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A new concept of the c-distance in cone metric spaces has been introduced by Cho et al. [12] in 
2011. Recently, Tiwari, S. K.et al. [30] in 2017 introduced the T-Hardy Rogers contraction under 
the concept of c-distance in cone metric spaces and proved uniqueness fixed point results. The 
purpose of this paper is to establish the generalization of T-Hardy Rogers contractive type of 
mapping on complete cone metric spaces. Our results generalize and extend some well known 
results in the literature. 

 
 

 
 
 
 
 

 
 

 
 
 

 
 

 
 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

 
 

 
 
 

 
 

 
 

 
 
 
 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

  
 
 

 
 
 
 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 
 
 
 
 
 
 

 
 
 
  
 

 
 

INTRODUCTION 
 

The first important fundamentals result in fixed point theory, 
which is also known as Banach contraction principle or Banach 
fixed point theorem [1].After this provital result, many authors 
have studied various extensions and generalizations of 
Banach’s theorems by considering contractive mappings on 
several directions in the literature (see [3-11]). 
 

In 2007, Huang and Zhang [2] generalized concept of metric 
space, replacing the set of real numbers by an order Banach 
space, and showed some fixed point theorems of different type 
of contractive mappings on cone metric spaces. Later, many 
authors generalized and studied fixed and common fixed point 
results in cone metric spaces for normal and non normal cone. 
The Hardy –Roger’s contraction was introduced in the work of 
Hardy –Rogers [15] which is generalization of Reich 
contraction. Recently, Cho et al. [12] Wang and Guo [14] 
defined a concept of the c- distance in a cone metric space, 
which is a cone version of the w-distance of Kada et al.[11] 
and proved some fixed point theorems in ordered cone metric 
spaces. Then Sintunavarat et al. [13] generalized the Banach 
contraction theorem on c- distance of Cho et al.[12].After that, 
several authors studied the existence and uniqueness of the 
fixed point, common fixed point, coupled fixed point and 

common coupled fixed point problems using this distance in 
cone metric spaces and ordered cone metric spaces see for 
examples [16-27]. Quick recently, in 2017 Tiwari, S.K.et al.. 
[30] studied some fixed point theorems of T-Hardy Rogers type 
mappings under the concept of c- distance in complete cone 
metric spaces depended on another function. ' 
 

In this paper, we studied some common fixed point theorems 
for generalized  � − Hardy-Rogers contraction type mappings 
under the concept of c- distance in complete cone metric spaces 
depended on another function. Throughout this paper, we do 
not impose the normality condition for the cones, but the only 
assumption is that the cone P is solid, that is in t � ≠ ∅. Our 
results generalize and extend the respective theorems 3.1 of the 
result [30]. 
 

Preliminary notes 
 

First, we recall some standard notations and definitions in cone 
metric spaces with some of their properties [2]. 
 

Definition 2.1: Let � be a real Banach space and � be a subset 
of �and �denote to the zero element in �, then  � is called a 
cone if and only if : 
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i. � is a non-empty set closed and � ≠ { �}, 
ii. (ii If  �, � are non-negative real numbers and �, � ∈

�,then �� + �� ∈ �, 
iii. � ∈ � ��� − � ∈ � ⟹ � = � ⟺ �⋂(−�) = {�}. 

 

Given a cone P ⊂ E, we define a partial ordering ≤ on � with 
respect to � by � ≤ � if and only if � − � ∈  �.We shall write 
� ≪ � if � − � ∈ ����(where int � denotes the interior of �). 
If ���� ≠ ∅, then cone � is solid. The cone � called normal if 
there is a number � >  0 such that for all �, � ∈ �, 
  � ≤ � ≤ � => ∥ � ∥≤ � ∥ � ∥. 
 

The least positive number k satisfying the above is called the 
normal constant of �. 
 

Definition: 2.2: Let � be a non-empty set. Suppose the 
mapping �: � × � ⟶ � satisfies 
 

i. � < �(�, �)��� ��� �, � ∈ � ��� (�, �) = �if and 
only if � = �, 

ii. �(�, �) = �(�, �)��� ��� �, � ∈ �, 
iii. �(�, �) ≤ �(�, �) + �(�, �)��� ��� �, �, � ∈ �. 

