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Since we introduced the term complemented element in a Ternarysemiring and it is proved that (1) if 
p, q ∈ U such that p ⊲ q, then ppq = pqp = qpp = pp1. Further, if U is simple ⇒ p + q = q. (2) If U is 
a zero sum free Ternarysemiring and if  l, g, h ∈ comp(U) then, (i) lgl⊥gl = 0  (ii) llg and l ⊏ g ∈ 
comp(U)  (iii) llg = lgl = gll. (3) Let U be the zero sum free, then (i) If l, h ∈ comp(U) then l + h ∈ 
comp(U); (ii) 1+ 1 ∈ comp(U); (iii) comp(U) ⊆ I+(U) ; (iv) (comp(U) , + , [ ]) is a ternary sub semi 
ring of U are equivalent.   
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INTRODUCTION 
 

Complemented elements play vital role in lattices, as well as 
frames. Here, frames are illustrations of semi rings, as it turns 
out, such elements play a special role in the semi ring 
expression of the semantics of computer programs. 
 

Preliminaries 
 

Def 2.1: U a Ternarysemiring, l ∈ U, l is known as an +ve zero 
provided l + x = x + l = x for all x∈ U. 
 

Def 2.2: U a Ternarysemiring, l ∈ U, l is known as a lelt(resp. 
lateral, right) zero of U provided lbc = l (resp. blc = l, bcl = l)

 b,c  U.  l ∈ U known as a two sided zero of U if lbc = bcl 

= l b, c  U.  l ∈ U known as  zero of U if lbc = blc = bcl = 

l b, c  T. 
 

Def 2.3: U a Ternarysemiring, l ∈ U, l is known as an 
absorbing w. r. t addition if l + x = x + l = l ∀ x∈ T.  0 ∈ U, 0 is 
known as an absorbing zero of U if 0 + x = x = x + 0and 0ab = 

a0b = ab0 = 0 l, b, x   U. 

Ex 2.4: Consider the set Z+ with a + b = lcm(a,b).  Then Z+ is a 
Ternarysemiring with zero element 1, but 1 is not an absorbing 
zero since 1.1.a = a.1.1 = a≠ 1 for any a ∈ Z+ and a≠ 1. 
 

Ex 2.5: In the power set P(X), define the addition and 
multiplication such that for any F, G ∈P(X) as K + M = K∩M 
and K.M = (K∪M)\(K∩M). Then P(X) is a Ternarysemiring 
with zero X, since K∩X = K, and the unity is φ. But for any 
nonempty proper subset K of X we have X.K = (K ∪ X)\(K ∩ 
X) = X \K ≠ X.  So X is not absorbing zero. 
 

Def 2.6: A Ternarysemiring in which every element is a left 
(resp. lateral, right) zero is called a lelt (resp. lateral, right) 
zero Ternarysemiring.  A Ternarysemiring with 0 in which the 
product of any three elements equal to 0 is called a zero 
Ternarysemiring (or) null Ternarysemiring. 
 

Ex 2.7: Let 0  T⊆ R and T > 2 and Γ be the any non-empty 

set. Then T with the usual addition and the ternary operation 
defined by xyz = x if x = y = z and xyz = 0 otherwise is a 
Ternarysemiring with 0. 
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Def 2.8: A Ternarysemiring U is known as a strict 
Ternarysemiring or zero sum lree provided a + b = 0 implies a 
= 0 and b = 0. 
 

Ex 2.9: The set Z0 is a strict Ternarysemiring. 
 

Def 2.10: A Ternarysemiring T is said to be zero divisor lree 
(ZDF)  if for  a, b, c ∈ T,  [abc] = 0 implies that a = 0 or b = 0 
or c = 0. 
 

Def 2.11: A ternarysemiring U is said to be semi-subtractive if 
for any elements a; b ∈ T; there is always some x ∈ T for some 
y ∈ U such that a + y = b or b + x = a. 
 

Def 2.12: A Ternarysemiring U is called a half ring if the 
additive cancellation law holds on T, i.e. if l + y = y + u ⇒ l = 
u for all y, l, u ∈ U.  The set of all cancellable elements are 
denoted by K+(U). 
 

