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Over the past decade, many improvements have been made to RANSAC, each of which addresses 
the specific weaknesses of the original algorithm. However, there are relatively few comprehensive 
studies on these developments. The purpose of this paper is to fill this gap by researching related 
technologies, so as to promote the development of new algorithms. This paper first introduces the 
standard RANSAC algorithm, and discusses its mechanism and limitations. Then, some extensions 
of RANSAC algorithm are introduced in detail. These extensions solve the limitations of robustness 
and efficiency. By combining these ideas, the performance of the algorithm can be further improved 
in terms of real-time performance and robustness. 
 
 
 
 
 
  

  
 
 

 
 

 

 
 

 
 

 
 

 
 
 
 
 
 

 
 

 
 
 
 
 

 
 

 
 

 
 
  
 
 

 

INTRODUCTION 
 

The RANSAC algorithm proposed by Fischler and Bolles 
(Fischler and Bolles, 1987) is a well-known method for 
estimating model parameters in the presence of outliers. It is 
based on iteration and hypothesis verification framework, and 
has robustness to contaminated observation data. The basic 
idea of RANSAC algorithm is to randomly extract a sample set 
from the complete set, calculate the model parameters, and then 
verify the other data points in the complete set with the 
obtained model parameters. After many iterations, the model 
parameters that can obtain the highest consistency in the data 
points are regarded as the solution of the model, while those 
data points which are inconsistent with the model parameters 
are regarded as the outliers. The size of the sample set is 
usually set to the minimum value that can be used to solve the 
model parameters. For example, the value is usually 3 in stereo 
vision. The standard RANSAC framework consists of 
hypothesis and verification stage, which are iterated over a set 
of observations. In the first stage, a set of randomly selected 
points is used to instantiate the model, in which the cardinality 
of the sampling set is equal to the minimum number of points 
needed to determine the parameters of the model, so the 
sampling set is also called the minimum set. The second stage 
of the algorithm is to determine the observation values 

consistent with the model, which constitute a consistent set. 
The consistency here is usually defined based on some 
predefined error thresholds. After several iterations, the 
algorithm returns to the model that obtains the maximum 
consistent set. 
 

RANSAC algorithm is an uncertain algorithm, i.e., the results 
of each execution of the algorithm may be different. It obtains 
reasonable results with a certain probability. The more 
iterations, the greater the probability. In fact, RANSAC 
algorithm has become a general method of excluding outliers in 
visual navigation system (Maimone et al., 2007, Deigmoeller 
and Eggert, 2016). In recent years, some improved versions of 
RANSAC algorithm have appeared. Proposed methods which 
focus on consensus measure, sampling strategy, hypotheses 
verification are discussed in the paper.       
 

Consensus Measure 
 

The loss function of RANSAC algorithm sets the value of 
inliers to 0, without considering the difference of error between 

inliers. When the setting of 
2  is larger, more solutions of the 

same C  will be generated, which makes the estimation of the 
model worse. This section introduces two robust consistency 
measurement methods.  

Available Online at http://www.recentscientific.com 
 International Journal of 

Recent Scientific 

 Research International Journal of Recent Scientific Research 
Vol. 9, Issue, 12(A), pp. 29842-29846, December, 2018 

 

Copyright © Wenyan Ci et al, 2018, this is an open-access article distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is 
properly cited. 

DOI: 10.24327/IJRSR 

CODEN: IJRSFP (USA) 

Article History:  
 

Received 6th September, 2018 
Received in revised form 15th  
October, 2018 
Accepted 12th October, 2018 
Published online 28th December, 2018 
 

Key Words: 
 
RANSAC, Extensions, Robustness, 
Efficiency.    
 



Wenyan Ci et al., Extensions To The Standard Ransac Algorithm For Efficiency And Robustness 

 

29843 | P a g e  

MSAC  
 

Inspired by M-estimator, Torr and Zisserman (Torr and 
Zisserman, 2000) proposed a new form of loss function: 
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At this point, the function value of the outliers is still a 
constant, but the function value of the inliers become related to 
the quality of data points and model fitting. This new estimator 
is called MSAC (M-estimator Sample Consensus). Literature 
(Torr and Zisserman, 2000) shows that the accuracy of MSAC 
is 5-10% higher than that of standard RANSAC for epipolar 
geometry problems.  
 

