

Available Online at http://www.recentscientific.com

CODEN: IJRSFP (USA)

International Journal of Recent Scientific Research Vol. 10, Issue, 05(G), pp. 32633-32642, May, 2019 International Journal of Recent Scientific Re*r*earch

DOI: 10.24327/IJRSR

Research Article

CORRELATION OF DENTALARCH WIDTH IN VERTICAL FACIAL MORPHOLOGY

Dr Karishma Raval*, Dr Renuka Patel, Dr Falguni Mehta, Dr Amit Bhattacharya, Dr Harshik Parekh and Dr Rahul Trivedi

Department of Orthodontics and Dentofacial Orthopaedics, Ahmedabad, Gujarat, India

DOI: http://dx.doi.org/10.24327/ijrsr.2019.1005.3512

ARTICLE INFO

ABSTRACT

Article History: Received 13th February, 2019 Received in revised form 11th March, 2019 Accepted 8th April, 2019 Published online 28th May, 2019

Key Words:

Dental arch width, Jarabak's ratio and study Model.

Facial morphology is unique to every individual in world. Preformed arch wires are used by clinician regardless of arch width and shape and vertical facial morphology which leads to relapse. Hence, present study is designed to investigate the gender differences in dental arch width and also to correlate it with vertical facial morphology in untreated adults of 17- 25 years of age irrespective of sagittal indicators. Jarabak's ratio and steepness of mandibular plane angle (GoGn to SN) was measured by FACAD orthodontic tracing software version 3.11 on lateral cephalograms of each subject. Directdental arch width measurements of maxillary and mandibular intercanine, interpremolar, and intermolar widths were obtained individually by Vernier calipers on study model. The arch width of males and females were analyzed and the differences between them were tested for significance using a Student's t-test. It was concluded that dental arch width is associated with gender and vertical facial morphology. Thus, using individualized arch wires according to each subject's pre-treatment arch width and form is recommended.

Copyright © **Dr Karishma Raval** *et al*, 2019, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Dental casts helps to visualize the occlusion & dentition from all aspects, to analyze the degree & severity of malocclusion and to derive the diagnosis & plan for treatment. They provide a permanent record and are also used for direct measurements for arch width, shape, length, perimeter, crowding, spacing etc. which are more precise and valid for analysis. It should be emphasized that study models are absolutely essential as starting and finishing records in orthodontics.

Jucienne Salgado Ribeirostated that the dimensions of the dental arch have considerable impact on orthodontic diagnosis and treatment planning, affecting space availability, dental esthetics, dentition stability and prospects for a favorable development¹.

In daily clinical practice, with the increased use of preformed arch wires routinely by many orthodontists regardless of the facial type and gender of the patients to correct transverse dimensions of the dental arches, so increased knowledge of a link between facial proportion and dental arch width can be of immense help to orthodontists. Hence, there is a need to correlate different arch width with acceptable esthetic facial framework of male and female The purpose of the present study is to correlate dental arch widths with vertical facial types if there are any differences in maxillary and mandibular dental arch width between untreated male and female adults.

Aim and Objectives of the Study

To correlate dental arch width (direct measurement on plaster cast) and to compare gender differences in various vertical facial morphology (hypodivergent, normodivergent, hyperdivergent) by Jarabak's ratio and GoGn to SN (on lateral cephalogram) in untreated adults.

MATERIALS AND METHOD

The present study is carried out in the Department of Orthodontics and Dentofacial Orthopedics, Government Dental College & Hospital, Ahmedabad. It was approved by the ethical committee. 180 adult subjects (17-25 years) from Government Dental College & Hospital, Ahmedabad were selected for the study.

Selection Criteria

Inclusion Criteria

• Age group of the selected subjects in the range of 17-25 years. (Mean age – 21.5 years)

^{*}Corresponding author: Dr Karishma Raval

Department of Orthodontics and Dentofacial Orthopaedics, Ahmedabad, Gujarat, India

- Subjects with CVMI stage 6(Hassel and Farman method completion of growth).
- No previous history of orthodontic treatment, surgery, trauma.
- No apparent facial asymmetry.
- All permanent teeth should be present except 3rd molars.
- Vertical facial morphology defined in Average, Hypo divergent and Hyper divergent type according to Jarabak's ratio and GoGn to SN.

Exclusion Criteria

- Missing or supernumerary teeth.
- TMJ disorder, muscle dysfunction and presence of unilateral chewing.
- Any other systematic disturbances.
- Any other oral destructive habits, habit of bruxism & presence of attrition.
- Presence of any developmental dental anomalies, dental caries and restoration

Cephalometric Study

For all the subjects, standardized lateral cephalometric radiographs were taken in centric occlusion with lips in relaxed and the Frankfort plane oriented horizontally according to Natural Head Position (NHP) to classify samples. The digital cephalometric tracing was done using FACAD orthodontic tracing software version 3.11.

