the width of 
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the annulus porous circular region is (d-di)>0. In the cylindrical 
coordinates (r, θ, z) the axis of cylinder coincides with the z-

axis. A static magnetic field of strength ( 0B , 0, 0) is applied on 

the cylinder. Thus the flow in 0 ≤ r≤ di is tube flow and in the 
region di ≤ r≤ d, the flow in the non-Darcy medium. 
 
 
 
 
 
 
 
 
 
 
 
 
The equation of continuity is defined as 
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The equation of energy  
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Under the above assumptions the equations of motion and 
energy for the inner circular clear fluid region 0 ≤ r≤ di are 
given by 
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The equation of motion and energy for the annulus non-Darcy 
porous region di ≤ r≤ d are given by  
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The corresponding boundary conditions are
 

 

 
 

: ,i f p f pr d u u T T                            . . . (9)  

Where,  K  the permeability of the porous medium, fu and
 fT   

the velocity  and temperature of the fluid in the central clear 

region, pu and
 pT  the velocity and temperature of the fluid in 

the annulus porous region,
 wT  temperature of the wall of outer 

cylinder, pwT  temperature at the inner surface of porous 

annulus, µ viscosity of the fluid,   electrical conductivity, dc
drag-force constant.            
                                                                                  

Method of solution 
 

To make the differential equations (4) to (7) dimensionless, 
introducing the following non-dimensional quantities  
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Where G the constant dimensionless pressure gradient, Da the 
Darcy number, Re the Reynolds number, M the Hartmann 
number, F  the For chheimer number, Br the Brinkman number. 
There is no loss of generality if the asterisks are dropped from 
the dimensionless form of the equations (4) to (7) the 
respective equations are given by 
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The corresponding boundary conditions are 
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At the interface 

: ,f p f pr di u u            . . . (15) 
 

Solution of the  coupled momentum and energy equations, are 
obtained by the  Differential Transform Method (DTM).The 
efficiency of method can be seen in literature [3] ,[5], [6]. 

 

 

Figure 1 Physical model of the problem 
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The differential transform U(k) of the derivative
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The inverse differential transform of U(k) is defined  by  
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Table1 The fundamental mathematical operations under DTM 
 

       Function Differential transform 
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Calculation for the velocity profiles 
 

Velocity profile in clear fluid region 
 

Applying DTM on (10) we will get the following recurrence 
relation 
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Where  kU f is differential transform of  ru f . Since the 

value of  ru f at r 0 is not known explicitly, therefore 

assuming   aU f 0 (constant) which will be determined later 

with the prescribed boundary conditions. 
For k=0, 1, 2, 3, 4, 5 in (16) we get 
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Using the above values in the inverse differential transform of 

 kU f the velocity profile is given by 
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Now the interface condition provides that 
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The arbitrary constant ‘a’ is obtained and given by  
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Using value of ‘a’ in the equation (17), we get the velocity 
profile of the fluid in the central clear fluid region. 
 

Velocity profile in annulus porous region 
 

Applying DTM on (12), we get the recurrence relation 
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Where  kU p is differential transform of  ru p . Since value 

of  ru p is not known at r 0 explicitly therefore assuming 

  bU p 0 (constant), which will be determined later with the 

aid of interface conditions. 
 

Corresponding to k=0, 1, 2, 3, 4, 5 the recurrence relation (18) 
gives 
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Using these values in the inversion of  kU p , we have 
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Using the boundary condition  1r ;   0rup gives 

 
Now (20) is a polynomial of 4th degree in b. A MATLAB code 
has been generated for the computation of unknown constant b 
and using this value, the velocity profile in the porous region is 
known, computed and presented through graphs. 
 

Calculation for Temperature profiles  
 

Temperature profile in clear fluid region 
 

Applying DTM on (11), we get recurrence relation 
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 Where  kf is differential transform of  rf
 

Let   cf  0 (constant) will be determined with the aid of 

boundary condition on  rf
 

 

Corresponding to k=0, 1, 2, 3, 4, 5,6,7 the recurrence relation 
(21) gives 
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Using these values in the inversion of differential transform of 

 kf we have 
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On applying the interface condition the equation, gives the 
value of unknown constant . 
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Invoking value of c in (23), Furthermore, the temperature 
profile in the annulus region is given by 
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Temperature profile for annulus porous region 
 

Applying DTM on (13), we get recurrence relation 

               
 


k

h
pp

h

i
pp

k

oh

hkUihUiBrMkkhkhkhkh
0 0

2 1112211 
 

                                                                                          

. . .(24) 

 Where  kp is differential transform of  rp . Since the 

initial value  0p is not knwown, therefore assuming its 

differential transform    0p (constant) will be 

determined from interface condition. 
 

Corresponding to k=0, 1, 2, 3, 4, 5 the recurrence relation (23) 
gives 
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With the use of boundary condition   01 p , the constant α 

is determined and given by 
 

       8642 pppp                     … (26) 
 

The temperature profiles for annulus porous region is computed 
from (24) with help of Matlab programming and presented 
through graphs. 
 