Def 2.13: A ternarysemiring U is known as multiplicatively lelt 
(resp. lateral, right) cancellative (MLC) (resp. MLLC, MRC)  
if abl = abu (resp. alb = aub, lab = uab)  implies that  
l = u for all a, b, l, u ∈ U.  A Ternarysemiring U is known as be 
multiplicatively cancellative (MC) if it is (MLC), (MRC) & 
(MLLC).   
 

Complemented Elements 
 

Def 3.1: A lrame as frame is a complete lattice in which meets 
distribute over arbitrary loins  
 

Example 3.2: If �={O , I} . Note that the algebraic structure 
of � is not the same as that of the field � / (2) since 1+1 = 1 in 
�, whereas 1+ 1 = 0 in � / (2). The Ternarysemiring � is called 
the Boolean Ternarysemiring.  
 

Th 3.3[ ]: The following conditions on a Ternarysemiring U 
are equivalent. 
 

1. U is simple 
2. l = lur + lu1+ lr1 + l ∀ l, u, r ∈ R 
3. l = url + ul1 + rl1 + l ∀ l, u, r ∈ R 
4. lur = lur + lsutr  ∀ l, u, r, s, r ∈ R 

 

Def 3.4: If p, q ∈ U then p is well inside q, denoted by p ⊲ q, 
iff ∃ r ∈ U ∋ ppr = prp = rpp = 0 & r+ q = 1. 
 

In any Ternarysemiring U we have 0 ⊲ 0 & r ⊲ 1 ∀ r ∈ U. If U 
is a simple  Ternarysemiring then we observe that 0 ⊲ q for 
any element q ∈ U. If r ∈ C(U) then  
r ⊲ q implies that ssr ⊲ q ∀ s ∈ U. 
 

Th 3.5: If p, q ∈ U such that p ⊲ q, then ppq = pqp = qpp = 
pp1. Further, if U is simple ⇒ p + q = q. 
 

Prool: Here, p ⊲ q, ∃ r ∈ U ∋ ppr = prp = rpp = 0 & r+ q = 1.  
Hence pp1 = pp(r + q) = ppr + ppq = ppq.  Similarly pqp = pp1 
and qpp = pp1.  Now can consider that U is simple.  Then by 
the Th 3.3, we get p + q = p(r + q)(r + q) + q = prr + prq + pqr 
+ pqq + q = prq + pqr + (pq + 1)q =  prq + prq + q = prq + (pr 
+ 1)q = prq + q = (pr + 1)q = q.   
 

Def 3.6: An element r ∈ U is said to be complemented iff r ⊲ 
r.  That is r is complemented iff there exist an element p such 
that rrp = rpr = prr = 0, r + p = 1.  The element p of U is 
complement of r of U.  Suppose r has complement implies it is 
unique.   Suppose r is a complement element then r⊥ is the 
complement of r. The complemented elements in 

Ternarysemiring U is denoted by comp(U).  Comp(U) ≠ ∅ 
because 0 ∈ comp(U) and 0⊥ = 1.  If comp(U) = {0, 1} the 
comp(U) is known as integral. 
 

Example 3.7: The ternary semi-ring (�, max, min) is an 
integral.  Here, comp(U) ⊆ I×(U) because l = l11 = l(l + l⊥)(l + 
l⊥) = l3 + lll⊥ + ll⊥l + ll⊥l⊥ = l3 .  If l ∈ comp (U) and construct  
l ⊏ g = l + l⊥lg + l⊥gl + l⊥gg .  Observe that l  ⊏  l⊥ = l + l⊥l l⊥ 
+ l⊥ l⊥l + l⊥ l⊥ l⊥ = l + l⊥l l⊥ + l⊥ l⊥l + l⊥= ( l + l⊥) +( l⊥l l⊥ + l⊥ 
l⊥l)  = 1 +( l⊥l l⊥ + l⊥ l⊥l) = 1 ∀ l ∈ comp(U).  Further l + g = 1, 
then l⊥ = l⊥(l + g)(l + g) = l⊥ll + l⊥lg + l⊥gl + l⊥gg  = l⊥lg + l⊥gl 
+ l⊥gg,  so l ⊏ g = l + l⊥lg + l⊥gl + l⊥gg = l + l⊥ = 1. 
 