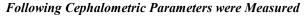
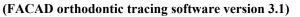



Figure shows cephalometric parameters in software

Cephalometric Parameters

Anterior facial height(Nasion-Menton) Posterior facial height(Sella-Gonion) Jarabak's ratio = <u>Posterior facial height (S-Go)</u> x 100 Anterior facial height(N-Me) Go-Gn to SN

Model Study

Upper and lower alginate impressions were taken and dental casts were prepared. Dental cast measurements were recorded manually by using a Digital Vernier calipers (HI-MEZAR) 150X0.01mm/6X0.0005in accurate to 0.01mm.

Figure shows armamentarium of model study

The following maxillary and mandibular arch width measurements were obtained.

Maxillary dental arch width Measurements

Figure shows intercanine width (cusptip)

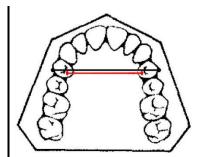


Figure shows interpremolar width black - buccal cusp tip red - palatal cusp tip



Figure shows intermolar width red -mesiobuccal cusp tip black-mesiopalatal cusp tip blue- most buccal aspect green-central groove

Figure shows measurement in the maxillary cast model

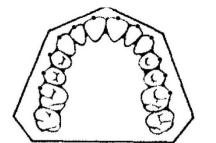


Figure shows method to identify U, V and Square arch form in maxilla.

facial height than females in hypodivergent and normodivergent growth pattern.

Jarabak's ratio is nonsignificant in hypodivergent ($p \le 0.066$), significant but to lesser extent in normodivergent ($p \le 0.024^*$) and nonsignificant ($p \le 1$) in hyperdivergent growth pattern. Males have higher Jarabak's ratio than females in hypodivergent and normodivergent growth pattern.

GoGn to SN is nonsignificant in all 3 group patterns ($p \le 0.195$, $p \le 0.051$ and $p \le 1$). Males have higher GoGn to SN value than females in hypodivergent and normodivergent growth pattern.

Mandible dental arch width Measurements

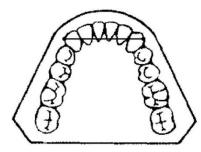


Figure shows inter canine width (cusp tip)

 Table I Intragroup comparison of various cephalometric parameters in vertical facial morphology groups according to gender

Group	Parameter	Gender	Ν	Mean	Std. Deviation	Std. Error Mean	Mean Difference	P value
	NMe	Male	30	109.40	5.531	1.010	10.633	<0.001**
	INIVIC	Female	30	98.77	2.861	.522	10.055	<0.001
	SGo	Male	30	76.500	4.4237	.8077	7.3333	<0.001**
Нуро	500	Female	30	69.167	2.6792	.4892	1.5555	<0.001
пуро	JR	Male	30	71.5203	2.73108	.49862	1.25467	0.066 NS
	JIX	Female	30	70.2657	2.45458	.44814	1.23407	0.000 NS
GOGN-SN	GOGN SN	Male	30	25.767	3.0477	.5564	.9000	0.195 NS
	Female	30	24.867	2.2087	.4032	.9000	0.195 NS	
NMe	Male	30	106.03	3.499	.639	3.447	0.003*	
Normo	INIME	Female	30	102.59	4.866	.904	5.447	0.005
Normo	SGo	Male	30	65.700	3.3130	.6049	.3000	0.690 NS
800	Female	30	65.400	2.4155	.4410	.5000	0.070 145	
	JR	Male	30	62.9900	1.24273	.22689	69333	0.024*
	JK	Female	30	63.6833	1.07128	.19559	09333	
	GOGN-SN	Male	30	29.667	2.2944	.4189	-1.4000	0.051 NS
	UUUIN-SIN	Female	30	31.067	3.0843	.5631	-1.4000	0.051 NS
	NMe	Male	30	110.00	2.639	.482	0.000	1 NS
	INIVIC	Female	30	110.00	2.639	.482	0.000	1103
	SGo	Male	30	58.067	2.8154	.5140	0.0000	1 NS
Uumor	300	Female	30	58.067	2.8154	.5140	0.0000	1103
Hyper	JR	Male	30	56.0600	2.33025	.42544	.00000	1 NS
	JK	Female	30	56.0600	2.33025	.42544	.00000	1 103
	GOGN-SN	Male	30	35.467	1.7367	.3171	0.0000	1 NS
	GOUN-SIN	Female	30	35.467	1.7367	.3171	0.0000	1 113

Table 1 shows comparison of various cephalometric parameters in vertical facial morphology groups according to gender.

Anterior facial height (N-Me) is highly significant in hypodivergent ($p<0.001^{**}$), significant in normodivergent ($p\leq0.003^{*}$) and nonsignificant ($p\leq1$) in hyperdivergentgrowth pattern. Males have higher anterior facial height than females in hypodivergent and normodivergent growth pattern.

