

Available Online at http://www.recentscientific.com

CODEN: IJRSFP (USA)

International Journal of Recent Scientific Research Vol. 10, Issue, 04(D), pp. 31908-31910, April, 2019 International Journal of Recent Scientific Re*r*earch

DOI: 10.24327/IJRSR

Research Article

CONNECTED DOMINATION IN SUBDIVISION OF A BLOCK GRAPH OF GRAPHS

Abdul Majeed

Department of Basic Sciences & Humanities, Muffakham Jah College of Engineering & Technology, Hyderabad

DOI: http://dx.doi.org/10.24327/ijrsr.2019.1004.3362

ARTICLE INFO	ABSTRACT
Article History: Received 12 th January, 2019 Received in revised form 23 rd February, 2019 Accepted 7 th March, 2019 Published online 28 th April, 2019	For any graph G, block graph B(G) is a graph whose set of vertices is the union of the set of blocks of G in which two vertices are adjacent if and only if the corresponding blocks of G are adjacent. A subdivision graph of a block graph is obtained from B(G) by subdividing each edge of B(G). A dominating set D is called connected dominating set of a subdivision of a block graph is the induced subgraph $\langle D \rangle$ is connected. The connected domination number $\gamma_c[S(B(G))]$ of a subdivision graph of $B(G)$ is the minimum cardinality of a connected dominating set in $S(B(G))$. In this paper, we obtain many bonds on $\gamma_c[S(B(G))]$ in terms of vertices, edges, blocks and different parameters of
Key Words:	G and not the members of $S(B(G))$. Further we determine its relationship with other domination parameters.
Block graph, Subdivision graph, Connected domination number.	Subject Classification Number: AMS-05C69,05C70

Copyright © **Abdul Majeed, 2019**, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

All graphs considered here are simple, finite, nontrivial, separable, undirected and connected. As usual, p, q and ndenote the number of vertices, edges and blocks of a graph Grespectively. For graph theoretic terminology we refer F.Harary [3]. Hedetniemi and Laskar in [5] studied connected domination and further connected domination number of a graph is studied by Sampatkumar and Walikar in [9]. As usual, the maximum degree of a vertex in G is denoted by $\Delta(G)$. A vertex v is called a cut vertex if removing it from G increases the number of components of G. For any real number x, [x]denotes the smallest integer not less than x and |x| denotes the greatest integer not greater than x. A graph G is called trivial if it has no edges. If G has at least one edge then G is called a nontrivial graph. A nontrivial connected graph G with at least one cut vertex is called a separable graph, otherwise a nonseparable graph.

A vertex cover in a graph *G* is a set of vertices that covers all edges of *G*. The vertex covering number $\alpha_0(G)$ is a minimum cardinality of a vertex cover in *G*. An edge cover of a graph *G* without isolated vertices is a set of edges of *G* that covers all vertices of *G*. The edge covering number $\alpha_1(G)$ of a graph *G* is the minimum cardinality of an edge cover of *G*. A set of vertices in a graph *G* is called an independent set if no two vertices in the set are adjacent. The vertex independence number $\beta_0(G)$ of a graph *G* is the maximum cardinality of an independent set of vertices in G. The edge independence number $\beta_1(G)$ of a graph G is the maximum cardinality of an independent set of edges.

A nontrivial connected graph with no cut vertex is called a block. A subdivision of an edge uv is obtained by removing an edge uv, adding a new vertex w and adding edges uw and wv. For any (p, q) graph G, a subdivision graph S(G) is obtained from G by subdividing each edge of G. Here, a subdivision graph S(B(G)) is obtained from B(G) by subdividing each edge of B(G).

A set $D \subseteq V(G)$ of a graph G = (V, E) is a dominating set if every vertex in V - D is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a minimal dominating set in G. A dominating set D is a total dominating set if the induced subgraph $\langle D \rangle$ has no isolated vertices. The total domination number $\gamma_t(G)$ of a graph G is the minimum cardinality of a total dominating set in G. This concept was introduced by Cockayne, Dawes and Hedetniemi in [2].

A set *F* of edges in a graph G(V, E) is called an edge dominating set of *G* if every edge in E - F is adjacent to at least one edge in *F*. The edge domination number $\gamma'(G)$ of a graph *G* is the minimum cardinality of an edge dominating set of *G*. Edge domination number was studied by S.L. Mitchell and Hedetniemi in [7].

^{*}Corresponding author: Abdul Majeed

Department of Basic Sciences & Humanities, Muffakham Jah College of Engineering & Technology, Hyderabad

A dominating set *D* is called connected dominating set of *G* if the induced subgraph $\langle D \rangle$ is connected. The connected domination number $\gamma_c(G)$ of a graph *G* is the minimum cardinality of a connected dominating set in *G*. The connected domination number $\gamma_c[S(B(G))]$ is the minimum cardinality of a connected dominating set in S(B(G)). For any connected graph *G* with $\Delta(G) , <math>\gamma(G) \leq \gamma_t(G) \leq \gamma_c(G)$.

