

Available Online at http://www.recentscientific.com

CODEN: IJRSFP (USA)

International Journal of Recent Scientific Research Vol. 9, Issue, 10(D), pp. 29292-29295, October 2018 International Journal of **Recent Scientific Re**rearch

DOI: 10.24327/IJRSR

Besearch Article

COMPLEMENTED ELEMENTS IN TERNARYSEMIRINGS

Srinivasa Rao G^{1,2}., Madhusudhana Rao D³., Sivaprasad P⁴ and Srinivasa Rao G⁵

¹Department of Mathematics, Acharya Nagarluna University, Nagarluna Nagar, Guntur, A.P. India ²PGT Mathematics, APSWRS Lr College, Karampudi, Guntur (Dt), A.P. India ³Department of Mathematics, VSR & NVR College, Tenali, A.P. India ⁴Department of BSH, VFSTR'S University, Vadlamudi, Guntur, A.P. India ⁵Department of Mathematics, Tirumala Engineering College, Narasarao Pet, A.P

DOI: http://dx.doi.org/10.24327/ijrsr.2018.0910.2831

ARTICLE INFO	ABSTRACT
Article History: Received 06 th July, 2018 Received in revised form 14 th August, 2018 Accepted 23 rd September, 2018	Since we introduced the term complemented element in a Ternarysemiring and it is proved that (1) if $p, q \in U$ such that $p \triangleleft q$, then $ppq = pqp = qpp = pp1$. Further, if U is simple $\Rightarrow p + q = q$. (2) If U is a zero sum free Ternarysemiring and if $l, g, h \in \text{comp}(U)$ then, (i) $lgl \perp gl = 0$ (ii) llg and $l \sqsubset g \in \text{comp}(U)$ (iii) $llg = lgl = gll$. (3) Let U be the zero sum free, then (i) If $l, h \in \text{comp}(U)$ then $l + h \in \text{comp}(U)$; (ii) $1 + 1 \in \text{comp}(U)$; (iii) $\text{comp}(U) \subseteq I^+(U)$; (iv) (comp(U), +, []) is a ternary sub semi

Key Words:

Frame, well inside, complemented, Integral, zero some free.

Published online 28th October, 2018

comp(U); (ii) $1+1 \in comp(U)$; (iii) $comp(U) \subseteq I^{+}(U)$; (iv) (comp(U), +, []) is a ternary sub semi ring of U are equivalent.

Mathematics Sublect Classification: 16Y30, 16Y99

Copyright © Srinivasa Rao G et al, 2018, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Complemented elements play vital role in lattices, as well as frames. Here, frames are illustrations of semi rings, as it turns out, such elements play a special role in the semi ring expression of the semantics of computer programs.

Preliminaries

Def 2.1: U a Ternarysemiring, $l \in U$, l is known as an +ve zero provided l + x = x + l = x for all $x \in U$.

Def 2.2: U a Ternarysemiring, $l \in U$, l is known as a *lelt*(resp. *lateral, right*) *zero* of U provided *lbc* = *l* (resp. *blc* = *l*, *bcl* = *l*) $\forall b,c \in U$. $l \in U$ known as a *two sided zero* of U if lbc = bcl $= l \forall b, c \in U$. $l \in U$ known as *zero* of U if lbc = blc = bcl = $l \forall b, c \in T.$

Def 2.3: U a Ternarysemiring, $l \in U$, l is known as an **absorbing** w. r. t addition if $l + x = x + l = l \forall x \in T$. $0 \in U$, 0 is known as an *absorbing zero* of U if 0 + x = x = x + 0 and 0ab = 0 $a0b = ab0 = 0 \forall l, b, x \in U.$

Ex 2.4: Consider the set Z^+ with a + b = lcm(a,b). Then Z^+ is a Ternarysemiring with zero element 1, but 1 is not an absorbing zero since $1.1.a = a.1.1 = a \neq 1$ for any $a \in \mathbb{Z}^+$ and $a \neq 1$.

Ex 2.5: In the power set P(X), define the addition and multiplication such that for any F, G $\in P(X)$ as $K + M = K \cap M$ and K.M = $(K \cup M) \setminus (K \cap M)$. Then P(X) is a Ternarysemiring with zero X, since $K \cap X = K$, and the unity is φ . But for any nonempty proper subset K of X we have $X.K = (K \cup X) \setminus (K \cap$ X) = X \setminus K \neq X. So X is not absorbing zero.