Posterior facial height (S-Go) is highly significant in hypodivergent (p<0.001**), significant but to lesser extent in normodivergent ($p\le0.690$) and nonsignificant ($p\le1$) in hyperdivergent growth pattern. Males have higher posterior

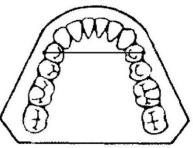
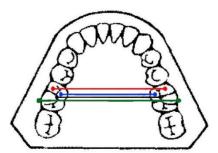



Figure shows inter premolar width black - buccal cusp tip

blue-mesiopalatal cusp tip green- most buccal aspect black- central groove

Figure shows measurement in the mandibular cast model

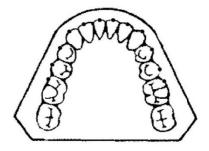


Figure shows method to identify U, V and Square arch form in mandible

DATA AND RESULTS

The statistical methods that were employed in the present study are Mean, Standard deviation, Standard error, P value, One way ANOVA, Independent "t" test, CHI-SQUARE TEST and Post hoc tuckey test (LSD)

 Table II Intergroup comparison of various parameters in cephalometric study.

 Table II A N-Me (Anterior facial height)

						e,			
Group	Ν	Min.	Max.	Mean	S.D.	F value	P value		
Hypo divergent	60	96	119	104.08	6.914				
Normo Divergent	60	96	112	104.34	4.536	26.675	<0.001**		
Hyper divergent	60	106	118	110.00	2.617				

Table II B S-Go (Posterior facial height)

Group	Ν	Min.	Max.	Mean	S.D.	F value	P value
Hypo divergent	60	65.0	86.0	72.833	5.1787		
Normo divergent	60	60.0	72.0	65.550	2.8785	228.759	<0.001**
Hyper divergent	60	53.0	66.0	58.067	2.7914		

	Table II C Jarabak'sRatio										
Group	Ν	Min.	Max.	Mean	S.D.	F value	P value				
Hypo divergent	60	64.61	74.76	70.8930	2.65101						
Normo Divergent	60	60.80	65.50	63.3367	1.20225	716.948	<0.001**				
Hyper divergent	60	52.80	60.80	56.0600	2.31042						

Table II D GoGn-SN										
Group	Ν	Min.	Max.	Mean	S.D.	F value	P value			
Hypo Divergent	60	20.0	30.0	25.317	2.6775					
Normo Divergent	60	24.0	37.0	30.367	2.7860	259.059	<0.001**			
Hyper divergent	60	32.0	39.0	35.467	1.7219					

[2a] Mean of Anterior facial height (N-Me) is highly significant ($p < 0.001^{**}$).

[2b] Mean of Posterior facial height (S-Go) is highly significant (p<0.001**).

Anterior facial height is similar in hypodivergent and normodivergent but greater in hyperdivergent group. However, posterior facial height is greater in hypodivergent followed by normodivergent and hyperdivergent growth pattern.

[2c] Mean of Jarabak's ratio is ishighly significant (p<0.001**).

[2d] Mean of GoGn to SN is highly significant (p<0.001**).

Isaacson co *et al* $(1970)^2$ stated that the width of the palate through the molar areas increased as the MP-SN decreased. The mean width for the high angle group is 35.6 mm. This increased to a mean of 38.12mm for the average group and 40.57 for the low angle group. If the alveolar ridges and facial sutures greatly increase vertically in excess of vertical increases at the mandibular condyle, the mandible will rotate backwards.

C. Matthew Forster, Elaine Sunga and Chun-Hsi Chung $(2008)^3$ stated that in both males and females, as MP – SN angle increased, arch width tended to decrease. Strong masticatory musculature is often associated with a brachyfacial pattern (short face). This, in turn, may cause an induction of sutural growth and bone apposition which then results in increased transverse growth of the jaws and bone bases for the dental arches.

