

Available Online at http://www.recentscientific.com

CODEN: IJRSFP (USA)

International Journal of Recent Scientific Research Vol. 10, Issue, 05(E), pp. 32451-32453, May, 2019

International Journal of Recent Scientific Rezearch

DOI: 10.24327/IJRSR

Research Article

MUTUALLY UNBIASED UNEXTENDIBLE MAXIMALLYENTANGLED BASES IN $C^2 \otimes C^3$

Ji-ying Jiang and Yuan-hong Tao*

Department of Mathematics, College of science, Yanbian University, Yanji, Jilin 133002, China

DOI: http://dx.doi.org/10.24327/ijrsr.2019.1005.3473

ARTICLE INFO

ABSTRACT

Article History: Received 13thFebruary, 2019 Received in revised form 11th March, 2019 Accepted 8thApril, 2019 Published online 28thMay, 2019

Firstly, this paper uses the Gell-Mann matrices to construct 4-member unextendible maximally entangled basis in $C^2 \otimes C^3$, whose construction is different from those in literatures, then adds two product states to make it complete. Finally, by changing the basis of C^3 , this paper constructs a pair of mutually unbiased unextendible maximally entangled bases $C^2 \otimes C^3$.

Key Words:

maximally entangled states ; mutually unbiased bases ; unextendible maximally entangled bases ; Gell-Mann matrices

Copyright © **Ji-ying Jiang and Yuan-hong Tao, 2019**, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Quantum entanglement is a basic phenomenon of quantum physics, which plays a very important role in quantum information processing, there has been extensive research in recent years [1-3]. A state $|\Psi\rangle$ is said to be a $C^d \otimes C^{d'}$ maximally entangled state [4] if and only if for an arbitrary given orthonormal complete basis $\{|iA\rangle\}$ of the subsystem A, there exist an orthonormal basis $\{|iB\rangle\}$ of the subsystem B such that

$$|\psi\rangle$$
 can be written as $|\psi\rangle = \frac{1}{\sqrt{d}} \sum_{i=0}^{d-1} |i_A\rangle \otimes |i_B\rangle$.

The unextendible maximally entangled bases (UMEB)was

studied in arbitrary bipartite spaces
$$C^d \otimes C^{d'}$$
 $(\frac{d'}{2} < d < d')$

in [5], and two mutually unbiased complete UMEBs were constructed. Multi pairs of mutually unbiased UMEB in $C^2 \otimes C^3$ were studied [6-9]. The method of systematically constructing mutually unbiased unextendible maximally entangled bases(MUUMEBs) was given in [10]. All the above MUUMEBs was constructed with the help of Bell basis and Pauli matrix, while this paper will construct MUUMEBs using 3×3 Gell-Mann matrices.

UMEB in
$$C^2 \otimes C^3$$

Definition 1. [11] Two orthogonal bases $\mathcal{B}_{1} = \{ | \varphi_{i} \rangle \}_{i=1}^{a}$

and $\mathcal{B}_2 = \left\{ |\psi_j\rangle \right\}_{j=1}^d$ of C^d are called mutually unbiased if $|\langle \varphi_i | \psi_j \rangle| = \frac{1}{\sqrt{d}} \ (1 \le i, j \le d)$

A set of orthonormal bases $\{\mathcal{B}_1, \mathcal{B}_2, \dots, \mathcal{B}_m\}$ in C^d is said to be a set of mutually unbiased bases (MUBs) if every pair of \mathcal{B}_i and \mathcal{B}_j $(1 \le i \ne j \le m)$ in the set is mutually unbiased. **Definition2.** [5] A set of states

 $\{|\varphi_i\rangle \in C^d \otimes C^{d'}(d \le d'): i = 1, 2, \dots, n, n < dd'\}$ is called an *n*-number UMEB if it satisfies the following conditions:

- 1. $|\phi_i\rangle$, $i = 1, 2, \dots, n$ are all maximally entangled;
- 2. $\langle \varphi_i | \varphi_i \rangle = \delta_{ii};$

^{*}Corresponding author: Yuan-hong Tao

This work is supposed by Natural Science Foundation of China under number 11761073

3. If $\langle \varphi_i | \psi \rangle = 0$ for all $i = 1, 2, \dots, n$, then $|\psi\rangle$ cannot be maximally entangled.

