Available Online at http://www.recentscientific.com

Research Article

MUTUALLY UNBIASED UNEXTENDIBLE MAXIMALLYENTANGLED BASES IN $C^{2} \otimes C^{3}$
 Ji-ying Jiang and Yuan-hong Tao*
 Department of Mathematics, College of science, Yanbian University, Yanji, Jilin 133002, China
 DOI: http://dx.doi.org/10.24327/ijrsr.2019.1005.3473

ARTICLE INFO

Article History:

Received $13^{\text {ht }}$ February, 2019
Received in revised form $11^{\text {th }}$
March, 2019
Accepted $8^{\text {th }}$ April, 2019
Published online $28^{\text {th }}$ May, 2019

Key Words:

maximally entangled states ; mutually unbiased bases ; unextendible maximally entangled bases ; Gell-Mann matrices

Abstract

Firstly, this paper uses the Gell-Mann matrices to construct 4-member unextendible maximally entangled basis in $C^{2} \otimes C^{3}$, whose construction is different from those in literatures, then adds two product states to make it complete. Finally, by changing the basis of C^{3}, this paper constructs a pair of mutually unbiased unextendible maximally entangled bases $C^{2} \otimes C^{3}$.

Copyright © Ji-ying Jiang and Yuan-hong Tao,2019, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Quantum entanglement is a basic phenomenon of quantum physics, which plays a very important role in quantum information processing, there has been extensive research in recent years [1-3]. A state $|\psi\rangle$ is said to be a $C^{d} \otimes C^{d^{\prime}}$ maximally entangled state [4] if and only if for an arbitrary given orthonormal complete basis $\left\{\left|i_{A}\right\rangle\right\}$ of the subsystem A, there exist an orthonormal basis $\left\{\left|i_{B}\right\rangle\right\}$ of the subsystem B such that $|\psi\rangle$ can be written as $|\psi\rangle=\frac{1}{\sqrt{d}} \sum_{i=0}^{d-1}\left|i_{A}\right\rangle \otimes\left|i_{B}\right\rangle$.

The unextendible maximally entangled bases (UMEB)was studied in arbitrary bipartite spaces $C^{d} \otimes C^{d^{\prime}}\left(\frac{d^{\prime}}{2}<d<d^{\prime}\right)$ in [5], and two mutually unbiased complete UMEBs were constructed. Multi pairs of mutually unbiased UMEB in $C^{2} \otimes C^{3}$ were studied [6-9]. The method of systematically constructing mutually unbiased unextendible maximally entangled bases(MUUMEBs) was given in [10]. All the above MUUMEBs was constructed with the help of Bell basis and

Pauli matrix, while this paper will construct MUUMEBs using 3×3 Gell-Mann matrices.

UMEB in $C^{2} \otimes C^{3}$

Definition 1. [11] Two orthogonal bases $\mathcal{B}_{1}=\left\{\left|\varphi_{i}\right\rangle\right\}_{i=1}^{d}$ and $\mathcal{B}_{2}=\left\{\left|\psi_{j}\right\rangle\right\}_{j=1}^{d}$ of C^{d} are called mutually unbiased if

$$
\left|\left\langle\varphi_{i} \mid \psi_{j}\right\rangle\right|=\frac{1}{\sqrt{d}}(1 \leq i, j \leq d)
$$

A set of orthonormal bases $\left\{\mathcal{B}_{1}, \mathcal{B}_{2}, \cdots, \mathcal{B}_{m}\right\}$ in C^{d} is said to be a set of mutually unbiased bases (MUBs) if every pair of \mathcal{B}_{i} and $\mathcal{B}_{j}(1 \leq i \neq j \leq m)$ in the set is mutually unbiased.
Definition2. [5] A set of states
$\left\{\left|\varphi_{i}\right\rangle \in C^{d} \otimes C^{d^{\prime}}\left(d \leq d^{\prime}\right): i=1,2, \cdots, n, n<d d^{\prime}\right\}$
is called an n-number UMEB if it satisfies the following conditions:

1. $\left|\varphi_{i}\right\rangle, i=1,2, \cdots, n$ are all maximally entangled;
2. $\left\langle\varphi_{i} \mid \varphi_{j}\right\rangle=\delta_{i j}$;
3. If $\left\langle\varphi_{i} \mid \psi\right\rangle=0$ for all $i=1,2, \cdots, n$, then $|\psi\rangle$ cannot be maximally entangled.
Gell-Mann matrices a basic representation of infinitesimal generators $\mathrm{SU}(3)$ groups, which is a set of linearly independent 3×3 untracked Hermitian matrices, it was used to study strong interactions in particle physics. Specifically, there are 8 GellMann matrices as follows:
$H_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \quad H_{2}=\left(\begin{array}{ccc}0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$,
$H_{3}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right), H_{4}=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$,
$H_{5}=\left(\begin{array}{ccc}0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0\end{array}\right), \quad H_{6}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$,
$H_{7}=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0\end{array}\right), \quad H_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2\end{array}\right)$.
First, we construct UMEB in $C^{2} \otimes C^{3}$ using Gell-Mann matrices. Let $\{|0\rangle,|1\rangle\},\left\{\left|0^{\prime}\right\rangle,\left|1^{\prime}\right\rangle,\left|2^{\prime}\right\rangle\right\}$ are the orthonormal bases in C^{2} and C^{3} respectively, and suppose that $\left|\varphi_{0}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|00^{\prime}\right\rangle+\left|11^{\prime}\right\rangle\right)$. Consider the following four maximally entangled states in $C^{2} \otimes C^{3}$:

$$
\begin{equation*}
\left|\varphi_{i}\right\rangle=\left(I \otimes H_{i}\right)\left|\varphi_{0}\right\rangle(i=0,1,2,3) \tag{1}
\end{equation*}
$$

where I_{2} denotes the 2×2 identity matrix, H_{0} stands for the 3×3 identity matrix, H_{1}, H_{2}, H_{3} are the first three GellMann matrices.
Theorem 1 The four states in equation (1) constitute a 4-number UMEB in $C^{2} \otimes C^{3}$.
Proof. Obviously, the four states in $C^{2} \otimes C^{3}$ are maximally entangled and mutually orthonormal. We should prove that if there exists state $|\psi\rangle$ such that $\left\langle\varphi_{i} \mid \psi\right\rangle=0(i=0,1,2,3)$, then $|\psi\rangle$ must not be maximally entangled.

If $|\psi\rangle$ is an entangled states, $|\psi\rangle$ must have the following Schmidt decomposition:

$$
|\psi\rangle=(U \otimes V)\left(\lambda_{0}|00\rangle+\lambda_{1}\left|11^{\prime}\right\rangle\right)
$$