	0		1	5		51 0	0 1
Parameter	Gender	Ν	Mean	Std. Deviation	Std. Error Mean	Mean Difference	P value
ICIW	Male	30	35.1318	2.62731	.47968	47000	0.540 MG
ICW	Female	30	34.6538	3.34101	.60998	.47800	0.540 NS
	Male	30	42.1463	2.67455	.48830	46500	0.505 MG
IPW Buccal	Female	30	42.6113	2.69683	.49237	46500	0.505 NS
	Male	30	29.8937	3.35292	.61216	2 15122	0.005*
IPW Palatal	Female	30	32.0450	2.27919	.41612	-2.15133	0.005*
	Male	30	37.4900	1.83541	.33510	1 44150	0.075 NG
IPW Distal	Female	30	36.0485	3.95563	.72220	1.44150	0.075 NS
	Male	30	51.1860	3.45056	.62998	1 77000	0.015*
IMW Mesiobuccal	Female	30	52.9650	1.80990	.33044	-1.77900	0.015*
	Male	30	38.9897	3.07906	.56216	(1000	0.312 NS
in w mesiopalatai	Female	30	39.6087	1.25889	.229840	01900	
DAW Dural	Male	30	53.7327	2.28068	.41639	2 40022	0.001*
IN W Buccal	Female	30	56.1330	2.79974	.51116	-2.40033	0.001*
DAW Control	Male	30	45.8817	2.52125	.46031	10000	0.951 NG
IM w Central	Female	30	45.7817	1.45068	.26486	.10000	0.851 NS
DAW Marial	Male	30	45.5853	2.43767	.44506	52200	0.227 MG
IN W Mesial	Female	30	46.1073	1.55345	.28362	52200	0.327 NS
IPW	Male	30	36.9811	1.91655	.38331	04165	0.007 MG
(Pont's index)	Female	30	36.0395	2.05287	.37480	.94103	0.087 NS
IMW	Male	30	45.6870	2.33016	.42543	24522	0.620 Mg
(Pont's index)	Female	30	45.9323	1.50781	.27529	24533	0.030 NS
(Pont's index) IMW	Female Male Female Male Female Male Female Male Female Male	30 30 30 30 30 30 30 30 30 30 30	39.6087 53.7327 56.1330 45.8817 45.7817 45.5853 46.1073 36.9811 36.0395 45.6870	1.25889 2.28068 2.79974 2.52125 1.45068 2.43767 1.55345 1.91655 2.05287 2.33016	.229840 .41639 .51116 .46031 .26486 .44506 .28362 .38331 .37480 .42543	61900 -2.40033 .10000 52200 .94165 24533	0.312 0.001 0.851 0.327 0.087 0.630

Table III A Intergender comparison of Maxillary dental arch width in Hypodivergent group

Table 3A shows intergender comparison of Maxillary Dental arch width in model study of Hypodivergent group.

Intercaninewidth($p \le 0.540$), Interpremolar width (buccal) ($p \le 0.505$),Interpremolar width (distal) ($p \le 0.075$), Intermolar width (mesiopalatal) ($p \le 0.312$), Intermolar width (central) ($p \le 0.851$), Intermolar width (mesial) ($p \le 0.327$), Interpremolar width (Pont's index) ($p \le 0.087$) and Intermolar width (Pont's index)($p \le 0.630$) are Nonsignificant.

Interpremolar width (palatal)($p \le 0.005$ *) and Intermolar width (mesiobuccal) ($p \le 0.015$ *) is significant but to lesser extent.Females have greater interpremolar width (palatal) and Intermolar width (mesiobuccal) than in males.

Intermolar width (buccal) is highly significant ($p \le 0.001^*$). Females have greater width than in males.

Females have statistically significant interpremolar width (palatal) and Intermolar width (mesiobuccal and buccal).

Table 3B shows intergender comparison of Maxillary Dental arch width in model study of Normodivergent group.

Intercanine width (p \leq 0.070), Interpremolar width (buccal) (p \leq 0.453), Interpremolar width (distal) (p \leq 0.057), Intermolar width (mesiopalatal) (p \leq 0.067), Intermolar width (central) (p \leq 0.052), Intermolar width (mesial) (p \leq 0.124), Interpremolar width (Pont's index) (p \leq 0.114) is nonsignificant Males have statistically significant interpremolar width (palatal) and Intermolar width (mesiobuccal and buccal). Females showed greater calculated intermolar width.

Interpremolar width (palatal) ($p \le 0.188^*$), Intermolar width (Pont's index) ($p \le 0.010^*$) is significant but to lesser extent. Intermolar width (mesiobuccal), Intermolar width (buccal) is highly significant ($p < 0.001^{**}$).Males have greater width than in females.

Parameter	Gender	N	Mean	Std. Deviation	Std. Error Mean	Mean Difference	P value	
	Male	30	36.8063	1.95021	.35606			
ICW	Female	30	37.6886	1.74081	.31783	88237	0.070 NS	
	Male	30	44.5850	2.86965	.52392	50000	0.452 NG	
IPW Buccal	Female	30	44.0770	2.31040	.42182	.50800	0.453 NS	
	Male	30	35.1647	3.11095	.56798	00022	0.100 M	
IPW Palatal	Female	30	34.1843	2.56939	.46910	.98033	0.188 NS	
	Male	30	37.2289	1.95893	.35765	1 42002	0.057.10	
IPW Distal	Female	30	35.7989	3.51735	.64218	1.43003	0.057 NS	
	Male	30	52.3907	3.26477	.59606	10.052(7	<0.001**	
MW Mesiobuccal	Female	30	41.4370	4.02503	.734870	10.95367		
NAW Maaiawaladal	Male	30	45.8603	3.15467	.575960	1 20222	0.067 NS	
MW Mesiopalatal	Female	30	44.4670	2.59254	.47333	1.39333		
IMW Buccal	Male	30	55.8310	2.45833	.44883	5.93433	< 0.001**	
IN W Buccal	Female	30	49.8967	3.89276	.71072	5.95455	<0.001**	
IMW Central	Male	30	45.9163	2.49540	.45559	1.37367	0.052 NS	
IN W Central	Female	30	44.5427	2.86576	.52321	1.5/50/	0.032 No	
IMW Mesial	Male	30	44.5279	2.31356	.42962	82540	0.124 NS	
IIVI W IVIESIAI	Female	30	45.3533	1.70684	.31162	82340	0.124 INS	
IPW	Male	30	36.8035	1.97148	.35994	79335	0.114 NS	
(Pont's index)	Female	30	37.5969	1.67605	.32870	/9333	0.114 NS	
IMW	Male	30	43.1086	2.41026	.44757	-1.77535	0.010*	
(Pont's index)	Female	30	44.8840	2.66639	.48681	-1.//333	0.010*	