Def 2.6: A Ternarysemiring in which every element is a left (resp. lateral, right) zero is called a *lelt* (resp. *lateral*, *right*) *zero Ternarysemiring*. A Ternarysemiring with 0 in which the product of any three elements equal to 0 is called *a zero* Ternarysemiring (or) null Ternarysemiring.

Ex 2.7: Let $0 \in T \subseteq R$ and |T| > 2 and Γ be the any non-empty set. Then T with the usual addition and the ternary operation defined by xyz = x if x = y = z and xyz = 0 otherwise is a Ternarysemiring with 0.

^{*}Corresponding author: Srinivasa Rao G

Department of Mathematics, Acharya Nagarluna University, Nagarluna Nagar, Guntur, A.P. India

Def 2.8: A Ternarysemiring U is known as a strict **Ternarysemiring** or zero sum lree provided a + b = 0 implies a = 0 and b = 0.

Ex 2.9: The set Z^0 is a strict Ternarysemiring.

Def 2.10: A Ternarysemiring T is said to be *zero divisor lree* (ZDF) if for $a, b, c \in T$, [abc] = 0 implies that a = 0 or b = 0 or c = 0.

Def 2.11: A ternarysemiring U is said to be *semi-subtractive* if for any elements $a; b \in T$; there is always some $x \in T$ for some $y \in U$ such that a + y = b or b + x = a.

Def 2.12: A Ternarysemiring U is called a half ring if the *additive cancellation law* holds on T, i.e. if $l + y = y + u \Rightarrow l = u$ for all y, l, $u \in U$. The set of all cancellable elements are denoted by K⁺(U).

Def 2.13: A ternarysemiring U is known as **multiplicatively left** (resp. lateral, right) cancellative (MLC) (resp. MLLC, MRC) if abl = abu (resp. alb = aub, lab = uab) implies that l = u for all $a, b, l, u \in U$. A Ternarysemiring U is known as be **multiplicatively cancellative** (MC) if it is (MLC), (MRC) & (MLLC).

Complemented Elements

Def 3.1: A lrame as frame is a complete lattice in which meets distribute over arbitrary loins

Example 3.2: If $\mathbb{B}=\{O, I\}$. Note that the algebraic structure of \mathbb{B} is not the same as that of the field $\mathbb{Z}/(2)$ since 1+1 = 1 in \mathbb{B} , whereas 1+1 = 0 in $\mathbb{Z}/(2)$. The Ternarysemiring \mathbb{B} is called the *Boolean Ternarysemiring*.

Th 3.3[]: The following conditions on a Ternarysemiring U are equivalent.

- 1. U is simple
- 2. $l = lur + lu1 + lr1 + l \forall l, u, r \in \mathbb{R}$
- 3. $l = url + ul1 + rl1 + l \forall l, u, r \in \mathbb{R}$
- 4. $lur = lur + lsutr \forall l, u, r, s, r \in \mathbb{R}$

Def 3.4: If $p, q \in U$ then p is **well inside** q, denoted by $p \triangleleft q$, iff $\exists r \in U \ni ppr = prp = rpp = 0 \& r+q = 1$.

In any Ternarysemiring U we have $0 < 0 \& r < 1 \forall r \in U$. If U is a simple Ternarysemiring then we observe that 0 < q for any element $q \in U$. If $r \in C(U)$ then r < q implies that $ssr < q \forall s \in U$.

Th 3.5: If $p, q \in U$ such that $p \triangleleft q$, then ppq = pqp = qpp = pp1. Further, if U is simple $\Rightarrow p + q = q$.

Prool: Here, $p \triangleleft q$, $\exists r \in U \ni ppr = prp = rpp = 0 \& r+q = 1$. Hence pp1 = pp(r+q) = ppr + ppq = ppq. Similarly pqp = pp1and qpp = pp1. Now can consider that U is simple. Then by the Th 3.3, we get p + q = p(r+q)(r+q) + q = prr + prq + pqr+ pqq + q = prq + pqr + (pq + 1)q = prq + prq + q = prq + (pr+ 1)q = prq + q = (pr + 1)q = q.

Def 3.6: An element $r \in U$ is said to be **complemented** iff $r \triangleleft r$. That is *r* is complemented iff there exist an element *p* such that rrp = rpr = prr = 0, r + p = 1. The element *p* of U is complement of *r* of U. Suppose *r* has complement implies it is unique. Suppose *r* is a complement element then r^{\perp} is the complement of *r*. The complemented elements in

Ternarysemiring U is denoted by comp(U). Comp(U) $\neq \emptyset$ because $0 \in comp(U)$ and $0^{\perp} = 1$. If $comp(U) = \{0, 1\}$ the comp(U) is known as *integral*.