where $\lambda_{0}>0, \lambda_{1}>0, \lambda_{0}{ }^{2}+\lambda_{1}^{2}=1 ; U$ and V are the following unitary operators,
$U=\left(u_{i j}\right)_{2 \times 2}=\left(\begin{array}{ll}u_{11} & u_{12} \\ u_{21} & u_{22}\end{array}\right)$,
$V=\left(v_{i j}\right)_{3 \times 3}=\left(\begin{array}{lll}v_{11} & v_{12} & v_{13} \\ v_{21} & v_{22} & v_{23} \\ v_{31} & v_{32} & v_{33}\end{array}\right)$.
From $\left\langle\varphi_{0} \mid \psi\right\rangle=0$ we get that
$0=\frac{1}{\sqrt{2}}\left(\left\langle 00^{\prime}\right|+\left(11^{\prime}\right)(U \otimes V)\left(\lambda_{0}\left|00^{\prime}\right\rangle+\lambda_{1}\left|11^{\prime}\right\rangle\right)\right.$
$\left.\left.=\frac{\lambda_{0}}{\sqrt{2}}\langle 0| U|0\rangle\left\langle 0^{\prime}\right| V H_{0}\left|0^{\prime}\right\rangle+\left.\frac{\lambda_{1}}{\sqrt{2}}\langle 0| U|1\rangle 0^{\prime}\left|V H_{0}\right|\right|^{\prime}\right\rangle+\frac{\lambda_{0}}{\sqrt{2}}\langle 1| U|0\rangle 1^{\prime}| | V H_{0}\left|0^{\prime}\right\rangle+\left.\frac{\lambda_{1}}{\sqrt{2}}\langle 1| U|1\rangle 1^{\prime}\left|V H_{0}\right|\right|^{\prime}\right\rangle$
Similarly, we can derive the following equations from $\left\langle\varphi_{i} \mid \psi\right\rangle=0(i=1,2,3)$ respectively,
$0=\frac{1}{\sqrt{2}}\left(\left\langle 00^{\prime}\right|+\left\langle 11^{\prime}\right|\right)\left(I \otimes H_{1}\right)(U \otimes V)\left(\lambda_{0}\left|00^{\prime}\right\rangle+\lambda_{1}|11\rangle^{\prime}\right)$
$\left.\left.=\frac{\lambda_{0}}{\sqrt{2}}\langle 0| U|0\rangle\left\langle 0^{\prime}\right| V H_{\mid}\left|0^{\prime}\right\rangle+\frac{\lambda_{1}}{\sqrt{2}}\langle 0| U|1\rangle 0^{\prime}\left|V H_{\mid}\right| 1^{\prime}\right\rangle+\frac{\lambda_{0}}{\sqrt{2}}\langle 1| U|0\rangle\left\langle 1^{\prime}\right| V H_{\mid}\left|0^{\prime}\right\rangle+\frac{\lambda_{1}}{\sqrt{2}}\langle 1| U|1\rangle 1^{\prime}\left|V H_{\mid}\right| 1^{\prime}\right\rangle$
$0=\frac{1}{\sqrt{2}}\left(\left\langle 00^{\prime}\right|+\left(11^{\prime} \mid\right)\left(I \otimes H_{2}\right)(U \otimes V)\left(\lambda_{0}\left|00^{\prime}\right\rangle+\lambda_{1}\left|11^{\prime}\right\rangle\right)\right.$
$\left.=\frac{\lambda_{0}}{\sqrt{2}}\langle 0| U|0\rangle\left\langle 0^{\prime}\right| V H_{2}|0\rangle+\frac{\lambda_{1}}{\sqrt{2}}\langle 0| U|1\rangle\left\langle 0^{\prime}\right| V H_{2}| |^{\prime}\right\rangle+\frac{\lambda_{0}}{\sqrt{2}}\langle 1| U|0\rangle\left\langle 1^{\prime}\right| V H_{2}|0\rangle+\frac{\lambda_{1}}{\sqrt{2}}\langle 1| U|1\rangle\left\langle 1^{\prime}\right| V H_{2}\left|1^{\prime}\right\rangle$
$0=\frac{1}{\sqrt{2}}\left(\left\langle 00^{\prime}\right|+\left\{11^{\prime} \mid\right)\left(I \otimes H_{3}\right)(U \otimes V)\left(\lambda_{0}\left|00^{\prime}\right\rangle+\lambda_{1}\left|11^{\prime}\right\rangle\right)\right.$
$\left.=\frac{\lambda_{0}}{\sqrt{2}}\langle 0| U|0\rangle\left\langle 0^{\prime}\right| V H_{3}\left|0^{\prime}\right\rangle+\frac{\lambda_{1}}{\sqrt{2}}\langle 0| U|1\rangle\left\langle 0^{\prime}\right| V H_{3}\left|1^{\prime}\right\rangle+\frac{\lambda_{0}}{\sqrt{2}}\langle 1| U|0\rangle\left\langle 1^{\prime}\right| V H_{3}\left|0^{\prime}\right\rangle+\frac{\lambda_{1}}{\sqrt{2}}\langle 1| U|1\rangle 1^{\prime}\left|V H_{3}\right| 1\right\rangle$
Simplify the equations (2), (3), (4) and (5) as follows,
$\left\{\begin{array}{l}\lambda_{0} u_{11} v_{11}+\lambda_{1} u_{12} v_{12}+\lambda_{0} u_{21} v_{21}+\lambda_{1} u_{22} v_{22}=0 \\ \lambda_{0} u_{21} v_{11}+\lambda_{1} u_{22} v_{12}+\lambda_{0} u_{11} v_{21}+\lambda_{1} u_{12} v_{22}=0 \\ \lambda_{0} u_{21} v_{11}+\lambda_{1} u_{22} v_{12}-\lambda_{0} u_{11} v_{21}-\lambda_{1} u_{12} v_{22}=0 \\ \lambda_{0} u_{11} v_{11}+\lambda_{1} u_{12} v_{12}-\lambda_{0} u_{21} v_{21}-\lambda_{1} u_{22} v_{22}=0\end{array}\right.$
Obviously, the equations (6) can be expressed as:
$\left(\begin{array}{cccc}u_{11} & u_{12} & u_{21} & u_{22} \\ u_{21} & u_{22} & u_{11} & u_{12} \\ u_{21} & u_{22} & -u_{11} & -u_{12} \\ u_{11} & u_{12} & -u_{21} & -u_{22}\end{array}\right)\left(\begin{array}{llll}\lambda_{0} & & & \\ & \lambda_{1} & & \\ & & \lambda_{0} & \\ & & & \lambda_{1}\end{array}\right)\left(\begin{array}{l}v_{11} \\ v_{12} \\ v_{21} \\ v_{22}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)(7)$