 

Then � is called a cone metric on �, and (�, �) is called a cone 
metric space .The concept of cone metric space is more general 
than that of a metric space. 
 

Example2.3: Let � = ��, � = {(�, �) ∈ �: �, � ≥ 0}, � = � 

and �: � × � → � defined by �(�, �) = (│� − �│, �│� −

�│),where α ≥ 0 is a constant. Then (�, �) is a cone metric 
space. 
 

Definition: 2.4: Let (�, �) be a cone metric space, � ∈  � and 
{��}��� be a sequence in �. then, 
 

1. {��}��� Converges to � whenever for every� ∈ � with 
� ≪ �,  if there is a natural   

2. number � such that�(��, �) ≪ � for all � ≥ �. We 
denote this by ����→∞�� = 

3. � �� �� →  �, (� → ∞ 
4. {��}���is said to be a Cauchy sequence if for every 

� ∈  � with �<< c,if there is a  
5. natural number � such that �(��, ��) ≪ � for all 

�. � ≥ �. 
6. (�, �) is called a complete cone metric space if every 

Cauchy sequence in � is  Convergent. 
 

Definition 2.5([28]): Let(�, �) be a cone metric space, � be a 
solid cone and � ∶  � →  � then 
 

a. (�)   � is said to be continuous if lim n→∞ �n = � 
implies that lim n→∞ ��n = T� for all {�n} in �; 

b. (�)   � is said to be subsequentialy convergent, if for 
every sequence {�n} that {��n} is       

c. convergent, implies {�n} has a convergent 
subsequence, 

d. ( �)   � is said to be sequentially convergent if for 
every sequence {�n}, if {��n} is convergent,    

e. then {�n} is also convergent. 
f.  

Lemma 2.6([29]) 
 

1. If � is a real Banach space with cone � and � ≤ �� 
where � ∈ � and � ≤ � < 1, then  

            � = � 

2. If � ∈ ����, � ≤ �� and �� → � then there a positive 
integer N such that �� ≪ � for all  

            � ≥ �.  
 

Next, we give the definition of c-distance on a cone metric 
space(�, �) which is generalization of w- distance of Kada et 
al. [11] with some properties. 
 

Definition 2.7 ([12]): Let (�, �) be a cone metric space. A 
function �: � × � → � is called a c- distance on X if the 
following conditions hold: 
 

(q1).  � ≤ �(�, �) for all �, � ∈ �, 
(q2).  �(�, �) ≤ �(�, �) + �(�, �) for all �, �, � ∈ �, 
(q3). for each � ∈ � and � ≥ 1, if �(�, ��) ≤ � for some� =
�� ∈ �, then �(�, �) ≤ �  
 

Whenever{��} is a sequence in � converging to a point � ∈ �, 
(q4).  foe all � ∈ �with � ≪ �, there exist � ∈ � with � ∈ � 
such that �(�, �) ≪ � and �(�, �) ≪ 
� imply �(�, �) ≪ �. 
 

Example 2.8 ([12]): Let � = � and � = {� ∈ �: � ≥ 0}. Let 
� = [0, ∞)and define a mapping �: � × � → � by �(�, �) =
|� − �| for all �, � ∈ �. Then (�, �)is a cone metric space. 
Define by �: � × � → � by �(�, �) = � for all �, � ∈ �. Then 
�is a c-distance on�. 
 

Example 2.9([17, 18]): Let � = �� and � = {(�, �) ∈
�: �, � ≥ 0}. Let� = [0,1] and define a mapping �: � × � →
�by �(�, �) = (|� − �|, |� − �|) for all�, � ∈ �. Then (�, �) is 
a complete cone metric space. Define a mapping �: � × � → � 
by �(�, �) = (�, �) for all �, � ∈ �. Then � is a � − distance. 
 