Gell-Mann matrices a basic representation of infinitesimal generators SU(3) groups, which is a set of linearly independent 3×3 untracked Hermitian matrices, it was used to study strong interactions in particle physics. Specifically, there are 8 Gell-Mann matrices as follows:

$$H_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad H_{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$
$$H_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad H_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$
$$H_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \quad H_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},$$
$$H_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad H_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

First, we construct UMEB in $C^2 \otimes C^3$ using Gell-Mann matrices. Let $\{|0\rangle, |1\rangle\}, \{|0'\rangle, |1'\rangle, |2'\rangle\}$ are the orthonormal bases in C^2 and C^3 respectively, and suppose that $|\varphi_0\rangle = \frac{1}{\sqrt{2}}(|00'\rangle + |11'\rangle)$. Consider the following four

maximally entangled states in $C^2 \otimes C^3$:

$$|\varphi_i\rangle = (I \otimes H_i) |\varphi_0\rangle \ (i = 0, 1, 2, 3) \tag{1}$$

where I_2 denotes the 2×2 identity matrix, H_0 stands for the 3×3 identity matrix, H_1, H_2, H_3 are the first three Gell-Mann matrices.

Theorem 1 The four states in equation (1) constitute a 4-number UMEB in $C^2 \otimes C^3$.

Proof. Obviously, the four states in $C^2 \otimes C^3$ are maximally entangled and mutually orthonormal. We should prove that if there exists state $|\psi\rangle$ such that $\langle \varphi_i | \psi \rangle = 0$ (i = 0, 1, 2, 3),

then $|\psi\rangle$ must not be maximally entangled.

If $|\psi\rangle$ is an entangled states, $|\psi\rangle$ must have the following Schmidt decomposition:

 $|\psi\rangle = (U \otimes V)(\lambda_0 |00'\rangle + \lambda_1 |11'\rangle)$

where $\lambda_0 > 0$, $\lambda_1 > 0$, $\lambda_0^2 + \lambda_1^2 = 1$; U and V are the following unitary operators,

$$U = (u_{ij})_{2\times 2} = \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix},$$

$$V = (v_{ij})_{3\times 3} = \begin{pmatrix} v_{11} & v_{12} & v_{13} \\ v_{21} & v_{22} & v_{23} \\ v_{31} & v_{32} & v_{33} \end{pmatrix}.$$

From $\langle \varphi_0 | \psi \rangle = 0$ we get that
$$0 = \frac{1}{\sqrt{2}} \langle \langle 00' | + \langle 11' \rangle \langle U \otimes V \rangle \langle \lambda_0 | 00 \rangle + \lambda_1 | 11 \rangle \rangle$$
(2)
$$= \frac{\lambda_0}{\sqrt{2}} \langle 0|U| 0 \rangle \langle 0' | VH_0 | 0 \rangle + \frac{\lambda_1}{\sqrt{2}} \langle 0|U| 1 \rangle \langle 0' | VH_0 | 1 \rangle + \frac{\lambda_0}{\sqrt{2}} \langle 1|U| 0 \rangle \langle 1' | VH_0 | 0 \rangle + \frac{\lambda_1}{\sqrt{2}} \langle 1|U| 1 \rangle \langle 1' | VH_0 | 1 \rangle$$

Similarly, we can derive the following equations from $\langle \varphi_i | \psi \rangle = 0$ (*i* = 1, 2, 3) respectively,

$$\begin{array}{l} (3) \\ = \frac{1}{\sqrt{2}} (\langle 00^{\circ}| + \langle 11^{\circ}| \rangle (I \otimes H_{1}) (U \otimes V) (\lambda_{0} \mid 00^{\circ} + \lambda_{1} \mid 11^{\circ}) \\ = \frac{\lambda_{0}}{\sqrt{2}} \langle 0|U|0 \rangle \langle 0^{\circ}|VH_{1}|0^{\circ} + \frac{\lambda_{1}}{\sqrt{2}} \langle 0|U|1 \rangle \langle 0^{\circ}|VH_{1}|1^{\circ} + \frac{\lambda_{0}}{\sqrt{2}} \langle 1|U|0 \rangle \langle 1^{\circ}|VH_{1}|0^{\circ} + \frac{\lambda_{1}}{\sqrt{2}} \langle 1|U|1 \rangle \langle 1^{\circ}|VH_{1}|1^{\circ} \\ = \frac{1}{\sqrt{2}} (\langle 00^{\circ}| + \langle 11^{\circ}| \rangle (I \otimes H_{2}) (U \otimes V) (\lambda_{0} \mid 00^{\circ} + \lambda_{1} \mid 11^{\circ}) \\ = \frac{\lambda_{0}}{\sqrt{2}} \langle 0|U|0 \rangle \langle 0^{\circ}|VH_{2}|0^{\circ} + \frac{\lambda_{1}}{\sqrt{2}} \langle 0|U|1 \rangle \langle 0^{\circ}|VH_{2}|1^{\circ} + \frac{\lambda_{0}}{\sqrt{2}} \langle 1|U|0 \rangle \langle 1^{\circ}|VH_{2}|0^{\circ} + \frac{\lambda_{1}}{\sqrt{2}} \langle 1|U|1 \rangle \langle 1^{\circ}|VH_{2}|1^{\circ} \\ = \frac{1}{\sqrt{2}} (\langle 00^{\circ}| + \langle 11^{\circ}| \rangle (I \otimes V) (\lambda_{0} \mid 00^{\circ} + \lambda_{1} \mid 11^{\circ}) \\ = \frac{1}{\sqrt{2}} \langle 0|U|0 \rangle \langle 0^{\circ}|VH_{3}|0^{\circ} + \frac{\lambda_{1}}{\sqrt{2}} \langle 0|U|1 \rangle \langle 0^{\circ}|VH_{3}|1^{\circ} + \frac{\lambda_{0}}{\sqrt{2}} \langle 1|U|0 \rangle \langle 1^{\circ}|VH_{3}|0^{\circ} + \frac{\lambda_{1}}{\sqrt{2}} \langle 1|U|1 \rangle \langle 1^{\circ}|VH_{3}|1^{\circ} \\ = \frac{\lambda_{0}}{\sqrt{2}} \langle 0|U|0 \rangle \langle 0^{\circ}|VH_{3}|0^{\circ} + \frac{\lambda_{1}}{\sqrt{2}} \langle 0|U|1 \rangle \langle 0^{\circ}|VH_{3}|1^{\circ} + \frac{\lambda_{0}}{\sqrt{2}} \langle 1|U|0 \rangle \langle 1^{\circ}|VH_{3}|0^{\circ} + \frac{\lambda_{1}}{\sqrt{2}} \langle 1|U|1 \rangle \langle 1^{\circ}|VH_{3}|1^{\circ} \\ \end{array} \right)$$