MLESAC  
 

MLESAC (Maximum Likelihood Estimation Sample 
Consensus) algorithm (Torr and Zisserman, 2000) has further 
developed the idea of MSAC. Instead, maximize the following 
objective functions:  
 

log ( | )MLE i
i

C p e z 
 

(2) 

where Z is the model parameter, 
log ( | )ip e z

 represents the 
probability distribution model of error. In order to consider 
both noise and outliers, the error distribution of data points is 
expressed as a mixture model of Gauss distribution and 
uniform distribution. Assuming that the error of the inliers 

conform to the Gauss distribution 
(0, ) 

 with standard 

deviation of   and the outliers conform to the uniform 

distribution 
(0, ) 

, the following distribution model is 
established:     
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(3) 

where the mixed parameter   is the proportion of the inliers in 
the observation set, and its value can be estimated by EM 

(Expectation Maximization) algorithm;   is a constant, 
reflecting the size of the search window in the matching 
algorithm. Similar to MSAC, MLESAC can improve the 
accuracy by 5-10% compared with the standard RANSAC 
algorithm, but the computational complexity is increased. 
 

Sampling Strategy 
 

In many implementations, it may be possible to incorporate 
prior information that allow observations to be scored 
according to how likely they are of being an inlier. This can 
have a dramatic effect on the efficiency of RANSAC, 
particularly for low inlier ratios. Several approaches take 
advantage of this fact to generate better sample sets.      
 

Guided-MLESAC  
 

One disadvantage of MLESAC is the need to calculate the 

mixed parameter  . However, this parameter reflects the prior 
attributes of data and does not depend on a single model. It is 

better to assume that there is a larger MLEC
 for any mixed 

parameter (Tordoff and Murray, 2002). Therefore, it is not 
required to solve the mixed parameter in each iteration. In 

order to select the best hypothesis, it is sufficient to use a fixed 

mixing parameter (e.g. 
0.5 

) for all hypotheses.   
 
Furthermore, if we can get an independent priori value of 
whether the matching pair is correct or not, we can get better 
results than using global mixed parameters. Formula (3) can be 
rewritten as follows: 
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(4) 

where i  is the marker variable of whether the data point i  is 

an inlier, and 
( )ip 

 is a prior probability. 
  

In two view geometry, the prior probability can be obtained by 
matching scores of feature matching. Assuming that there are 

in
 possible matches of feature point i , their correctness is 

expressed by ij
, and the matching score is expressed by ijs

, 

where 
1... ij n

. In small baseline image pairing, the 

matching score  ijs
 of mismatching ij



 can be empirically 
expressed as follows: 
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For correct matching, we have: 
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where a  is a normalized constant and   is a "compactness" 

parameter. Suppose that all possible matches of the feature i  

have the same priori value, i.e., 
( ) 1 / ( 1)ij ip n  

, 

( ) / ( 1)ij i ip n n


 
. Finally, given all matching scores, the 

correct probability of matching 
ij

 can be obtained:      
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(7) 

,1...( | )
iij i np s

 can be computed by 
( | )ijijp s 



 and 

( | )ij ijp s 
, and ,1...( | )

iij i np s
 can be used as an estimate of 

( )ip 
 in formula 

( | )G MLE ip e z . 
     
In this way, the Monte-Carlo sampling method based on prior 
probability can be used for hypotheses generation. The higher 
the prior probability, the higher the probability of sampling 
points. This method can reduce the number of MLESAC 
iterations and improve the efficiency of the algorithm. 
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PROSAC 
 

The PROSAC (Progressive Sample Consensus) algorithm 
(Chum and Matas, 2005) uses the quality of data points as a 
metric in order to priority generation the hypotheses that are 
more likely to be effective. Unlike RANSAC which extracts 
samples from all data, its samples are extracted from a subset 
of the highest quality datas. In fact, the samples extracted by 
PROSAC are the same as those extracted by RANSAC, but the 
sampling order is different. PROSAC begins with testing the 
most promising hypothesis. As the quality score of data points 
decreases, its sampling strategy gradually tends to RANSAC. 
 

In PROSAC algorithm, matching pairs are arranged in 
descending order according to similarity. If the number of 

matching pairs is N  and the corresponding ordered set is N
, 

then:   

( ) ( ) ,i j i j Ni j q u q u u u     
 

(8) 

where 
( )q 

 is a similarity function.    
 

Consider randomly extracting NT
 samples from all N  

matching pairs, and the sequence is expressed as 
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points. Assuming that the sequence 
 

1

NT

i i
M

  contains nT
 data 

points on average that are all from n
, then:             

1

0

m

n N N
i

n

m n i
T T T

N N i

m





 
 

  
 

 
 



 

(9) 
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Finally, the recursive formula of  1nT   is obtained: 
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nT
 samples come from n

, and 1nT   samples come from 

1n  . Since subsets 1n   and n
 satisfy 1 1n n nu   

, there are 1n nT T 
 samples containing one data point 1nu   

and 1m   data points from n
. In order to generate ( )iM

 
arranged in descending order according to sample quality, 

1n nT T 
 samples can be extracted. These samples consist of 

a data point 1nu   and 1m   data points randomly sampled 

from n
, where ...n m N .     