Th 3.8: If U is a zero sum free Ternarysemiring and if  l, g, 
h ∈ comp(U) then,  
 

(i) lgl⊥gl = 0  (ii) llg and l ⊏ g ∈ comp(U)  (iii) llg = 
lgl = gll.  

 

Prool: (i) lgl⊥gl + lg⊥l⊥ g⊥l = l(g + g⊥)l⊥( g + g⊥)l = ll⊥l = 0.  
Since U is zero sum free Ternarysemiring and hence lgl⊥gl = 0. 
 

(ii) First we prove that (l ⊏ g)⊥ = l⊥l⊥g⊥ + l⊥g⊥l⊥ + 
l⊥g⊥g⊥.   
For this (l ⊏ g) + l⊥l⊥g⊥ + l⊥g⊥l⊥ + l⊥g⊥g⊥ 

= l + l⊥lg + l⊥gl + l⊥gg + l⊥l⊥g⊥ + l⊥g⊥l⊥ + l⊥g⊥g⊥  
=   l + l⊥[(lg + l⊥g⊥) + (gl + g⊥l⊥) + (gg + g⊥g⊥)] 
= l + l⊥[ 1 + 1 + 1] = l + l⊥ + l⊥ + l⊥ = 1 + l⊥ + l⊥ = 
1 + l⊥ = 1. 

Also, by condition (i),  (l ⊏ g) (l ⊏ g) l⊥l⊥g⊥ + l⊥g⊥l⊥ + l⊥g⊥g⊥  
                                 = (l + l⊥lg + l⊥gl + l⊥gg)( l + l⊥lg + l⊥gl + 
l⊥gg)( l⊥l⊥g⊥ + l⊥g⊥l⊥ + l⊥g⊥g⊥)=0. 
Similarly,   (l ⊏ g)( l⊥l⊥g⊥ + l⊥g⊥l⊥ + l⊥g⊥g⊥) (l ⊏ g) = ( l⊥l⊥g⊥ 
+ l⊥g⊥l⊥ + l⊥g⊥g⊥) (l ⊏ g) (l ⊏ g)    
                     = 0.  Therefore, (l ⊏ g) ∈ comp(U). 
Finally, we prove that (llg)⊥ = l⊥ ⊏ g⊥ = l⊥ + ll⊥g⊥ + lg⊥l⊥ + 
lg⊥g⊥.   
 

Here, llg + l⊥ ⊏ g⊥ = llg + l⊥ + ll⊥g⊥ + lg⊥l⊥ + lg⊥g⊥ = l (lg + 
l⊥g⊥+ l⊥g⊥ + g⊥g⊥) + l⊥  
                              = l + l⊥ = 1. 
And (llg) (llg)( l⊥ ⊏ g⊥) =   (llg)(llg)( l⊥ + ll⊥g⊥ + lg⊥l⊥ + lg⊥g⊥) 
= 0 by condition (i).   
Similarly, we can show that (llg)( l⊥ ⊏ g⊥) (llg) = ( l⊥ ⊏ g⊥) 
(llg) (llg) = 0. 
 

(iii) By condition (i), lgl⊥gl = 0 = l⊥glgl⊥ hence, llg = 
llg(l + l⊥)( l + l⊥) = llgll + llgll⊥ + llg l⊥l + llg l⊥ l⊥ 
= llgll  = llgll + l⊥lgll = (l + l⊥) lgll = lgll = lgll + 
lgll⊥ = lgl(l + l⊥) = lgl. 

 

Similarly, llg = gll and hence llg = lgl = gll.  
 

Th 3.9: Let U be the zero sum free, then  
 

1. If l, g ∈ comp(U) then l + g ∈ comp(U); 
2. 1+ 1 ∈ comp(U); 
3. comp(U) ⊆ I+(U); 
4. (comp(U), + , [ ]) is a ternary sub semi ring of U are 

equivalent.  
 

Prool: (1) implies (2) is obvious. 
 