Simplify the equations (2), (3), (4) and (5) as follows, $\begin{cases}
\lambda_0 u_{11}v_{11} + \lambda_1 u_{12}v_{12} + \lambda_0 u_{21}v_{21} + \lambda_1 u_{22}v_{22} = 0 \\
\lambda_0 u_{21}v_{11} + \lambda_1 u_{22}v_{12} + \lambda_0 u_{11}v_{21} + \lambda_1 u_{12}v_{22} = 0 \\
\lambda_0 u_{21}v_{11} + \lambda_1 u_{22}v_{12} - \lambda_0 u_{11}v_{21} - \lambda_1 u_{12}v_{22} = 0 \\
\lambda_0 u_{11}v_{11} + \lambda_1 u_{12}v_{12} - \lambda_0 u_{21}v_{21} - \lambda_1 u_{22}v_{22} = 0
\end{cases}$ (6) Obviously, the equations (6) can be expressed as:

Obviously, the equations (6) can be expressed as: (0)

$$\begin{pmatrix} u_{11} & u_{12} & u_{21} & u_{22} \\ u_{21} & u_{22} & u_{11} & u_{12} \\ u_{21} & u_{22} & -u_{11} & -u_{12} \\ u_{11} & u_{12} & -u_{21} & -u_{22} \end{pmatrix} \begin{pmatrix} \lambda_0 \\ \lambda_1 \\ & \lambda_0 \\ & & \lambda_1 \end{pmatrix} \begin{pmatrix} v_{11} \\ v_{12} \\ v_{21} \\ v_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} (7)$$
Suppose $A = \begin{pmatrix} U & MU \\ MU & -MU \end{pmatrix} \begin{pmatrix} W \\ W \end{pmatrix}$,
where $W = \begin{pmatrix} \lambda_0 \\ & \lambda_1 \end{pmatrix}, M = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, v = \begin{pmatrix} v_{11} \\ v_{12} \\ v_{21} \\ v_{21} \\ v_{22} \end{pmatrix}$,

then equation (7) can be expressed as

$$Av=0.$$

Since

$$det(A) = \begin{vmatrix} U & MU \\ MU & -U \end{vmatrix} \begin{vmatrix} W \\ W \end{vmatrix}$$

$$= \begin{vmatrix} U & MU \\ 0 & -2U \end{vmatrix} |W|^2 = 4\lambda_0^2 \lambda_1^2 (det U)^2 \neq 0,$$

then equation (8) only has zero solution v = 0, i.e., $v_{11} = v_{12} = v_{21} = v_{22} = 0$, Thus,

(8)

$$\det(V) = \begin{vmatrix} v_{11} & v_{12} & v_{13} \\ v_{21} & v_{22} & v_{23} \\ v_{31} & v_{32} & v_{33} \end{vmatrix} = \begin{vmatrix} 0 & 0 & v_{13} \\ 0 & 0 & v_{23} \\ v_{31} & v_{32} & v_{33} \end{vmatrix} = 0, \text{ that is to}$$

say, V is not an unitary matrix, which contradicts the hypothesis. Therefore, $|\psi\rangle$ must not be an entangled state.

