INTRODUCTION

Gingival recession is the exposure of root surface resulting from apical migration of gingival margin. Different treatment modalities have been employed to attain root coverage in gingival recession. Complete coverage of the recession defect and integration of the new tissue with adjacent soft tissue is an essential component of periodontal therapy. Connective tissue grafts along with advanced flap are considered as the gold standard technique for root coverage procedures. The procedure of harvesting CTG from palate is often complicated. The procedure of harvesting CTG from palate is often complicated. Various CTG harvesting techniques addressed histological composition of the graft as well as palatal wound healing. Zucchelli et al proposed CTG harvesting by scalpel de-epithelialization of gingival grafts (DGG) and noted that these grafts had relatively dense connective tissue and were comparatively prone for minimal postoperative shrinkage over conventionally harvested CTG. Further the author concluded that 2 mm a residual soft tissue covering the donor site resulted in limited pain and better post-operative wound healing. Diode lasers facilitate in situ de-epithelialization. Yilmaz et al have described several advantages of an adjunctive use of diode laser application such as; reduced post-operative bleeding, shorter operating time, minimal swelling and better post-operative patient’s perceptions. Limited reports were published in literature using Diode lasers for deepithelization of grafts. Hence, the current case series compares the clinical outcomes of the laser de-epithelialized gingival grafts with CTG harvested by single incision in management of isolated maxillary gingival recession defects.

Case Description

This pilot investigation was approved by institutional ethical committee and review board. Patients were recruited from outpatient clinics, department of periodontics and implantology from August 2017 to February 2018. 10 systemically healthy subjects diagnosed with chronic periodontitis, with a mean age of 25-50 years requiring surgical management of gingival recession were recruited and subjects were informed about the nature of the study and duly signed consent was obtained. Isolated maxillary recession sites belonging to either Miller’s Class I / II criteria with adequate attached gingiva and

*Corresponding author: Purva Dalmia
Department of Periodontics, SRM Dental College and Hospital, Ramapuram, Chennai-89
vestibular depth were included. Exclusion criteria comprised of sites with periodontal pockets, interproximal bone loss, cervical caries/restorations, abrasion defects and malposed teeth, poor oral hygiene maintenance, contraindicated for periodontal surgery. The patients initially completed a phase I periodontal therapy, including oral hygiene instructions to eliminate habits related to the aetiology of the recession, scaling & root planning. The clinical parameters were recorded using a standardized acrylic stent and UNC-15 probe which included, Gingival recession depth (GRD), Gingival recession width (GRW), Root coverage percentage (RC%), Probing pocket depth (PPD), Clinical attachment level (CAL), Keratinized tissue width (KTW). Visual analog esthetic score (VAS-E) and Visual analog pain scores (VAS –P) were also evaluated.

Surgical Procedure: Sites were randomized by using chit method. Under local anaesthesia coronally advanced flap as described by Zucchelli et al was elevated.10 Root surface debridement was carried out using area specific curettes. Recipient site dimensions were arbitrarily measured using a periodontal probe. Graft harvesting was done as mentioned below. In test group, at the donor site de-epithelialization was done using soft tissue diode laser (810 nm) at a power setting of 1W in contact and continuous mode. The laser tip was passed from lateral to medial aspect to ensure the removal of all visible epithelium seen on the outer side of the predefined graft area. Care was taken to avoid direct contact of the laser with the palatal bone by placing the insert tip parallel to the mucosa. Capillary bleeding from the donor site ensured complete de-epithelialisation and further the required dimensions of the graft were procured. (FIGURE 1) In control group, connective tissue graft was harvested with the aid of 15C blade from the palate using a single incision technique.13 (FIGURE 2) The obtained grafts was trimmed to adequate thickness by removing excess fatty glandular tissue. The donor surgical site was approximated with simple interrupted loop sutures.

