Research Article

ON THE NONIC DIOPHANTINE EQUATION WITH THREE UNKNOWNS $8 x^{\wedge} 2+8 y^{\wedge} 2-15 x y=32 z^{\wedge} 9$

D.Geetha*
Saranathan College of Engineering, Trichirappalli, Tamilnadu, India
DOI: http://dx.doi.org/10.24327/ijrsr.2019.1006.3575

ARTICLE INFO

Article History:

Received $4^{\text {th }}$ March, 2019
Received in revised form $25^{\text {th }}$
April, 2019
Accepted $23^{\text {rd }}$ May, 2019
Published online $28^{\text {th }}$ June, 2019

Key Words:

Nonic equation with three
unknowns, Integral solutions.

Abstract

We obtain two different patterns of non-zero integral solutions of the Nonic diophantine equation with three unknowns $8 x^{\wedge} 2+8 y^{\wedge} 2-15 x y=32 z^{\wedge} 9$ by employing suitable transformations.

Copyright © D.Geetha, 2019, this is an open-access article distributed under the terms of the Creative Commons Attribution

 License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.
INTRODUCTION

Diophantine equations, homogeneous and non- homogeneous have aroused the interest of numerous mathematicians since antiquity as can be seen from [1-2]. The problem of finding all integral solutions of on Interminate equation with three or more variables in general presents a good deal of difficulties. Particularly in [5,6] special equations of sixth degree with four and five unknowns are studied. In $[7,8]$ heptic equations with three and five unknowns are analysed. In this communication a nonic Polynomial equation with three variables represented by $8 x^{2}+8 y^{2}-15 x y=32^{9}$ is considered and two different patterns of non-zero integral solutions have been presented.

Method of Analysis

The equation under consideration is
$8 x^{2}+8 y^{2}-15 x y=$
$32 z^{9}$
Assigning the transformations
$\mathrm{x}=\mathrm{u}+\mathrm{v}, \mathrm{y}=\mathrm{u}-\mathrm{v}$
in (1) leads to
$u^{2}+31 v^{2}=32 z^{9}$

The above equation (3) is solved through different approaches and thus, one obtains different
sets of solutions to (1)

Case 1

Assumethatz $=a^{2}+31 b^{2}$
Write3 $2=\frac{(n+n i \sqrt{31})(n-n i \sqrt{3} n}{n^{2}} n=1,2,3, \ldots \ldots \ldots \ldots$.
use (5) \& (4) in (3) and applying the method of factorization, define

$$
u+i \sqrt{31} v=\frac{1}{n}(n+i n \sqrt{31})(a+i b \sqrt{31})^{9}
$$

Equating the real and imaginary parts, we have
$u=u(a, b)=a^{9}-279 a^{8} b-1116 a^{7} b^{2}+80724 a^{6} b^{3}+121086 a^{5} b^{4}-$ $3753666 a^{4} b^{5}$

```
-2502444a 3 b b +33246756a 2 b}\mp@subsup{}{}{7}+8311689a\mp@subsup{b}{}{8}-28629151\mp@subsup{b}{}{9
v=v(a,b)=\mp@subsup{a}{}{9}+9\mp@subsup{a}{}{8}b-1116\mp@subsup{a}{}{7}\mp@subsup{b}{}{2}-
2604a}\mp@subsup{a}{}{6}\mp@subsup{b}{}{3}+121086\mp@subsup{a}{}{5}\mp@subsup{b}{}{4}+121086\mp@subsup{a}{}{4}\mp@subsup{b}{}{5}-2502444\mp@subsup{a}{}{3}\mp@subsup{b}{}{6
- 1072476a 2 b}\mp@subsup{}{}{7}+8311689ab\mp@subsup{b}{}{8}+923521\mp@subsup{b}{}{9
Substituting the above values of \(u\) and \(v\) in equation (2), and hence the non-zero integral solutions of (1) are
```

*Corresponding author: D.Geetha
Saranathan College of Engineering, Trichirappalli, Tamilnadu, India
$x=2 a^{9}-270 a^{8} b-2232 a^{7} b^{2}+78120 a^{6} b^{3}+242172 a^{5} b^{4}-3632580 a^{4} b^{5}$
$-5004888 a^{3} b^{6}+32174280 a^{2} b^{7}+16623378 b^{8}-27705630 b^{9}$
$y=-288 a^{8} b+83328 a^{6} b^{3}-3874752 a^{4} b^{5}+34319232 a^{2} b^{7}-$
$29552672 b^{9}$
$\mathrm{z}=\mathrm{a}^{2}+31 \mathrm{~b}^{2}$