Th 3.8: If U is a zero sum free Ternarysemiring and if $l, g, h \in \text{comp}(U)$ then,

(i) $lgl^{\perp}gl = 0$ (ii) llg and $l \sqsubset g \in comp(U)$ (iii) llg = lgl = gll.

Prool: (i) $lgl^{\perp}gl + lg^{\perp}l^{\perp}g^{\perp}l = l(g + g^{\perp})l^{\perp}(g + g^{\perp})l = ll^{\perp}l = 0$. Since U is zero sum free Ternarysemiring and hence $lgl^{\perp}gl = 0$.

(ii) First we prove that $(l \sqsubset g)^{\perp} = l^{\perp}l^{\perp}g^{\perp} + l^{\perp}g^{\perp}l^{\perp} + l^{\perp}g^{\perp}g^{\perp}$. For this $(l \sqsubset g) + l^{\perp}l^{\perp}g^{\perp} + l^{\perp}g^{\perp}l^{\perp} + l^{\perp}g^{\perp}g^{\perp}$ $= l + l^{\perp}lg + l^{\perp}gl + l^{\perp}gg + l^{\perp}l^{\perp}g^{\perp} + l^{\perp}g^{\perp}l^{\perp} + l^{\perp}g^{\perp}g^{\perp}$ $= l + l^{\perp}[(lg + l^{\perp}g^{\perp}) + (gl + g^{\perp}l^{\perp}) + (gg + g^{\perp}g^{\perp})]$ $= l + l^{\perp}[1 + 1 + 1] = l + l^{\perp} + l^{\perp} = 1 + l^{\perp} + l^{\perp} = 1 + l^{\perp} = 1$.

Also, by condition (i), $(l \sqsubset g) (l \sqsubset g) l^{\perp} l^{\perp} g^{\perp} + l^{\perp} g^{\perp} l^{\perp} + l^{\perp} g^{\perp} g^{\perp}$ = $(l + l^{\perp} lg + l^{\perp} gl + l^{\perp} gg)(l + l^{\perp} lg + l^{\perp} gl + l^{\perp} gl$

Finally, we prove that $(llg)^{\perp} = l^{\perp} \sqsubset g^{\perp} = l^{\perp} + ll^{\perp}g^{\perp} + lg^{\perp}l^{\perp} + lg^{\perp}g^{\perp}$.

Here,
$$llg + l^{\perp} \sqsubset g^{\perp} = llg + l^{\perp} + ll^{\perp}g^{\perp} + lg^{\perp}l^{\perp} + lg^{\perp}g^{\perp} = l(lg + l^{\perp}g^{\perp} + l^{\perp}g^{\perp} + g^{\perp}g^{\perp}) + l^{\perp}$$

$$= l + l^{\perp} = 1.$$

And $(llg) (llg)(l^{\perp} \sqsubset g^{\perp}) = (llg)(llg)(l^{\perp} + ll^{\perp}g^{\perp} + lg^{\perp}l^{\perp} + lg^{\perp}g^{\perp})$ = 0 by condition (i).

Similarly, we can show that $(llg)(l^{\perp} \sqsubset g^{\perp})(llg) = (l^{\perp} \sqsubset g^{\perp})(llg) = (l^{\perp} \sqsubset g^{\perp})$

(iii) By condition (i), $lgl^{\perp}gl = 0 = l^{\perp}glgl^{\perp}$ hence, $llg = llg(l + l^{\perp})(l + l^{\perp}) = llgll + llgll^{\perp} + llg l^{\perp}l + llg l^{\perp} l^{\perp} l^{\perp}$ = $llgll = llgll + l^{\perp}lgll = (l + l^{\perp}) lgll = lgll = lgll + lgll^{\perp} = lgl(l + l^{\perp}) = lgl.$

Similarly, llg = gll and hence llg = lgl = gll.

Th 3.9: Let U be the zero sum free, then

- 1. If $l, g \in \text{comp}(U)$ then $l + g \in \text{comp}(U)$;
- 2. $1+1 \in comp(U);$
- 3. $\operatorname{comp}(U) \subseteq I^+(U);$
- 4. (comp(U), + , []) is a ternary sub semi ring of U are equivalent.

Prool: (1) implies (2) is obvious.

