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For any graph G, block graph B(G) is a graph whose set of vertices is the union of the set of blocks 
of G in which two vertices are adjacent if and only if the corresponding blocks of G are adjacent. A 
subdivision graph of a block graph is obtained from B(G) by subdividing each edge of B(G). A 
dominating set D is called connected dominating set of a subdivision of a block graph is the induced 
subgraph 〈�〉 is connected. The connected domination number ��[�(�(�))] of a subdivision graph 
of �(�)  is the minimum cardinality of a connected dominating set in �(�(�)). In this paper, we 
obtain many bonds on  ��[�(�(�))]  in terms of vertices, edges, blocks and different parameters of 
G and not the members of �(�(�)). Further we determine its relationship with other domination 
parameters. 
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INTRODUCTION 

 

All graphs considered here are simple, finite, nontrivial, 
separable, undirected and connected. As usual, p, q and n 
denote the number of vertices, edges and blocks of a graph G 
respectively. For graph theoretic terminology we refer F.Harary 
[3]. Hedetniemi and Laskar in [5] studied connected 
domination and further connected domination number of a 
graph is studied by Sampatkumar and Walikar in [9].  As usual, 
the maximum degree of a vertex in G is denoted by ∆(�). A 
vertex v is called a cut vertex if removing it from G increases 
the number of components of G. For any real number x, ⌈�⌉ 
denotes the smallest integer not less than x and ⌊�⌋ denotes the 
greatest integer not greater than x. A graph G is called trivial if 
it has no edges. If G has at least one edge then G is called a 
nontrivial graph. A nontrivial connected graph G with at least 
one cut vertex is called a separable graph, otherwise a non-
separable graph.  
 

A vertex cover in a graph G is a set of vertices that covers all 
edges of G. The vertex covering number ��(�) is a minimum 
cardinality of a vertex cover in G. An edge cover of a graph G 
without isolated vertices is a set of edges of G that covers all 
vertices of G. The edge covering number ��(�) of a graph G is 
the minimum cardinality of an edge cover of G. A set  of 
vertices in a graph G is called an independent set if no two 
vertices in the set are adjacent. The vertex independence 
number ��(�) of a graph G is the maximum cardinality of an 

independent set of vertices in G. The edge independence 
number ��(�) of a graph G is the maximum cardinality of an 
independent set of edges.  
 

A nontrivial connected graph with no cut vertex is called a 
block. A subdivision of an edge uv is obtained by removing an 
edge uv, adding a new vertex w and adding edges uw and wv. 
For any (p, q) graph G, a subdivision graph S(G) is obtained 
from G by subdividing each edge of G. Here, a subdivision 
graph S(B(G)) is obtained from B(G) by subdividing each edge 
of B(G). 
 

A set � ⊆ �(�) of a graph � = (�,�) is a dominating set if 
every vertex in V – D is adjacent to some vertex in D. The 
domination number �(�) of G is the minimum cardinality of a 
minimal dominating set in G. A dominating set D is a total 
dominating set if the induced subgraph 〈�〉 has no isolated 
vertices. The total domination number ��(�) of a graph G is 
the minimum cardinality of a total dominating set in G. This 
concept was introduced by Cockayne, Dawes and Hedetniemi 
in [2]. 
 

A set F of edges in a graph �(�,�) is called an edge 
dominating set of G if every edge in � − �  is adjacent to at 
least one edge in F. The edge domination number � ′(�) of a 
graph G is the minimum cardinality of an edge dominating set 
of G. Edge domination number was studied by S.L. Mitchell 
and Hedetniemi in [7]. 
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A dominating set D is called connected dominating set of G if 
the induced subgraph 〈�〉 is connected. The connected 
domination number ��(�) of a graph G  is the minimum 
cardinality of a connected dominating set in G. The connected 
domination number ��[�(�(�))] is the minimum cardinality of 
a connected dominating set in �(�(�)). For any connected 
graph G with ∆(�) < � − 1, �(�) ≤ ��(�) ≤ ��(�). 
 

In this paper, many bonds on ��[�(�(�))] were obtained in 
terms of vertices, edges, blocks and other parameters of G. 
Also, we obtain some results on ��[�(�(�))] with other 
domination parameters of G.  
 

RESULTS 
 

Initially we present the exact value of connected domination 
number of a block graph of a non separable graph G. 
 

Theorem 1: For any non separable graph G, ��[�(�)] = 1. 
The following are the results on some standard graphs.  
 

Theorem 2: For any Star graph ��,� , 

�� �� �����,� ���
= �

1,��	� = 3
�,��	� = 4

�

> �,��	� ≥ 5
 

 

Theorem 3: For any Path graph ��, 

�� �� ��������
< �,��	� = 3,4
≥ �,��	� ≥ 5

 

 

The following theorem relates between ������(�)�� and 
number of blocks of G. 
 

Theorem 4: For any  separable graph G,  ������(�)�� ≥ �
�

�
�, 

where n is the number of blocks of G. Equality holds for ��. 
 

Proof: Let G be a separable graph. Since the number of 
vertices in a block graph of G are equal to number of blocks in  
G, by subdivision of each edge in a block graph of G, we get 
more number of vertices in S(B(G)) than number of blocks of  
 

G. Hence,  ������(�)�� ≥ �
�

�
�. 