To sum up, the four states in (1) constitute a 4-number UMEB in $C^2 \otimes C^3$.

MUUMEBs in $C^2 \otimes C^3$

Add the following two product states to equation (1), we can get a complete UMEB in $C^2 \otimes C^3$:

$$\begin{cases} |\varphi_4\rangle = \frac{1}{2}|02'\rangle + \frac{\sqrt{3}}{2}|12'\rangle \\ |\varphi_5\rangle = \frac{\sqrt{3}}{2}|02'\rangle + \frac{1}{2}|12'\rangle \end{cases}$$

$$\tag{9}$$

Let $\{|x'\rangle, |y'\rangle, |z'\rangle\}$ be another orthonormal basis in C^3 and

$$\begin{cases} |x'\rangle = \frac{1}{\sqrt{3}} (|0'\rangle + \frac{1+\sqrt{3}i}{2} |1'\rangle + i |2'\rangle) \\ |y'\rangle = \frac{1}{\sqrt{3}} (\frac{-\sqrt{3}+i}{2} |0'\rangle + i |1'\rangle + |2'\rangle) \\ |z'\rangle = \frac{1}{\sqrt{3}} (i |0'\rangle - i |1'\rangle + \frac{1+\sqrt{3}i}{2} |2'\rangle) \end{cases}$$

where $i = \sqrt{-1}$.

Using the method in Section 2, we can get another UMEB in $C^2 \otimes C^3$.

$$\begin{cases} |\psi_{j}\rangle = \frac{1}{\sqrt{2}}(I \otimes H_{j})(|0x'\rangle + |1y'\rangle), \ j = 0, 1, 2, 3, \\ |\psi_{4}\rangle = \frac{1}{\sqrt{2}}(\frac{1+\sqrt{3}i}{2}|0z'\rangle + \frac{\sqrt{3}-i}{2}|1z'\rangle), \quad (10) \\ |\psi_{5}\rangle = \frac{1}{\sqrt{2}}(\frac{\sqrt{3}-i}{2}|0z'\rangle + \frac{1+\sqrt{3}i}{2}|1z'\rangle), \end{cases}$$

Using Definition 1, it is easily to verify that the above two UMEBs(9)and(10)are mutually unbiased.

CONCLUSION

In this paper, we extended the construction of UMEB in [5], and give a new construction of UMEB in $C^2 \otimes C^3$. This method makes it possible to construct UMEB of arbitrary bipartite system with higher dimensions by using Gell-Mann matrices.

References

- R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodeci. Quantum entanglement. Rev. Mod. Phys. 81: 856(2009).
- S. Ishizaka, T. Hiroshima. Quantum teleportation scheme by selecting one of multiple output ports. Phys. Rev. A. 79: 042306 (2009).
- C. H. Bennett, S. J. Wiesner. Communication via Oneand two-Particle Operators on Einstein-Podolsky-Rosen States. Phys. Rev. Lett. 69: 2881-2884(1992).
- Z. G. Li, M. J. Zhao, S. M. Fei, W. M. Liu. Mixed maximally entangled states. Quant. Inf. Comput. 12: 63-73 (2012).
- B. Chen, S. M. Fei. Unextendible maximally entangled bases and mutually unbiased bases. Phys Rev A. 88:034301(2013).
- 6. Q. Yang, Y. H. Tao, J. Zhang. H. Nan. Mutually unbiased unextendible maximally entangled bases in $C^2 \otimes C^3$. Journal of Harbin University of Science and Technology, **19(4)**: 84-87(2014).
- 7. Q. Yang, Y. H. Tao, H. Nan. J. Zhang. Bell-Base-Type unextendible maximally entangled bases and mutually bases in $C^2 \otimes C^3$. Journal of Jilin University Science Edition. **53(5)**: 547-552(2015).
- 8. F. Q. Bu, Q. Yang, Y. H. Tao. New construction of mutually unbiased unextendible maximally entangled bases in quantum system $C^2 \otimes C^3$. Journal of Yanbian University Natural Science Edition. **41**(2): 136-141(2015).
- W Li, P. Lin, H. N. Zheng, C. Q. Qin, Q. Yang, Y. H. Tao. Mutually unbiased and unextendible maximally entangled bases in 2×3 quantum system. Journal of Yanbian University Natural Science Edition.40 (2): 109-113(2014).
- 10. H. Nizamidin, T. Ma, S. M. Fei, A note on mutually unbiased unextendible maximally entangled bases in $C^2 \otimes C^3$. Int. J. Theor. Phys. **54**: 326-333(2015).
- W. K. Wootters, B. D. Fields, Optimal statedetermination by mutually unbiased measurements. Ann Phys (NY). **191(2**): 363-381(1989).