Table III C Intergender	comparison of M	faxillary dental arch	n width in H	vperdivergent group

Parameter	Gender	Ν	Mean	Std. Deviation	Std. Error Mean	Mean Difference	P value
ICW	Male	30	35.9696	1.57218	.28704	2.65630	<0.001**
IC W	Female	30	33.3133	2.24689	.41022	2.03030	
IPW Buccal	Male	30	41.6420	1.91862	.35029	93533	0.099 NS
IP w Buccal	Female	30	42.5773	2.37870	.43429	95555	0.099 NS
IPW Palatal	Male	30	38.0223	2.01503	.36789	4.30900	<0.001**
IP w Palalai	Female	30	33.7133	3.14790	.57472	4.30900	<0.001***
IPW Distal	Male	30	40.4203	1.75078	.31965	3.66917	<0.001**
II w Distai	Female	30	36.7511	3.07147	.56077	3.00917	<0.001
IMW Mesiobuccal	Male	30	55.0183	2.87295	.52453	3.71133	<0.001**
	Female	30	51.3070	2.95460	.53943	5.71155	<0.001
IMW Mesiopalatal	Male	30	46.1767	2.51570	.45930	6.54533	<0.001**
iivi vv iviesiopaiatai	Female	30	39.6313	2.86869	.52375	0.54555	-0.001
IMW Buccal	Male	30	58.5957	2.44639	.44665	7.85200	<0.001**
IN W Duccai	Female	30	50.7437	3.11477	.56868	7.85200	<0.001
IMW Central	Male	30	54.1923	2.39992	.43816	7.65533	<0.001**
Invi vv Contrat	Female	30	46.5370	2.71689	.49603	1.05555	<0.001
IMW Mesial	Male	30	55.1803	2.98655	.54527	7.68767	<0.001**
livi vv iviesiai	Female	30	47.4927	4.10643	.74973	7.00707	<0.001
IPW	Male	30	37.7232	1.63681	.31500	1.87769	0.001*
(Pont's index)	Female	30	35.8455	2.22189	.40566	1.07709	0.001
IMW	Male	30	53.1533	4.13337	.75465	8.71633	<0.001**
(Pont's index)	Female	30	44.4370	1.86881	.34120	0./1055	~0.001

Table 3Cshows intergender comparison of Maxillary Dental arch width in model study of Hyperdivergent group Inter premolar width Buccal is nonsignificant ($p \le 0.099$).

Intercaninewidth,Inter premolar width Palatal, Inter premolar width Distal, Inter premolar width (Pont's index)Males have greater interpremolar width except in buccal aspect. Intermolar width (mesiobuccal), Intermolar width Mesiopalatal, Intermolar width Buccal, Intermolar width Central, Intermolar width Mesialand Intermolar width (Pont's index) is highly significant ($p<0.001^{**}$).

Intercanine width, Interpremolar width except in buccal aspect and Intermolar width is greater in Malesis significant $(p \le 0.001^*)$.

Calculated interpremolar and intermolar width is higher in Males.

Mandava Prasad *et al* (2013)⁴ stated that one genetic factor is patient's ethnic background and concluded that the relationship is found to be an inverse relation in both males and females of untreated South Indian adults, as MP-SN angle increased, the dental arch widths tended to decrease. A generalized prediction is done for the dental arch widths with a given SN-MP. The dental arch widths of males were found to be wider than females among untreated South Indian adults.

Sadia ShabbirJumani, Gul-E-Erum and Imtiaz Ahmed (2014)⁵ stated relationship is found to be an inverse relation in both males and females of untreated Pakistani adults, as MP-SN angle increased, the dental arch widths tended to decrease. Secondly, the dental arch widths of males were found to be wider than females among untreated adults.

C. Matthew Forster, Elaine Sunga and Chun-Hsi Chung $(2008)^3$ stated that the dental arch widths in males were significantly greater than those in females.