Skin friction coefficient 
 

The non-dimensional shearing stress at the outer and inner wall 
of porous annulus in terms of the local skin-friction coefficient 
is derived as follows and computed values are given in table 2 
& 3. 
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The skin friction at the outer wall of the cylinder 
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The skin friction at the inner surface of the porous annulus 
 
 
 
 
Nusselt number 
 

The non-dimensional coefficient of heat transfer at the outer 
and inner wall of the porous annulus is derived as follows and 
computed values are given in table 4 & 5. 
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RESULTS AND DISCUSSION 
 

Fluid velocity is well controlled by the magnetic field as 
demonstrated in figure 2. The fluid velocity decreases with 
increase in Hartmann number in both the inner clear fluid 
region and annulus porous region.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
In figure 3, it is observed that the fluid velocity is augmented 
with the increase in Reynolds number for both the region, the 
central region of clear fluid and the annulus region of the fluid 
saturated non-Darcy porous medium but the magnitude of the 
change in velocity is large in clear fluid region as compare to 
the porous region which is in good agreement with the physical 
law. Figure 4 demonstrated that the effect of Forchheimer 

number on the flow profile is relatively small. The velocity of 
fluid decreases with increasing value of Forchheimer number 
for clear fluid region and porous region. The effect of 
permeability of the porous medium on the flow velocity is 
analyzed with the Darcy number. It is observed in figure 5 that 
the fluid velocity enhanced with the rise in Darcy number.  
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The effect of porous annulus is also contributed in the clear 
fluid region confined by the porous region and therefore the 
fluid velocity in the central region is also varying in the same 
pattern with the Darcy number. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The effect of pressure gradient through the cylinder is 
demonstrated in figure 6 and it is observed that with the 
increase of pressure gradient along the cylinder the velocity of 
the fluid enhanced significantly in both the region; the clear 
fluid region and the annulus porous region. This outcome is in 
good agreement with the experimental results validated the 
modeled problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 

The figure 7 shows that in the increase of magnetic field 
strength the fluid temperature increases more profoundly in the 
clear fluid region.  
 
 
 
 
 
 
 
 
 
 
 
 
 

The fluid temperature increases with the increase of Reynolds 
number, Darcy number, pressure gradient along the cylinder 
and Brinkman number as observed in the figure 8,10,11 and 12 
respectively. The temperature of the fluid flowing through 
porous annulus and in the core region is decreases with the 
increase of Forchheimer number as observed in figure 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 and 3 demonstrates that with the increase in Hartmann 
number the magnitude of skin friction reduces at both inner and 
outer wall of the porous annulus. The magnitude of skin 
friction increases at both inner and outer wall of the annulus 
with the increase in Reynolds number and pressure gradient 
along the cylinder. The skin friction at the outer wall increases 
with increase in Forchheimer number and Darcy number while 
there is a reverse effect of these physical parameters on the skin 
friction at the inner wall which is interacting with the clear 
fluid region. 
 

From table 4 and 5, it is observed that the value of Nusselt  
number at both outer and inner surface of the annulus increases 
with the increase in Hartmann number, Reynolds number, 
Darcy number, pressure gradient along the cylinder and 
Brinkman number while it decreases with the increase in 
Forchheimer number.  
 

CONCLUSIONS 
 

 The magnetic field is acting as shear controlling device as 
with the increase in Hartmann number the shear stress at 
the surface of the core cylinder reduces. 

 The Forchheimer number also controlling significantly 
the velocity gradient in the core region 

 The heat convection enhanced with the increase in 
Brinkman number and Reynolds number. 

 The heat convection decrease with the increase in Darcy 
number at the surface of porous cylinder. 

 

Table 2 Skin friction at the wall of cylinder 
 

M Re F Da G Cf 
1 10 5 0.1 -10 -4.46349 

1.5 10 5 0.1 -10 -3.97079 
2 10 5 0.1 -10 -3.47561 
3 10 5 0.1 -10 -2.635408 
3 20 5 0.1 -10 -2.6354085 
3 30 5 0.1 -10 -2.63540833 
3 40 5 0.1 -10 -2.63540825 
3 10 1 0.1 -10 -2.635408 
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3 10 10 0.1 -10 -2.635408 
3 10 15 0.1 -10 -2.635408 
3 10 5 1 -10 -2.635408 
3 10 5 0.01 -10 -2.635408 
3 10 5 0.1 -1 -0.263541 
3 10 5 0.1 -15 -3.953112 
3 10 5 0.1 -20 -5.270817 

 

Table 3 Skin friction at the surface of porous cylinder 
 

M Re F Da G Cf 
1 10 5 0.1 -10 2.660946 

1.5 10 5 0.1 -10 2.016756 
2 10 5 0.1 -10 1.465833 
3 10 5 0.1 -10 0.780006 
3 20 5 0.1 -10 0.7800055 
3 30 5 0.1 -10 0.78000567 
3 40 5 0.1 -10 0.78000575 
3 10 1 0.1 -10 0.633271 
3 10 10 0.1 -10 0.974529 
3 10 15 0.1 -10 1.155216 
3 10 5 1 -10 0.985417 
3 10 5 0.01 -10 2.91818 
3 10 5 0.1 -1 0.061627 
3 10 5 0.1 -15 1.31669 
3 10 5 0.1 -20 1.949058 
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Table 4 Nusselt number at wall of the cylinder 
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1 10 5 0.1 -10 0.01 0.24738 

1.5 10 5 0.1 -10 0.01 0.45732 
2 10 5 0.1 -10 0.01 1.64674 
3 10 5 0.1 -10 0.01 0.80107 
5 10 5 0.1 -10 0.01 0.66965 
8 10 5 0.1 -10 0.01 0.38641 
3 20 5 0.1 -10 0.01 3.20427 
3 30 5 0.1 -10 0.01 7.20961 
3 40 5 0.1 -10 0.01 12.81709 
3 10 1 0.1 -10 0.01 0.88753 
3 10 10 0.1 -10 0.01 0.7094 
3 10 15 0.1 -10 0.01 0.63506 
3 10 5 1 -10 0.01 0.9844 
3 10 5 0.01 -10 0.01 0.10759 
3 10 5 0.1 -15 0.01 1.69417 
3 10 5 0.1 -20 0.01 2.83758 
3 10 5 0.1 -10 0.05 4.00534 
3 10 5 0.1 -10 0.1 8.01068 
3 10 5 0.1 -10 0.2 16.02136 

 

******* 