(2) implies (3): Let l ∈ com(U), then by condition (2) l + l ∈ 
com(U) and construct g = (l + l)⊥. By Th 3.6, we get llg + llg = 
l(l + l)g = (l + l)l(l + l)⊥ 0 and hence since U is zero sum free, 
therefore,  llg = 0.  Similarly, lgl = gll = 0.  Therefore, l = 1l1 = 
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(l + l + g)l(l + l + g) = l3 + l3 + llg + l3 + l3 + llg + gll + gll + glg 
= l + l + l + l + glg = l + l + l + l + (l + l)⊥l(l + l)⊥ = l + l + l + l  
Now if l ∉ I+(U) then l ≠ l + l ≠ l + l + l + l implies that l ∈ 
I+(U).  Therefore, comp(U) ⊆ I+(U).  
 

(1) implies (4) and (4) implies (1) is obvious by 3.7(2). 
Th 3.10:  Let U is zero sum free Ternarysemiring then the 
order relation ≤ defined as l ≤ g iff ∃ l, k ∈ comp(U) ∋ l = 
lkg  is a reflexive and transitive relations on U. 
 

Prool: Obviously l ≤ l ∀ l ∈ U, here l = 11l.  Suppose l ≤ g, g ≤ 
h implies ∃ l, k, l, m ∈ comp(U) ∋ l = lkg, g = lmh.  Therefore, l 
= lklmh ⇒ l ≤ h.  
 

Def 3.11: Construct the set W(U) = {l ∈ U  / if u ∈ U then ∃ w 
∈ U ∋ l + w = u or u + w = l}, where U is a Ternarysemiring. If 
U = W(U), then the ternary semiring U is known as yoked 
ternary semiring.   
 

Example 3.12: The sets of all natural numbers N and the set of 
+ve rational numbers Q+ are yoked Ternarysemirings.  The set 
of real numbers R with unique minimal and maximal elements 
0, 1 respectively is a totally ordered, then (R, max, min) is a 
yoked ternary semiring. 
 

Def 3.13: Let u : X ⟶ U where ∅ ≠ X ⊆ U known as the 
domain of u & expressed as dom(u) also let V the set of all 
such functions, h, l ∈ V then h + l is a function domain of 
dom(h) ⋂ dom(l) defined as e ↦ h(e) + l(e) and hlk defined in 
the same domain as e ↦ h(e)l(e)k(e) & (V, +, [ ]) is a ternary 
semiring.  The +ve identity in which the function e ↦ 0 and [ 
]ve identity in which the function e ↦ 1 with domain U.  
Further, we observe that if h ∈ V & if – h ∈ V is the function 
from dom(h) → U expressed as e ↦ - h(e) hence – h is the +ve 
inverse of h only if dom(h) = U.  Therefore, M(U) = {h ∈ V / 
dom(h) = U} where M(U)  is the set of all +ve inverses of U.  
 

Th 3.14: Suppose A, B & C ternary sub hemi rings of a 
yoked Ternarysemiring U such that ABC ⊆ M(U) then 
either A3 ⊆M(U) or B3 ⊆ M(U) or C3 ∈ M(U).  
 

Proof: Suppose, A3 , B3 ⊈ M(U) . Then ∃ u, v, w ∈ A, x, y, z ∈ 
B ∋ uvw ∉ M(U) & xyz ∉ M(U).  Let p, q, r ∈ C, ∃ s, t ∈ U ∋ u 
+ x + s = p, v + y + t = q then uvw + xyz + vys + wzt = vyp + 
wzq ∈ ABC  ⊆ M(U), therefore, uvw,  xyz ∈ M(U) which is a 
contradiction. Here, U is yoked Ternarysemiring.  Therefore, 
there must exists s, t ∈ U ∋ u = x + s + p & v = y + t + q.  But 
uqr = xqr + sqr + pqr & wvr = wyr + wtr + wqr ∈ ABC ⊆ 
M(U).  Therefore, pqr  ∈ M(U) ⇒ C3 ⊆ M(U). 
 

CONCLUSION 
 

Here, we mainly studied about complements of Ternarysemirings. 
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