R. Ferro *et al* $(2017)^6$ stated that males exhibit higher dental arch values in comparison to females.

Table IV Intergroup comparison of Maxillary dental arc	h
width in vertical facial morphology groups. (ANOVA)	

	-						· • • • • • • •		/
Parameter	N	Hypodi	vergent	Normod	ivergent	Hyperd	ivergent	F value	D voluo
rarameter	14	Mean	SD	Mean	SD	Mean	SD	r value 1	value
ICW	60	34.8928	2.98957	37.2475	1.88598	34.6414	2.34314	20.683 <	0.001**
IPW	60	12 2799	2 67216	44 2210	2 50557	42 1007	2 10284	14.149 <	0 001**
Buccal	00	42.3700	2.07510	44.5510	2.39331	42.1097	2.19304	14.149 \	0.001
IPW	60	30 0603	3 04233	34 6745	2 87163	35 8678	3 10306	40.374 <	0 001**
Palatal	00	50.9095	5.04255	54.0745	2.87105	55.8078	5.40590	40.374 ~	0.001
IPW	60	36 7692	3 14245	36 5139	2 91326	38 5857	3 09296	8.225 <	0.001**
Distal	00	50.7072	5.14245	50.5157	2.71520	50.5057	5.07270	0.225	0.001
IMW	60	52 0755	2 87524	46 9138	6 61 107	53 1627	3 44233	31.434 <	0 001**
MB	00	52.0755	2.07524	40.7150	0.01107	35.1027	5.44255	51.454	0.001
IMW	60	39 2992	2 35294	45 1637	2 94769	42,9040	4 24825	48.796 <	0 001**
MP	00	57.2772	2.5027 .	10.1007	2.7 .7 07	.2.90.10		10.790	0.001
IMW	60	54,9328	2.80612	52,8638	4.40138	54 6697	4.83581	4.510	0.012*
Buccal									
IMW	60	45.8317	2.03996	45.2295	2.75266	50.3647	4 62153	42.856 <	0.001**
Central									
IMW	60	45.8463	2.04357	44.9476	2.05277	51.3365	5.26290	59.195 <	0.001**
Mesial									
IPW									
(Pont's	60	36.4675	2.02970	37.1719	1.86699	36.7350	2.16682	1.713 0	.184 NS
index)									
IMW									
(Pont's	60	45.8097	1.94976	44.0113	2.67594	48.7952	5.42492	25.771 <	0.001**
index)									

Table 4shows intergroup comparison of Maxillary Dental arch width parameters in vertical facial morphology groups (ANOVA).

- Inter canine width, Interpremolar width Buccal, Interpremolar width Palatal, Interpremolar width Distal, Intermolar width Mesiobuccal, Intermolar width Mesiopalatal, Intermolar width Central, Intermolar width Mesial and Intermolar width (Pont's index) is highly significant.
- Intermolar width Buccal is statistically significant.
- Inter premolar width (Pont's index) is nonsignificant.

Parameter	Comparis	on between	Mean Difference (I-J)	Std. Error	Sig.
	Нуро	Normo	-2.35465*	.44702	< 0.001**
ICW	пуро	Hyper	.25138	.44702	0.840 NS
	Normo	Hyper	2.60603*	.44702	<0.001**
	Uumo	Normo	-1.95217*	.45577	< 0.001**
IP Buccal	Нуро	Hyper	.26917	.45577	0.825 NS
	Normo	Hyper	2.22133*	.45577	< 0.001**
	Нуро	Normo	-3.70517*	.56852	<0.001**
IP Palatal	пуро	Hyper	-4.89850^{*}	.56852	< 0.001**
	Normo	Hyper	-1.19333	.56852	0.093 NS
	Нуро	Normo	.25533	.55706	0.891 NS
IP Distal	пуро	Hyper	-1.81650*	.55706	0.004*
	Normo	Hyper	-2.07183*	.55706	0.001*
	Нуро	Normo	5.16167*	.84211	<0.001**
IM Most Buccal	• •	Hyper	-1.08717	.84211	0.402 NS
	Normo	Hyper	-6.24883*	.84211	<0.001**
	Нуро	Normo	-5.86450*	.59882	<0.001**
IM Palatal	•••	Hyper	-3.60483*	.59882	<0.001**
	Normo	Hyper	2.25967*	.59882	0.001*
	Нуро	Normo	2.06900^{*}	.75005	0.018*
IM Buccal		Hyper	.26317	.75005	0.934 NS
	Normo	Hyper	-1.80583*	.75005	0.045*
	Нуро	Normo	.60217	.60642	0.582 NS
IM Central Groove	Пуро	Hyper	-4.53300*	.60642	< 0.001**
	Normo	Hyper	-5.13517*	.60642	<0.001**
	Нуро	Normo	.89871	.63708	0.338 NS
IM Mesial	пуро	Hyper	-5.49017*	.63440	<0.001**
	Normo	Hyper	-6.38887*	.63708	<0.001**
IPW	Urmo	Normo	70438	.38457	0.163 NS
	Нуро	Hyper	26747	.38289	0.765 NS
	Normo	Hyper	.43691	.38115	0.487 NS
	Нуро	Normo	1.79833*	.67365	0.023*
IMW	пуро	Hyper	-2.98550*	.67082	<0.001**
	Normo	Hyper	-4.78383*	.67365	< 0.001**

 Table V Individual group wisecomparison of Maxillary dental arch width with vertical facial morphology (Post Hoc- Tuckey LSD test)

Table 5 shows individual group wise comparison of Maxillary Dental Arch Width with vertical facial morphology.