            
Because the good hypothesis is generated early in the sampling 
process, the efficiency of PROSAC is significantly improved 
compared with that of RANSAC. However, when quality 
scores are not very useful (e.g., in scenarios with significant 
repetitive structures), the improvements are not significant.  
 

Group SAC 
 

GroupSAC (Kai et al., 2009) assumes that there are some 
natural groupings in the datas, some of which have a higher 
proportion of inliers, while others have a higher proportion of 
outliers. This kind of natural grouping exists in most of the 
problems we are interested in, e.g., feature pairs can be grouped 
according to optical flow in wide baseline matching.    
 

In the standard RANSAC algorithm and many of its variants, it 
is assumed that the probability of one data point being an inlier 

is independent of other data points. For any minimal set S  

with m  data points, the number of its inliers  SI
 

complies with the distribution . Among them, 

( , )B m 
 represents binomial distribution;   is the Bernoulli 

test parameter, i.e., the probability of the inliers in S . 

Therefore, the probability that all points in S  are inliers can be 
expressed as follows:    
 

( ) ( 1)
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S i
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p I m p 
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(12) 

where i  is the marker variable of whether the data point ix
 

is an inlier. In the absence of prior information, the probability 

is 
m . Although many works (Chum and Matas, 2005; Tordoff 

and Murray, 2002) have realized that the probability of inliers 
is not necessarily the same for different data points, they still 
regard the probability of inliers as independent.   
    

GroupSAC uses image segmentation or optical flow clustering 

method to divide data points into groups 
 , 1...iG i K

. The 
algorithm assumes that the larger the number of data points in 
the grouping, the higher the proportion of the inliers in the 
grouping. Therefore, the grouping is arranged in descending 
order according to the number of data points, and the grouping 
with more data points is sampled first.  Similar to PROSAC, 
the sampling begins with a subset of data points with high 
quality, and gradually extends to all data points. In this way, 
the optimal model solution can be obtained more quickly, and 
the speed and robustness of the algorithm can be improved.   
 

Although GroupSAC has been shown to improve sampling 
efficiency, its applicability depends on finding meaningful 
groupings in all data points. In addition, since the grouping 
stage is part of the robust estimation module, the specific 
grouping strategy (e.g., image segmentation, optical flow, etc.) 
should be very effective. 
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HYPOTHESES VERIFICATION 
 

The efficiency of RANSAC algorithm largely depends on the 
number of outliers and the total number of data points. The 
larger the proportion of outliers is, the more contaminated 
samples are obtained. The models generated from these 
contaminated samples have arbitrary model parameters, which 
do not contain any useful information. The standard RANSAC 
algorithm needs to test these wrong models for all data points. 
Therefore, a lot of computing time is spent on this meaningless 
test. Some methods attempt to optimize the verification stage 
by reducing the time spent on evaluating error models.  
 

Although the number of samples required by RANSAC 
depends on the proportion of inliers and the confidence level, 

the number of all data points N  affects the calculation time, 
because the hypothesis model needs to be tested at each data 
point. In particular, the full run time of RANSAC can be 
expressed as follows:  
 

 
( )G vt k t Nt 

 
(13) 

where k  is the number of samples, Gt  represents the time 
required to calculate model parameters, i.e., the time required 

to generate hypotheses, and vt  represents the time required to 
verify the model at data point. It can be seen from the formula 

that the value of N  directly affects the time required for the 
hypotheses stage. The contaminated-free samples generated by 
the RANSAC algorithm are usually very few. If we assume 
that the consistent sets of these contaminated models are very 
small, we can abandon these bad models early in the 
verification stage. In fact, this assumption is valid in cases 
other than degraded data. 
 

In recent years, many works have focused on making the 
verification stage of RANSAC more effective. The proposed 
method has the same basic idea: statistical testing for a small 
number of data points, and discarding or accepting models 
based on test results. In this case, Formula (13) can be rewritten 
as follows: 
 

( )Gt k t t


 
 

(14) 

The time required to test a data point is set to unit time, and t


 
represents the average number of data points that a model 
needs to validate. The purpose of statistical testing is to reduce 
the number of data points that need to be tested, thus reducing 
the time complexity of the test stage. However, the test may 
mistakenly reject the "good" model, it is necessary to increase 
the number of sampling to maintain a certain level of 
confidence in the solution. Generally speaking, the more datas 
tested, the less likely it is to reject a "good" model. So we need 
to find a balance between the number of test points and the 
number of sampling. 