Example 2.10 ([26]): Let � = �
�

�
[0,1](the set of real valued 

functions on � which also have continuous derivatives on 
�),� = {� ∈ �: �(�) ≥ 0}. A cone metric d on X is defined by 
�(�, �)(�) ≔ |� − �|. �(�) where ∅ ∈ � is an arbitrary 
function. This cone is non normal. Then (�, �)is a complete 
cone metric space. Define a mapping �: � × � → � by 
�(�, �)(�) = �. �� for all �, � ∈ �. It is easy to see that � is a 
� −distance. 
 

Lemma 2.11([12]): Let (�, �) be a cone metric space and q is 
c- distance on X. Let {��} and {��} be a sequences in X and 
�, �, � ∈ �.Suppose that �� is sequence in P converging to 0. 
Then the following conditions hold: 
 

1. If �(��,�) ≤ �� and �(��,�) ≤ ��, then � = �. 

2. If �(��,��) ≤ �� and �(��,�) ≤ ��, then {��} 
converges to �. 

3. If �(��,��) ≤ �� for � > � and {��,} is a Cauchy 
sequence in �. 

4. If �(�, ��,) ≤ ��then {��,} is a Cauchy sequence in �. 
 

Remark 2.11([12]) 
 

1. �(�, �) = �(�, �) does not necessarily for all  �, � ∈ �. 
2. �(�, �) = � is not necessarily equivalent to � − � for all 

�, � ∈ �. 
 

Now, we introduce the T-Hardy –Rogers’s contraction under 
the concept of c-distance in cone metric spaces [30]. 
Definition 2.12[30]: Let (�, �)be a cone metric spaces and 
�, �: � → � be any two mappings. A mapping � is said to be T-
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Hardy- Rogers contraction, if there exists a constant 
�, �, �, �, � ∈ [0,1) with� + � + � + � + � < 1 such that  
 

�(���, ���) ≤ ��(��, ��)+��(��, ���)+ ��(��, ���) +
��(��, ���) + ��(��, ���)        for all�, � ∈ �. 
 

MAIN RESULTS 
 

Now, we give our main results in this paper. 
 

������� �. �: Let (�, �)be a complete cone metric spaces, � 
be a solid cone and � be a � −distance on�. In addition  
�: � → � be an one to one, continuous function and  �, �: � →
� be a pair mappings satisfies the contractive condition 
          �(���, ���) ≤ ��(��, ��)+��(��, ���)+ ��(��, ���) +
��(��, ���)  +��(��, ���)………… (3.1.1) 
 

for all�, � ∈ �.�ℎ���  �, �, �, �, � ∈ [0,1) are constants such 
that � + � + � + � + � < 1  
 

Then � and G have an unique common fixed point �∗ ∈ �. And 
for any � ∈ �,iterative sequence {������} and {������} 
converges to the common fixed point. If � = �� = ��. Then 
�(�, �) = �. 
 

Proof: Let �� be an arbitrary point in X. We define the iterative 
sequence{���} and {�����}by 
 

����� = ���� =  �����                                             … (3.1.2) and  
����� = ������ =  �������      …                           (3 .1 .3).  
 

Then, from (3.1.1), we have 
  

�(����,������) = �(�������, ����) 

≤ ��(������,����) +��(������,�������)+ ��(����,�����) 

+  ��(������, ����� )+ ��(����, �������) 

  ≤ ��(������,����) +��(�����,����)+��(����,������) 

 + ��(������, ������ )+ ��(����, ����) 

������,�������≤ (� + � + �)�(������,����)+(� +

�)�(����,������) 

    =>([1 − (� + �)]�(����,������)≤  (� + � +

�)�(������,����) 

             => �(����,������)  ≤    
�����

��(���)
 �(������,����) 

         ≤ℎ�(������,����      … (3.1.2) 

Where 
�����

��(���)
 = ℎ < 1. 

 Let � > � ≥ 1. we have  

          �(���, ���)≤ �����,������ +

�������,������ +………..+�(�����,���) 

   ≤ (ℎ� + ℎ��� + ⋯ … … … … … + ℎ���)�(���,���) 

≤ 
��

���
 �����,���� → ∞, ℎ → ∞. 