All the parameters are highly significant ($p \le 0.001^*$)

- Intercanine width is more in normo followed by hypo and hyper
- Interpremolar width (buccal) is more in normo than hypo and hyper and interpremolar width (palatal, distal and calculated (Pont's)) is more in hyper than normo and hypo.
- Intermolar width (mesiobuccal, central groove, mesial and calculated (Pont's)) is more in hyper than hypo and normo, intermolar (mesiopalatal) is more in normo than hyper and hypo and intermolar (most buccal) is more in hypo than hyper and normo.

Table 6A shows intergender comparison of Mandibular Dental arch width in model study of Hypodivergent group

Intercanine width ($p \le 0.001^{**}$), Interpremolar width (buccal) is highly significant ($p \le 0.001^{*}$). Females have greater width than in males.

Intermolar width (mesiobuccal) ($p \le 0.083$), Intermolar width (mesiolingual) ($p \le 0.215$), Intermolar width (buccal) ($p \le 0.918$), Intermolar width (central) ($p \le 0.751$) isNon significant. Females have greater intercanine and interpremolar width (buccal) but no gender difference is found in intermolar width.

Table VI A Intergender comparisor	n of Mandibular Dental arch width in model study of Hypodivergen	t group.
Tuble (I II mengemael comparison	in or manaroular Dentar aren maar in moder braay or mypoarrengen	C Broup.

Parameter	Gender	Ν	Mean	S.D.	Std. Error Mean	Mean Difference	P value
ICW	Male	30	25.4593	2.93853	.53650	-4.60267	<0.001**
IC W	Female	30	30.0620	4.12623	.75334	-4.00207	<0.001
IPW Buccal	Male	30	34.3770	2.11990	.38704	-2.46833	<0.001**
IPW Buccal	Female	30	36.8453	1.72660	.31523	-2.40833	<0.001
IMW Mesio Buccal	Male	30	45.3487	2.41373	.44068	-1.22237	0.083 NS
IN W WIESIO Buccai	Female	30	46.5710	2.89903	.53834	-1.22237	
DAW Maria Linaual	Male	30	33.9452	2.24966	.41073	- 67511	0.215 NS
IMW Mesio Lingual	Female	30	34.6203	1.85805	.34503	0/311	
DAW Darrel	Male	30	49.6473	5.91528	1.07998	12740	0.918 NS
IMW Buccal	Female	29	49.7748	3.12858	.58096	12749	
DAW Control	Male	30	40.6070	2.17310	.39675	20792	0.751 NS
IMW Central	Female	30	40.8148	2.80226	.52037	20783	

Table VI B Intergender comparison of Mandibular Dental arch width in model study of Norm divergent group

Parameter	Gender	Ν	Mean	Std. Deviation	Std. Error Mean	Mean Difference	P value
ICW	Male	30	36.99	1.47824	.26989	2.91233	<0.001**
IC W	Female	30	34.07	2.27991	.41625	2.91255	
IDW/horsel	Male	30	36.68	3.51071	.64096	2 12900	<0.001**
IPW buccal	Female	30	33.55	2.31616	.42287	3.12800	
	Male	30	37.56	1.93827	.35993	2 00 472	<0.001**
IMW MesioBuccal	Female	30	40.55	2.15750	.39390	-2.99472	
	Male	30	36.27	1.91422	.34949	00000	0.888 NS
IMW Mesio Lingual	Female	30	36.36	2.90653	.53066	09020	
	Male	30	45.63	2.26636	.41378	202(7	0.723 NS
IMW Buccal	Female	30	45.83	2.14399	.39144	20267	
IMW Central	Male	30	42.10	2.59826	.47437	(50(7	
	Female	30	42.75	2.53631	.46306	65267	0.329 NS

 Table 6 B shows intergender comparison of Mandibular Dental arch width in model study of Normodivergent group.

Intercanine width, Interpremolar width (buccal) and Intermolar width (mesiobuccal) is highly significant ($p \le 0.001^{**}$).

Intermolar width (mesiolingual) ($p \le 0.888$), Intermolar width (buccal) ($p \le 0.723$), Intermolar width (central) ($p \le 0.329$) is nonsignificant.

Males have greater intercanine and interpremolar (buccal) but intermolar (mesiobuccal), females have greater width. No gender difference is found in other intermolar width. R. Ferro *et al* $(2017)^6$ stated that males exhibit higher dental arch values in comparison to females.

C. Matthew Forster, Elaine Sunga and Chun-Hsi Chung $(2008)^3$ found that the dental arch widths in males were significantly greater than those in females.