(2) implies (3): Let $l \in \text{com}(U)$, then by condition (2) $l + l \in \text{com}(U)$ and construct $g = (l + l)^{\perp}$. By Th 3.6, we get $llg + llg = l(l + l)g = (l + l)l(l + l)^{\perp} 0$ and hence since U is zero sum free, therefore, llg = 0. Similarly, lgl = gll = 0. Therefore, l = 1/1 = ll = 0.

 $(l+l+g)l(l+l+g) = l^3 + l^3 + llg + l^3 + l^3 + llg + gll + gll + glg$ = $l+l+l+l+glg = l+l+l+l+(l+l)\perp l(l+l)\perp = l+l+l+l$ Now if $l \notin I^+(U)$ then $l \neq l+l \neq l+l+l+l+l$ implies that $l \in I^+(U)$. Therefore, comp(U) $\subseteq I^+(U)$.

(1) implies (4) and (4) implies (1) is obvious by 3.7(2).

Th 3.10: Let U is zero sum free Ternarysemiring then the order relation \leq defined as $l \leq g$ iff $\exists l, k \in \text{comp}(U) \ni l = lkg$ is a reflexive and transitive relations on U.

Prool: Obviously $l \le l \forall l \in U$, here l = 11l. Suppose $l \le g, g \le h$ implies $\exists l, k, l, m \in \text{comp}(U) \ni l = lkg, g = lmh$. Therefore, $l = lklmh \Rightarrow l \le h$.

Def 3.11: Construct the set $W(U) = \{l \in U \mid if u \in U \text{ then } \exists w \in U \ni l + w = u \text{ or } u + w = l\}$, where U is a Ternarysemiring. If U = W(U), then the ternary semiring U is known as **yoked** ternary semiring.

Example 3.12: The sets of all natural numbers N and the set of +ve rational numbers Q^+ are yoked Ternarysemirings. The set of real numbers R with unique minimal and maximal elements 0, 1 respectively is a totally ordered, then (R, *max, min*) is a yoked ternary semiring.

Def 3.13: Let $u : X \to U$ where $\emptyset \neq X \subseteq U$ known as the *domain* of u & expressed as dom(u) also let V the set of all such functions, $h, l \in V$ then h + l is a function domain of $dom(h) \cap dom(l)$ defined as $e \mapsto h(e) + l(e)$ and hlk defined in the same domain as $e \mapsto h(e)l(e)k(e)$ & (V, +, []) is a ternary semiring. The +ve identity in which the function $e \mapsto 0$ and []ve identity in which the function $e \mapsto 1$ with domain U. Further, we observe that if $h \in V$ & if $-h \in V$ is the function from $dom(h) \to U$ expressed as $e \mapsto -h(e)$ hence -h is the +ve inverse of h only if dom(h) = U. Therefore, $M(U) = \{h \in V / dom(h) = U\}$ where M(U) is the set of all +ve inverses of U.

Th 3.14: Suppose A, B & C ternary sub hemi rings of a yoked Ternarysemiring U such that ABC \subseteq M(U) then either A³ \subseteq M(U) or B³ \subseteq M(U) or C³ \in M(U).

Proof: Suppose, A^3 , $B^3 \nsubseteq M(U)$. Then $\exists u, v, w \in A, x, y, z \in B \ni uvw \notin M(U) \& xyz \notin M(U)$. Let $p, q, r \in C$, $\exists s, t \in U \ni u + x + s = p, v + y + t = q$ then $uvw + xyz + vys + wzt = vyp + wzq \in ABC \subseteq M(U)$, therefore, $uvw, xyz \in M(U)$ which is a contradiction. Here, U is yoked Ternarysemiring. Therefore, there must exists $s, t \in U \ni u = x + s + p \& v = y + t + q$. But $uqr = xqr + sqr + pqr \& wvr = wyr + wtr + wqr \in ABC \subseteq M(U)$. Therefore, $pqr \in M(U) \Rightarrow C^3 \subseteq M(U)$.

CONCLUSION

Here, we mainly studied about complements of Ternarysemirings.

Acknowledgement

Authors are very much thankful to supporters who are encouraged to prepare this paper.

References

- Francisco E. Alarcon & Daniel D. Anderson, Commutat ive semirings and their lattices of ideals, Houston L. Math. 20 (1994), 571 -590.
- Gudikondulu. Srinivas, Madhusudhana Rao.D., Srinivasa Rao. G -Ternary Hemirings and Ternary ssemirings-Defs & Examples- Asian Lournal of Science

& Technology, Vol. 8, Issue -12, Decmber-2017, pp: 7153-7156.