In the following theorem, we relate ������(�)�� and �(�). 
 

Theorem 5: For any  tree T,  ������(�)�� ≥ �
���

�
�, where p is 

the number of vertices in T. Equality holds for ��. 
 

Proof: Let T be a tree. Then T contains � − 1 blocks in it. 

From Theorem 4, we have  ������(�)�� ≥ �
�

�
�. Since, in a tree 

T we have �(�) = �(�) − 1, we get 

 ������(�)�� ≥ �
���

�
�. 

 

The following lower bound is a relationship between 

������(�)�� and number of edges of T. 
 

Theorem 6: For any  tree T,  ������(�)�� ≥ �
�(�)

�
�, where 

�(�) is the number of edges in T. Equality holds for ��. 
Proof: Suppose G is a tree then	�(�) = �(�) − 1 = �(�). 

From Theorem 5, we have ������(�)�� ≥ �
���

�
�. Hence, we 

get ������(�)�� ≥ �
�(�)

�
�. 

  The following upper bound is a relationship between 

������(�)��, number of blocks  �(�) and number of vertices 

�(�). 

Theorem 7: If G is a (�,�) graph,  ������(�)�� ≤ �(�) +

�(�).  
 

Proof: Let D be a connected dominating set in �(�(�)). Then 
D must contain at least one vertex from each block of G. Let 
��,��,…,�� are the block vertices of �(�) corresponding to 
the blocks ��,��,…,�� of G. Since |�(�(�(�))| > |�(�(�))| 
and �(�) < �(�), clearly 
 

 ������(�)�� = |�| ≤ �(�) + �(�). 
 

We thus have a result, due to Ore [8]. 
 

Theorem A [8]: If G is a (�,�) graph with no isolated vertices, 

then �(�) ≤
�

�
. 

 

In the following Theorem we obtain the relation between 

������(�)��,�(�), �(�) and �(�).  
 

Theorem 8: For any connected (�,�) graph G, ������(�)�� +

�(�) ≤
��

�
+ �(�). 

 

Proof: From Theorem 7 and Theorem A, ������(�)�� +

�(�) ≤ �(�) + �(�) +
�(�)

�
=

��

�
+ �(�). Hence, 

������(�)�� + �(�) ≤
��

�
+ �(�). 

 

We have a following result due to Harary [3]. 
 

Theorem B [3, P.95]: For any nontrivial (p, q) connected 
graph G,  
 

 ��(�) + ��(�) = � = ��(�) + ��(�). 

 The following theorem relates between ������(�)��, 

�(�), ��(�), ��(�), ��(�) and ��(�). 
 

Theorem 9: If G is a (�,�) graph, then 

 ������(�)�� ≤ �(�) + ��(�) + ��(�) = �(�) + ��(�) +

��(�). 
 

Proof: From Theorem 7 and Theorem B, we get  

������(�)�� ≤ �(�) + ��(�) + ��(�) = �(�) + ��(�) +

��(�). 
 

The following Theorem is due to V.R.Kulli [6]. 
 

Theorem C [6, P.19]: For any graph G, �(�) ≤ ��(�). 
In the following Theorem,  we develop the relation between 

������(�)��,  �(�),��(�), ��(�) and �(�).  
 

Theorem 10: For any connected (p, q) graph G,  

������(�)�� + �(�) ≤ �(�) + ��(�) + 2��(�). 
 

Proof: From Theorem 9 and Theorem C, we get 

������(�)�� + �(�) ≤ �(�) + ��(�) + 2��(�) 
 T.W.Haynes et al. [4] establish the following result. 
 

Theorem D [4, P.165]: For any connected graph G, ��(�) ≤
2��(�). 
In the following Theorem,  we develop the relation between  

������(�)��,��(�),��(�), ��(�) and �(�).  
 

Theorem 11: For any connected (p, q) graph G,  

������(�)�� + ��(�) ≤ �(�) + ��(�) + 3��(�). 
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Proof: From Theorem 9 and Theorem D,  

������(�)�� + ��(�) ≤ �(�) + ��(�) + 3��(�) 
The following upper bound was given by V.R.Kulli[6]. 
 

Theorem E[6, P.44]: If G is connected (�,�) graph and 
∆(�) < � − 1, then 
 ��(�) ≤ � − ∆(�). 
 

We obtain the following result. 
 

Theorem 12: If G is a connected (p, q) graph and ∆(�) < � −
1, 

������(�)�� + ��(�) ≤ 2� + �(�) − ∆(�). 
 

Proof: From Theorem 7 and Theorem E, we get  

������(�)�� + ��(�) ≤ 2� + �(�) − ∆(�). 
The following Theorem is due to S.Arumugam et al. [1]. 
 

Theorem F[1]: For any (p, q) graph G, � ′(�) ≤ �
�

�
�. The 

equality is obtained for � = ��. 

Now we establish the following upper bound. 
 

Theorem 13: For any (p, q) graph G, ������(�)�� + � ′(�) ≤

�(�) + 3�
�

�
�.  

 

Proof: From Theorem 7 and Theorem F, the result follows.  
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