Case 2

Equation (3) can be written as $\boldsymbol{u}^{2}+\mathbf{3} \mathbf{1}^{\mathbf{2}}=\mathbf{3} \mathbf{2 z}^{\mathbf{9}} * \mathbf{1}$
Instead of (5), we write as
$\frac{(2+2 i \sqrt{31})(2-2 i \sqrt{31})}{4}$
and also 1 as
$\frac{(15+i \sqrt{31})(15-i \sqrt{31})}{256}$
use (4), (10), (9) in (8) and applying the method of factorization, define
$u+i \sqrt{31} v=\frac{1}{32}\left[(a+i \sqrt{31} b)^{9}(2+2 i \sqrt{31})(15+i \sqrt{31})\right]$
Equating the real and imaginary part, we have
$u=u(a, b)=-a^{9}-279 a 8 b+1116 a^{7} b^{2}+80724 a^{6} b^{3}-121086 a^{5} b^{4}-$ $3753666 a^{4} b^{5}+2502444 a^{3} b^{6}+33246756 a^{2} b^{7}-$
$8311689 a^{8}-28629151 b^{9}$
$\mathrm{v}=\mathrm{v}(\mathrm{a}, \mathrm{b})=\mathrm{a}^{9}-9 \mathrm{a}^{8} \mathrm{~b}-1116 \mathrm{a}^{7} \mathrm{~b}^{2}+2604 \mathrm{a}^{6} \mathrm{~b}^{3}+121086 \mathrm{a}^{5} \mathrm{~b}^{4}-$ $121086 a^{4} b^{5}-2502444 a^{3} b^{6}+$
$1072476 a^{2} b^{7}+8311689 a^{8}-923521 b^{9}$
Substituting the values of u and v in equ (2), then the values of x and y are given by
$x=-288 a^{8} b+83328 a^{6} b^{3}-3874752 a^{4} b^{5}+34319232 a^{2} b^{7}-$
$29552672 b^{9}$
$y=-2 a^{9}-270 a^{8} b+2232 a^{7} b^{2}+78120 a^{6} b^{3}-242172 a^{5} b^{4}-$
$3632580 a^{4} b^{5}+5004888 a^{3} b^{6}+32174280 a^{2} b^{7}$
$-16623378 a^{8}-27705630 b^{9}$

$$
\mathrm{z}=\mathrm{a}^{2}+31 \mathrm{~b}^{2}
$$

CONCLUSION

In this paper we have presented two different patterns of nonzero integral solutions of the Nonic Diophantine equation with three unknown (1). One may search for other patterns of solutions and their corresponding properties.

Reference

1. L.E. Dickson, History of Theory of Numbers, Vol. 2 Chelsea Publishing Company, New York (1952).
2. Mordell, L.J."Diophantine equations", Academic Press,New York 1969.
3. M.A. Gopalan, S. Vidhyalakshmi and S. Devibala, Integral solutions of $49 x^{2}+50 y^{2}=51 z^{2}$
4. Acta Ciencia Indica, XXXIIM, No.2, 839(2006).
5. Anbuselvi R, Kannaki K, On ternary Quadratic Equation $11 x^{2}+3 y^{2}=14 z^{2}$ Volume 5, Issue 2, Feb 2016,
6. PgNo. 65-68.
7. M.A.Gopalan,S.Vidhyalakshmi and K.Lakshmi, On the non-homogeneous sextic equation
8. $\mathrm{x}^{4} \square \square 2\left(\mathrm{x}^{2} \square \square \mathrm{w}\right) \mathrm{x}^{2} \mathrm{y}^{2} \square \square \mathrm{y}^{4} \square \square \mathrm{z}^{4}$,IJAMA, 4(2),171173,Nov. 2012
9. M.A.Gopalan,S.Vidhyalakshmi and K.Lakshmi, Integral Solutions of the sextic equation with
10. Five unknowns $\mathrm{x}^{3} \square \square \mathrm{y}^{3} \square \square \mathrm{z}^{3} \square \square \mathrm{w}^{3} \square \square 3(\mathrm{x} \square \square \mathrm{y}) \mathrm{T}^{5}$, IJESRT,502-504, Dec. 2012
11. . M.A.Gopalan and sangeetha.G, parametric integral solutions of the heptic equation with 5unknowns x^{4} $\square \square \mathrm{y}^{4} \square \square 2\left(\mathrm{x}^{3} \square \square \mathrm{y}^{3}\right)(\mathrm{x} \square \square \mathrm{y}) \square \square 2\left(\mathrm{X}^{2} \square \mathrm{Y}^{2}\right) \mathrm{z}^{5}$, Bessel Journal of Mathematics 1(1), 17-22, 2011.
12. M.A.Gopalan and sangeetha.G, On the heptic diophantine equations with 5 unknowns
13. $\mathrm{x}^{4} \square \square \mathrm{y}^{4} \quad \square \square\left(\mathrm{X}^{2} \square \mathrm{Y}^{2}\right) \mathrm{z}^{5}$, Antarctica Journal of Mathematics, 9(5) 371-375, 2012
14. M.A. Gopalan and G. Janaki, Integral solutions of $\left(x^{2}-\right.$ $\left.y^{2}\right)\left(3 x^{2}+3 y^{2}-2 x y\right)=2\left(z^{2}-w^{2}\right) p^{3}$,
15. Impact. J. Sci. Tech., Vol.4, No.97-102, 2010.
16. D.Geetha, N. Saivaraju 2016 'On The Octic Equation With Six unknowns $\left(x^{6}-y^{6}\right)-\left(x^{2}-y^{2}\right)\left(x^{4}+y^{4}+10 x^{2} y^{2}\right)=\left(z^{4}-w^{4}\right) p^{2}-4 T^{4} p^{2}\left(x^{2}-y^{2}\right)$,'Asian Journal of Research in Social Sciences and Humanities' vol. 6, no. 9, pp. 367-372,2016.
17. Anbuselvi R, Kannaki K, On ternary Quadratic Equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=15 z^{3}$
18. IJSR Sep 2016:5(9); 42-48.
19. Anbuselvi R, Kannaki K, On the Heptic DiophantineEquation with Three Unknowns
20. $5\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right)-9 \mathrm{XY}=35 \mathrm{Z}^{7}$ Paripex - 1JR May 2017 6(5); 622-624.

How to cite this article:

D.Geetha. 2019, On the Nonic Diophantine Equation with Three Unknowns $8 x^{\wedge} 2+8 y^{\wedge} 2-15 x y=32 z^{\wedge} 9$. Int J Recent Sci Res. 10(06), pp. 32954-32955. DOI: http://dx.doi.org/10.24327/ijrsr.2019.1006.3575