 

Thus, Lemma 2.11(3), which implies that, {�����} is a Cauchy 
sequence in �. Since � is complete cone metric space, then 
there exist � ∈ � such that 
 
���� → �  as � → ∞                                                        ….(3.1.3) 
 
Since � is subsequently convergent, {���}  has a convergent 
subsequence. So, there are �∗ ∈ � and {����} such that 
 ����  → �∗ as � → ∞.                                                 … (3.1.7) 
 
Since T is con tenuous, then by (3.1.6), we obtain 
         ���� = ��∗….              (3.1.8) 

Now from (3.1.6) and (3.1.8), we conclude that 
��∗ = �…                                                                      (3.1.9) 
 
By definition [2.7] (q3), we have  
 

�(����, ��∗)  ≤ 
���

���
 �����,����… (3.1.7) 

 

On the other hand and using (3.1.5), we have 
               �(���, ���∗)  ≤ �(�������,���∗) 
            ≤ ��(������, ��∗) 

            ≤ �
�����

���
 �����,���� 

            = 
���

���
 �����,����… (3.1.8) 

 
By lemma 2.11(1), from (3.1.7) and (3.1.8), we have 
                                ��∗ = ���∗…                 (3.1.12) 
 

Since � is one to one, then �∗ = ��∗. Thus �∗is a fixed point of 
�. Similarly, we can prove that �∗  is a fixed point of G. 
Therefore, �∗ is common fixed point of � and�. 
Moreover, suppose that, � = �� = ��, and then we have 
 
        �(��, ��) = �(���, ���)   
            ≤ ��(��, ��) +
��(��, ���)+��(��, ���)+��(��, ���) 
            +��(��, ���) 
            = (� + � + � + � + �) 
�(��, ��) 
 

Since� + � + � + � + � < 1, lemma 2.6 (1), shows 
that �(��∗, ��∗) = �. 
 

Finally suppose that, if �∗ is another common fixed point of F 
and G. Then we have 
   �(��∗, ��∗) = �(���∗, ���∗ 
              ≤��(��∗, ��∗) +
��(��∗, ���∗)+��(��∗, ���∗) 
           
+ ��(��∗, ���∗)+ ��(��∗, ���∗)+ 
            = ��(�∗, �∗) + ��(�∗, �∗) +
��(�∗, �∗)+��(�∗, �∗)+��(�∗, �∗) 
            = (� + � + �)�(��∗, ��∗). 
            ≤ (� + � + � + � +
�)�(��∗, ��∗). 
 

'Since� + � + � + � + � < 1, lemma2.6 (1), shows 
that �(��∗, ��∗) = �.Also we have �(��∗, ��∗) = �.Thus, 
Lemma 2.11(1),  ��∗ = ��∗. Since T is one to one, then 
�∗ = �∗. So, �∗ is the unique common fixed point of � and�. 
 

If we take � = 1  and  � = � = � in the above theorem, we get 
the following results of corollary [3.3] of [30]. 

 

Corollary 3.2: Let (�, �)be a complete cone metric spaces, � 
be a solid cone and � be a � −distance on�. Let �: � → � be a 
mappings satisfies the contractive condition 
 

�(��, ��) ≤ ��(�, �)+��(�, ��)+ ��(�, ��) + ��(�, ��)  +
��(�, ��) 
 

for all�, � ∈ �.�ℎ���  �, �, �, �, � ∈ [0,1) are constants such 
that � + � + � + � + � < 1  
Then � has an unique fixed point �∗ ∈ �. And for any � ∈
�,iterative sequence {���} converges to the fixed point. If 
� = ��. Then �(�, �) = �. 
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CONCLUSION 
 

In this attempt, we prove unique common fixed point results in 
cone metric spaces with corollaries. These results generalizes 
and improves the recent results of Tiwari,S .K. et al. [30] in the 
sense that employing c-distances and in contractive conditions, 
which extends the further scope of our results. 
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