$$
\text { Suppose } A=\left(\begin{array}{cc}
U & M U \\
M U & -M U
\end{array}\right)\left(\begin{array}{ll}
W & \\
& W
\end{array}\right)
$$

where $W=\left(\begin{array}{ll}\lambda_{0} & \\ & \lambda_{1}\end{array}\right), M=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), v=\left(\begin{array}{l}v_{11} \\ v_{12} \\ v_{21} \\ v_{22}\end{array}\right)$,
then equation (7) can be expressed as

$$
\begin{equation*}
A v=0 \tag{8}
\end{equation*}
$$

Since

$$
\begin{aligned}
\operatorname{det}(A) & \left.=\left|\begin{array}{cc}
U & M U \\
M U & -U
\end{array}\right| \begin{array}{ll}
W & \\
\hline
\end{array} \right\rvert\, \\
& =\left|\begin{array}{ll}
U & M U \\
0 & -2 U
\end{array}\right||W|^{2}=4 \lambda 0^{2} \lambda_{1}^{2}(\operatorname{det} U)^{2} \neq 0,
\end{aligned}
$$

then equation (8) only has zero solution $v=0$, i.e.,
$v_{11}=v_{12}=v_{21}=v_{22}=0$, Thus,
$\operatorname{det}(V)=\left|\begin{array}{lll}v_{11} & v_{12} & v_{13} \\ v_{21} & v_{22} & v_{23} \\ v_{31} & v_{32} & v_{33}\end{array}\right|=\left|\begin{array}{ccc}0 & 0 & v_{13} \\ 0 & 0 & v_{23} \\ v_{31} & v_{32} & v_{33}\end{array}\right|=0$, that is to
say, V is not an unitary matrix, which contradicts the hypothesis. Therefore, $|\psi\rangle$ must not be an entangled state.

To sum up, the four states in (1) constitute a 4 -number UMEB in $C^{2} \otimes C^{3}$.