In this paper, many bonds on $\gamma_c[S(B(G))]$ were obtained in terms of vertices, edges, blocks and other parameters of *G*. Also, we obtain some results on $\gamma_c[S(B(G))]$ with other domination parameters of *G*.

RESULTS

Initially we present the exact value of connected domination number of a block graph of a non separable graph G.

Theorem 1: For any non separable graph G, $\gamma_c[B(G)] = 1$. The following are the results on some standard graphs.

Theorem 2: For any Star graph
$$K_{1,m}$$
,
 $\gamma_c \left[S \left(B(K_{1,m}) \right) \right] = \begin{cases} 1, if \ p = 3 \\ p, if \ p = 4 \\ > p, if \ p \ge 5 \end{cases}$

Theorem 3: For any Path graph P_p , $\gamma_c \left[S \left(B(P_p) \right) \right] \stackrel{<}{\geq} p, if \ p \ge 5$

The following theorem relates between $\gamma_c[S(B(G))]$ and number of blocks of G.

Theorem 4: For any separable graph G, $\gamma_c[S(B(G))] \ge \left|\frac{n}{2}\right|$, where *n* is the number of blocks of G. Equality holds for P_3 .

Proof: Let G be a separable graph. Since the number of vertices in a block graph of G are equal to number of blocks in G, by subdivision of each edge in a block graph of G, we get more number of vertices in S(B(G)) than number of blocks of

G. Hence, $\gamma_c[S(B(G))] \ge \left\lfloor \frac{n}{2} \right\rfloor$.

In the following theorem, we relate $\gamma_c[S(B(T))]$ and p(T).

Theorem 5: For any tree T, $\gamma_c[S(B(T))] \ge \left\lfloor \frac{p-1}{2} \right\rfloor$, where *p* is the number of vertices in T. Equality holds for P_3 .

Proof: Let T be a tree. Then T contains p-1 blocks in it. From Theorem 4, we have $\gamma_c[S(B(G))] \ge \left\lfloor \frac{n}{2} \right\rfloor$. Since, in a tree T we have n(T) = p(T) - 1, we get $\gamma_c[S(B(T))] \ge \left\lfloor \frac{p-1}{2} \right\rfloor$.

The following lower bound is a relationship between $\gamma_c[S(B(T))]$ and number of edges of T.

Theorem 6: For any tree T, $\gamma_c[S(B(T))] \ge \left\lfloor \frac{q(T)}{2} \right\rfloor$, where q(T) is the number of edges in T. Equality holds for P_3 . **Proof:** Suppose G is a tree then q(T) = p(T) - 1 = n(T). From Theorem 5, we have $\gamma_c[S(B(T))] \ge \left\lfloor \frac{p-1}{2} \right\rfloor$. Hence, we get $\gamma_c[S(B(T))] \ge \left\lfloor \frac{q(T)}{2} \right\rfloor$. The following upper bound is a relationship between $\gamma_c[S(B(G))]$, number of blocks n(G) and number of vertices p(G).

Theorem 7: If G is a (p,q) graph, $\gamma_c[S(B(G))] \le n(G) + p(G)$.

Proof: Let D be a connected dominating set in S(B(G)). Then D must contain at least one vertex from each block of G. Let $b_1, b_2, ..., b_n$ are the block vertices of B(G) corresponding to the blocks $B_1, B_2, ..., B_n$ of G. Since |V(S(B(G))| > |V(B(G))| and n(G) < p(G), clearly

$$\gamma_c[S(B(G))] = |D| \le n(G) + p(G).$$

We thus have a result, due to Ore [8].

Theorem A [8]: If G is a (p, q) graph with no isolated vertices, then $\gamma(G) \leq \frac{p}{2}$.

In the following Theorem we obtain the relation between $\gamma_c[S(B(G))], \gamma(G), n(G)$ and p(G).

Theorem 8: For any connected (p,q) graph G, $\gamma_c[S(B(G))] + \gamma(G) \le \frac{3p}{2} + n(G)$.

Proof: From Theorem 7 and Theorem A, $\gamma_c[S(B(G))] + \gamma(G) \le n(G) + p(G) + \frac{p(G)}{2} = \frac{3p}{2} + n(G)$. Hence, $\gamma_c[S(B(G))] + \gamma(G) \le \frac{3p}{2} + n(G)$.

We have a following result due to Harary [3].