- 3. Laved Ahsan, Fully idempotent semirings, Proc. Lapan Acad. 69, Ser. A (1993), 185 188.
- 4. Madhusudhana Rao. D., *Theory ol* Γ-*ideal in*Γ-*semigroups*-Thesis, ANU (2011).
- Madhusudhana Rao. D, Anlaneyulu. A and Gangadhara Rao. A., *Prime* Γ- *Radicalsin* Γ-*Semigroups*, International e-lournal of Mathematics and Engineering, 138 (2011), 1250-1259.
- Madhusudhana Rao. D, Anlaneyulu. A and Gangadhara Rao. A., *Prime* Γ- *Ideals in Duo* Γ-Semigroups, International Lournal of Mathematics and Engineering 174 (2012), 1642-1653.
- 7. Madhusudhana Rao. D. and Srinivasa Rao. G., *Prime Radicals and Completely Prime Radicals in Ternary Semirings*, International Lournal of Basic Science and Applied Computing (ILBSAC) Volume-1, Issue 4, February 2015.
- Madhusudhana Rao. D. and Srinivasa Rao. G., Structure ol P-Prime and P-Semiprime Ideals in Ternary Semirings- International Lournal of Innovation in Science and Mathematics (ILISM) Vol 3, Issue 2, February 2015, pp 24-31.
- 9. Madhusudhana Rao. D. and Srinivasa Rao. G., *Special Elements ol a Ternary Semirings*, International Lournal of Engineering Research and Applications, Vol. 4, Issue 11(Version-5), November 2014, pp. 123-130.
- SalaniLavanya. M., Madhusudhana Rao. D., and V. Syam Lulius Ralendra, On Quasi-Ternary *Γ*-Ideals and Bi-Ternary *Γ*-Ideals in Ternary *Γ*-Semirings-International Lournal of Mathematics and Statistics Invention, Volume 6, Issue 3, (September-2015), PP 05-14.
- SalaniLavanya. M., Madhusudhana Rao. D., and V. Syam Lulius Ralendra, On Lateral Ternary Γ-Ideals ol Ternary Γ-Semirings-American International Lournal of Research in Science, Technology, Engineering &Mathematics (AILRSTEM), 12(1), September-November, 2015, pp: 11-14.
- SalaniLavanya. M., Madhusudhana Rao. D., and V. Syam Lulius Ralendra, *Prime Bi-ternary F-Ideals in Ternary F-Semirings-British Lournal of Research*, Volume 2, Issue 6, November-December, 2015, pp: 156-166.
- SalaniLavanya. M., Madhusudhana Rao. D., and V. Syam Lulius Ralendra, *A Study on Lacobson Radical ol a Ternary Γ-Semieing*-International Lournal of Mathematics and Computer Applications Research, Volume 6, Issue 1, (Feb-2016), PP 17-30.
- SalaniLavanya. M., Madhusudhana Rao. D., and VB. Subrahmanyeswara Rao Seetamralu, *On Right Ternary Γ-ideals ol Ternary Γ-Semiring*, IMPACT-International Lournal of Applied, Natural and Social Sciences, Vol. 4, Issue 5, May 2016, 107-114.
- 15. SalaniLavanya. M., Madhusudhana Rao. D., and Vasantha. M, *A Study on Inverses Strongly Ternary Gamma Semiring*-Accepted for publication in Associated Asia Research Foundation.
- 16. SalaniLavanya. M., Madhusudhana Rao. D., and VB. Subrahmanyeswara Rao Seetamralu, *Properties ol Right*

Strongly Prime Ternary Gamma Semiring- Accepted for publication in International Organization of Scientific Research Lournal of Mathematics.

17. Syamluliusralendra. V, Dr. Madhusudhana rao. D, Salanilavanya. M-A Study on Completely Regular po-Ternary Γ -Semiring, Asian Academic Research Lournal of Multidisciplinary, Volume 2, Issue 4, September 2015, PP: 240-246.

How to cite this article:

Srinivasa Rao G *et al.*2018, Complemented Elements in Ternarysemirings. *Int J Recent Sci Res.* 9(10), pp. 29292-29295. DOI: http://dx.doi.org/10.24327/ijrsr.2018.0910.2831

 Syam Lulius Ralendra. V, Dr.MadhusudhanaRao. Dand SalaniLavanya. M-On Pure PO-Ternary Γ-Ideals in Ordered Ternary Γ-Semirings, IOSR Lournal of Mathematics (IOSR-LM), Volume 11, Issue 5 Ver. IV (Sep. - Oct. 2015), PP 05-13.