R-RANSAC Based on ,d dT
 Test   

 

R-RANSAC (Matas and Chum, 2004) first performs a pre-test 
on a small subset of data points, assuming that the number of 

data points in this subset is d , and . d << N Only when all 

the d  data points pass the test, the algorithm continues to test 

the remaining N d  points, otherwise the test will be 
completed.     
 

Two situations need to be considered: first, a "good" sample is 

extracted by probability IP
. If this sample passes the pre-test 

with probability of  , then all N  data points will be tested. 
Otherwise, if the sample fails to pass the pre-test with the 

probability of 1  , then only t


 samples need to be tested 
on average; Secondly, a "bad" sample is extracted with 

probability 
1 IP

. If this sample passes the pre-test with 

probability of <<  then all N  data points will be 
tested. Otherwise, if the sample does not pass the pre-test with 

the probability of 
1 

, then only t 


 samples need to be 
tested on average. The average number of data points to be 

tested for each sample can be expressed as a function of d :  
 

( ) ( (1 ) ) (1 )( (1 ) )I It d P N t P N t    
  

      
 
(15) 

  and 


 can be calculated by the following formula: 
 

,d d    
 

(16) 
 

where   denotes the proportion of inliers and   denotes the 
probability that a data point is consistent with a random model. 
The average time of pre-test can be expressed as:    
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(17) 

 

The R-RANSAC algorithm derives the optimal setting of 

1d   by minimizing the function 
( )Gt k t t



 
. The 1,1T

 
test first randomly extracts a data point to test the model, if the 
model is consistent with the data point, then continues to test; 
otherwise, it abandons the model and generates new samples.  
 

As mentioned above, R-RANSAC may mistakenly reject valid 
hypotheses and increase the number of samples compared with 
standard RANSAC. However, hypotheses generation takes less 
time, the pre-test method can generally reduce the running time 
of the algorithm. 
 

R-RANSAC Based on SPRT Test 
 

In 2005, Matas and Hum proposed R-RANSAC based on 
Sequential Probability Ratio Test (SPRT) (Matas and Chum, 
2005). This method uses likelihood ratio to determine whether 

the estimated model is "good" model gH
 or "bad" model bH

. 
The calculation formulas are as follows: 
 

1
1

( | )( | )

( | ) ( | )

j
j br b

j j
r r g j g
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p x H p x H
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( | )r bp x H
 and 

( | )r gp x H
 are conditional probabilities of 

observed values rx
 under the assumptions of bH

 and gH
, 
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respectively. If the r-th data point is consistent with the model 

parameters, then 
1rx 

, otherwise 
0rx 

.
(1 | )gp H

 
denotes the probability of randomly extracting a data point that 
is consistent with a "good" model. It can be approximated by 

the ratio of the inliers in the data points. Similarly,  
(1 | )bp H

 
denotes the probability of randomly extracting a data point 
consistent with a "bad" model, which can be modeled by 

Bernoulli distribution with parameter  . SPRT test is to add 

data points continuously and calculate the likelihood ratio j
 

shown in formula (18). If the ratio is greater than a threshold 

A , the model is considered to be a "bad" model; if the ratio 

does not exceed the threshold A  after all data points are 
tested, the model is considered to be a "good" model.     
 

Threshold A  is the main parameter to be determined in SPRT 

test. Assuming that the parameters   and   are known, the 

optimal running time can be achieved by setting A . However, 
these parameters are usually unknown and need to be estimated 

during the testing process, and the threshold A  should be 
adjusted according to the current estimates. For example, in 

multi-view geometry, initial estimates of   can be obtained by 

geometric constraints; initial values of   can be estimated by 
the maximum number of RANSAC iterations that users are 
willing to perform, and updated at any time using the current 
maximum consistent set. In the multi-view geometry 
experiments (Chum and Matas, 2008), R-RANSAC based on 
SPRT test is 2.8 to 10.9 times faster than standard RANSAC, 
and its efficiency in all experiments is higher than R-RANSAC 

based on ,d dT
 test.      

 

DISCUSSION AND CONCLUSIONS 
 

As a basic step of image matching technology, mismatching 
point detection can not only detect mismatching points, but also 
make up for the shortcomings of image matching algorithm and 
further improve the accuracy of image matching. RANSAC 
method are commonly used to detect mismatched points. A 
number of recent research efforts have attempted to improve 
the performance of the standard RANSAC algorithm. In this 
paper, we presented a discussion and comparative analysis of a 
number of important RANSAC techniques.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Although there are many methods to detect mismatched points 
and good application results have been achieved, there are still 
some problems to be further studied. For example, how to find 
a balance between accuracy and efficiency. 
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