Theorem B [3, P.95]: For any nontrivial (p, q) connected graph G,

 $\begin{aligned} \alpha_0(G) + \beta_0(G) &= p = \alpha_1(G) + \beta_1(G). \\ \text{The following theorem relates between } \gamma_c[S(B(G))], \\ n(G), \alpha_0(G), \beta_0(G), \alpha_1(G) \text{ and } \beta_1(G). \end{aligned}$

Theorem 9: If G is a (p,q) graph, then $\gamma_c[S(B(G))] \le n(G) + \alpha_0(G) + \beta_0(G) = n(G) + \alpha_1(G) + \beta_1(G).$

Proof: From Theorem 7 and Theorem B, we get $\gamma_c[S(B(G))] \le n(G) + \alpha_0(G) + \beta_0(G) = n(G) + \alpha_1(G) + \beta_1(G).$

The following Theorem is due to V.R.Kulli [6].

Theorem C [6, P.19]: For any graph $G, \gamma(G) \leq \beta_0(G)$. In the following Theorem, we develop the relation between $\gamma_c[S(B(G))], \gamma(G), \alpha_0(G), \beta_0(G)$ and n(G).

Theorem 10: For any connected (p, q) graph G, $\gamma_c[S(B(G))] + \gamma(G) \le n(G) + \alpha_0(G) + 2\beta_0(G)$.

Proof: From Theorem 9 and Theorem C, we get $\gamma_c[S(B(G))] + \gamma(G) \le n(G) + \alpha_0(G) + 2\beta_0(G)$ T.W.Haynes *et al.* [4] establish the following result.

Theorem D [4, P.165]: For any connected graph G, $\gamma_c(G) \leq 2\beta_1(G)$.

In the following Theorem, we develop the relation between $\gamma_c[S(B(G))]$, $\gamma_c(G), \alpha_1(G), \beta_1(G)$ and n(G).

Theorem 11: For any connected (p, q) graph G, $\gamma_c[S(B(G))] + \gamma_c(G) \le n(G) + \alpha_1(G) + 3\beta_1(G).$

Proof: From Theorem 9 and Theorem D,

 $\gamma_c[S(B(G))] + \gamma_c(G) \le n(G) + \alpha_1(G) + 3\beta_1(G)$ The following upper bound was given by V.R.Kulli[6].

Theorem E[6, P.44]: If G is connected (p,q) graph and $\Delta(G) , then <math>\gamma_t(G) \le p - \Delta(G)$.

We obtain the following result.

Theorem 12: If *G* is a connected (p, q) graph and $\Delta(G) ,$

 $\gamma_c \big[S \big(B(G) \big) \big] + \gamma_t(G) \le 2p + n(G) - \Delta(G).$

Proof: From Theorem 7 and Theorem E, we get $\gamma_c[S(B(G))] + \gamma_t(G) \le 2p + n(G) - \Delta(G)$. The following Theorem is due to S.Arumugam *et al.* [1].

Theorem F[1]: For any (p, q) graph G, $\gamma'(G) \leq \left\lfloor \frac{p}{2} \right\rfloor$. The equality is obtained for $G = K_p$.

Now we establish the following upper bound.

Theorem 13: For any (p, q) graph G, $\gamma_c[S(B(G))] + \gamma'(G) \le n(G) + 3\left|\frac{p}{2}\right|$.

Proof: From Theorem 7 and Theorem F, the result follows.

How to cite this article:

Abdul Majeed., 2019, Connected Domination in Subdivision of A Block Graph of Graphs. *Int J Recent Sci Res.* 10(04), pp. 31908-31910. DOI: http://dx.doi.org/10.24327/ijrsr.2019.1004.3362

References

- S. Arumugam and City S. Velammal, Edge domination in graphs, Taiwanese J. of Mathematics, 2(2) (1998), 173 – 179.
- C.J.Cockayne, R.M.Dawes and S.T.Hedetniemi, Total domination in graphs, Networks, 10 (1980) 211-219.
- F. Harary, Graph Theory, Adison Wesley, Reading Mass (1972).
- 4. T.W.Haynes *et al.*, Fundamentals of Domination in Graphs, Marcel Dekker, Inc, USA (1998).
- S.T.Hedetniemi and R.C.Laskar, Conneced domination in graphs, in B.Bollobas, editor, Graph Theory and Combinatorics, Academic Press, London (1984) 209-218.
- 6. V.R.Kulli, Theory of Domination in Graphs, Vishwa Intern. Publ. INDIA (2010).
- 7. S.L.Mitchell and S.T.Hedetniemi, Edge domination in trees. Congr. Numer. 19 (1977) 489-509.
- 8. O. Ore, Theory of graphs, Amer. Math. Soc., Colloq. Publ., 38 Providence, (1962).
- 9. E.Sampathkumar and H.B.Walikar, The Connected domination number of a graph, J.Math.Phys. Sci., 13 (1979) 607-613.