MUUMEBS in $C^{2} \otimes C^{3}$

Add the following two product states to equation (1), we can get a complete UMEB in $C^{2} \otimes C^{3}$:
$\left\{\begin{array}{l}\left|\varphi_{4}\right\rangle=\frac{1}{2}\left|02^{\prime}\right\rangle+\frac{\sqrt{3}}{2}\left|12^{\prime}\right\rangle \\ \left|\varphi_{5}\right\rangle=\frac{\sqrt{3}}{2}\left|02^{\prime}\right\rangle+\frac{1}{2}\left|12^{\prime}\right\rangle\end{array}\right.$
Let $\left\{\left|x^{\prime}\right\rangle,\left|y^{\prime}\right\rangle,\left|z^{\prime}\right\rangle\right\}$ be another orthonormal basis in C^{3} and
$\left\{\begin{array}{l}\left|x^{\prime}\right\rangle=\frac{1}{\sqrt{3}}\left(\left|0^{\prime}\right\rangle+\frac{1+\sqrt{3} i}{2}\left|1^{\prime}\right\rangle+i\left|2^{\prime}\right\rangle\right) \\ \left|y^{\prime}\right\rangle=\frac{1}{\sqrt{3}}\left(\frac{-\sqrt{3}+i}{2}\left|0^{\prime}\right\rangle+i\left|1^{\prime}\right\rangle+\left|2^{\prime}\right\rangle\right) \\ \left|z^{\prime}\right\rangle=\frac{1}{\sqrt{3}}\left(i\left|0^{\prime}\right\rangle-i\left|1^{\prime}\right\rangle+\frac{1+\sqrt{3} i}{2}\left|2^{\prime}\right\rangle\right)\end{array}\right.$
where $i=\sqrt{-1}$.
Using the method in Section 2, we can get another UMEB in $C^{2} \otimes C^{3}$,
$\left\langle\mid \psi_{j}\right\rangle=\frac{1}{\sqrt{2}}\left(I \otimes H_{j}\right)\left(\left|0 x^{\prime}\right\rangle+\left|1 y^{\prime}\right\rangle\right), j=0,1,2,3$
$\left|\psi_{4}\right\rangle=\frac{1}{\sqrt{2}}\left(\frac{1+\sqrt{3} i}{2}\left|0 z^{\prime}\right\rangle+\frac{\sqrt{3}-i}{2}\left|1 z^{\prime}\right\rangle\right)$,
$\left|\psi_{5}\right\rangle=\frac{1}{\sqrt{2}}\left(\frac{\sqrt{3}-i}{2}\left|0 z^{\prime}\right\rangle+\frac{1+\sqrt{3} i}{2}\left|1 z^{\prime}\right\rangle\right)$,
Using Definition 1 , it is easily to verify that the above two UMEBs (9)and(10)are mutually unbiased.

CONCLUSION

In this paper, we extended the construction of UMEB in [5], and give a new construction of UMEB in $C^{2} \otimes C^{3}$. This method makes it possible to construct UMEB of arbitrary bipartite system with higher dimensions by using Gell-Mann matrices.

References

1. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodeci. Quantum entanglement. Rev. Mod. Phys. 81: 856(2009).
2. S. Ishizaka, T. Hiroshima. Quantum teleportation scheme by selecting one of multiple output ports. Phys. Rev. A. 79: 042306 (2009).
3. C. H. Bennett, S. J. Wiesner. Communication via Oneand two-Particle Operators on Einstein-Podolsky-Rosen States. Phys. Rev. Lett. 69: 2881-2884(1992).
4. Z. G .Li, M. J. Zhao, S. M. Fei, W. M. Liu. Mixed maximally entangled states. Quant. Inf. Comput.12: 6373 (2012).
5. B. Chen, S. M. Fei. Unextendible maximally entangled bases and mutually unbiased bases. Phys Rev A. 88:034301(2013).
6. Q. Yang, Y. H. Tao, J. Zhang. H. Nan. Mutually unbiased unextendible maximally entangled bases in $C^{2} \otimes C^{3}$. Journal of Harbin University of Science and Technology, 19(4): 84-87(2014).
7. Q. Yang, Y. H. Tao, H. Nan. J. Zhang. Bell-Base-Type unextendible maximally entangled bases and mutually bases in $C^{2} \otimes C^{3}$. Journal of Jilin University Science Edition. 53(5): 547-552(2015).
8. F. Q. Bu, Q. Yang, Y. H. Tao. New construction of mutually unbiased unextendible maximally entangled bases in quantum system $C^{2} \otimes C^{3}$. Journal of Yanbian University Natural Science Edition. 41(2): 136141(2015).
9. W Li, P. Lin, H. N. Zheng, C. Q. Qin, Q. Yang, Y. H. Tao. Mutually unbiased and unextendible maximally entangled bases in 2×3 quantum system. Journal of Yanbian University Natural Science Edition. 40 (2): 109113(2014).
10. H. Nizamidin, T. Ma, S. M. Fei, A note on mutually unbiased unextendible maximally entangled bases in $C^{2} \otimes C^{3}$. Int. J. Theor. Phys. 54: 326-333(2015).
11. W. K. Wootters, B. D. Fields, Optimal statedetermination by mutually unbiased measurements. Ann Phys (NY). 191(2): 363-381(1989).