The DGG /CTG grafts were placed and adapted at the recipient sites and the flaps were coronally advanced and secured using 4-0 vicryl sutures. Coe pack was placed in order to protect the surgical site. Post operatively patients were prescribed with analgesics and recalled after 2wks for suture removal. Patients were reviewed at 1, 3 and 6months intervals. Healing was uneventful in all the patients without any post-operative complications. Clinical parameters were recorded at baseline and 6 months intervals.

Table 1 shows the mean descriptive parameters of groups at baseline and 6 months. Both test and control groups showed improved recession parameters from baseline to 6 months. With RH & RW, 3±1 & 4.2±0.6mm at baseline in test group and 3.2±0.74 & 4.8±0.4mm at baseline in control group and recession height and recession width reduced to 0 at post op 6 months. Both test and control groups achieved 100% root coverage at the end of 6 months. All the other clinical parameters showed similar trend between test and control groups. Mean VAS-E scores were 9.8±0.4 and 9.6±0.4 for test and control group respectively, at the end of 6 months. Histological evaluation: For histological evaluation, a portion of the procured grafts i.e., 2×2mm of tissue blocks were sectioned from the grafts before transferring to recipient sites and were examined using Masson-Goldner-Trichromestaining technique. The histological examination at 20x magnification demonstrated that harvesting technique greatly influences the composition of grafts. In particular, a de-epithelialized harvested FGG consisted mainly larger amounts of dense fibrous connective tissue and lower amount of fatty glandular layer compared to conventional CTG.

DISCUSSION

Different SCTG harvesting techniques have been introduced over the years to retrieve an ideal quality and quantity of grafts.
According to Zucchelli et al., traditional CTG harvesting techniques are not recommended if the palatal soft tissue is not sufficiently thick because of the risk of primary flap necrosis or the insufficiency of the graft (due to the presence of a fatty and glandular tissue instead of a desirable connective tissue). DGG technique allows the incorporation of the portion of connective tissue closest to the epithelium into the graft. This tissue is dense, firmer, more stable. Therefore, the DGG is a harvesting technique designed to leave the deep portion of the submucosa and the periosteum excluded from the graft.

De-epithelialization of graft can be done using scalpel or using laser. De-epithelialization with a scalpel blade can be technique sensitive for an inexperienced clinician. The advantage of laser-aided de-epithelialization of FGG is that it is done intraorally, before harvesting, and can be performed uniformly in a controlled manner. Similar to Zucchelli’s graft requisites, one can harvest ideal donor tissue with minimal submucosa/adipose tissue. Thus, in the de-epithelialization was carried out using diode dental laser. The results of our study indicated that the DGG-L grafts were equally effective in treatment of gingival recession as with the control group. There were no differences in root coverage outcomes between groups at 6 months. So far in literature there were no studies comparing the clinical efficacy of DGGL/ conventional CTG. Hence, we couldn’t associate our outcomes with other studies. Ozcelik et al in 2016 reported that the mean RC% obtained with de-epithelization by using diode laser was 96.3% (6mon) which is in accordance with our test group. Cases reported by Jerry Ching, Yi Lin et al., 2018 using Er, Cr: YSGG de-epithelization also resulted similar RC% at 9months (100%). Therefore, it can be hypothesised that the epithelial removal by laser is effective and diode lasers can be used for this purpose. Efforts have been made to improve palatal healing and to decrease patient morbidity. Wang et al., evaluated the effect of diode light irradiation (DL) on the donor wound of FGG in rats and reported that DL accelerated the wound closure and re-epithelialization on the palatal wound.

The limitations of the current investigation was that the donor site morbidity wasn’t evaluated future studies were recommended to evaluate this parameter and the findings of this case series must be investigated by studies with alarger number of patients, longer follow-up.

CONCLUSION

Though there were no differences in clinical outcomes, histological specimens clearly demonstrated that harvesting technique influences the composition of grafts. In particular, a DE-harvested FGG, i.e., from a more superficial aspect of the palate, consists mainly of the lamina propria that contains much larger amounts of fibrous CT and much lower amounts of fatty glandular layer compared to an harvested CTG. The predictability and effectiveness of DGG-L technique (epithelial removal) should be confirmed with long-term studies.

References