Mandava Prasad *et al* and Sadia ShabbirJumani, Gul-E-Erum and Imtiaz Ahmed $(2013)^4$ stated that the dental arch widths of males were found to be wider than females among untreated South Indian adults and Pakistani patients respectively.

Table VI C Intergender comparison of Mandibular Dental arch width in model study of Hyper divergent group

Parameter	Gender	Ν	Mean	Std. Deviation	Std. Error Mean	Mean Difference	P value
IPW	Male	30	31.08	1.83555	.33512	1.30300	0.070 NS
IPW	Female	30	29.78	3.40719	.62206	1.30300	
IPW buccal	Male	30	34.39	2.05240	.37472	- 37615	0.482 NS
IP w buccal	Female	30	34.76	2.02694	.37639	3/015	
IMW Mesio Buccal	Male	30	42.52	2.32869	.42516	2.95583	0.001*
IN W MESIO BUCCAI	Female	30	39.56	3.92587	.71676	2.95585	
MW Maria Lingual	Male	30	37.52	1.89301	.35152	11600	0.831 NS
IMW Mesio Lingual	Female	30	37.64	2.25153	.41107	11000	
IMW Buccal	Male	30	44.80	2.24270	.40946	2 (0700	<0.001**
IN W Buccal	Female	30	41.19	3.49547	.63818	3.60700	
IMW Central	Male	30	40.93	1.62657	.29697	1.64500	0.011*
	Female	30	39.29	3.03010	.55322	1.04300	0.011*

Table 6C shows intergender comparison of Mandibular Dental arch width in model study of Hyperdivergent group

Intercanine width (p \leq 0.070), Interpremolar width (buccal) (p \leq 0.482), Intermolar width (mesiolingual) (p \leq 0.831) is non significant.Intermolar width (mesiobuccal), Intermolar width (buccal) is highly significant (p \leq 0.001**)

Intermolar width (central) is significant but to lesser extent $(p \le 0.011^*)$.No gender difference for intercanine and interpremolar width. Males have more intermolar width except intermolar width (mesiolingual).

Table 7shows intergroup comparison of Mandibular Dental arch width parameters in vertical facial morphology groups (ANOVA).

Inter canine width, Intermolar width Mesiobuccal, Intermolar width Mesiolingual, Intermolar width Buccal, Intermolar width Central is statistically highly significant.

Interpremolar width Buccal is nonsignificant.

 Table VII Intergroup comparison of Mandibular dental arch width parameters in vertical facial morphology group (ANOVA)

Parameter	N	Hypodivergent		Normodivergent		Hyperdivergent		E	D I
	19	Mean	SD	Mean	SD	Mean	SD	- F value	P value
ICW	60	27.76	4.24	35.53	2.41	30.43	2.79	88.790	< 0.001**
IPW buccal	60	35.61	2.29	35.11	3.34	34.57	2.03	2.337	0.100 NS
IMWMesio Buccal	60	45.95	2.71	39.08	2.53	41.04	3.53	84.346	<0.001**
IMW Mesio lingual	60	34.28	2.08	36.32	2.44	37.58	2.07	33.807	< 0.001**
IMW Buccal	60	49.71	4.71	45.73	2.19	43.00	3.43	52.558	<0.001**
IMW Central	60	40.71	2.48	42.43	2.57	40.11	2.55	13.529	< 0.001**

Parameter	Compariso	n between	Mean Difference (I-J)	Std. Error	Sig.
	Urmo	Normo	-7.76817 [*]	.59234	< 0.001**
ICW	Нуро	Hyper	-2.67083*	.59234	<0.001**
	Normo	Hyper	5.09733 [*]	.59234	<0.001**
	I I	Normo	.49717	.47816	0.300 NS
IP Mesiobuccal	Нуро	Hyper	1.03795*	.48018	0.032*
	Normo	Hyper	.54078	.48018	0.262*
IP Buccal	Urmo	Normo	6.86927^{*}	.54511	<0.001**
	Нуро	Hyper	4.91107*	.54284	<0.001**
	Normo	Hyper	-1.95820*	.54284	<0.001**
	Нуро	Normo	-2.04170*	.40386	<0.001**
IM Mesiolingual		Hyper	-3.30388*	.40555	<0.001**
C	Normo	Hyper	-1.26218*	.40386	0.002*
	Urmo	Normo	3.97667*	.65806	<0.001**
IM Buccal	Нуро	Hyper	6.71183*	.65806	<0.001**
	Normo	Hyper	2.73517*	.65529	<0.001**
	I I	Normo	-1.71785 [*]	.46452	<0.001**
IM Central	Нуро	Hyper	.60132	.46452	0.197*
	Normo	Hyper	2.31917^{*}	.46257	<0.001**

 Table VIII shows individual group wise comparison of Mandibular dental arch width with vertical facial morphology (Post- hoc tuckey LSD test).

Table 8 shows individual group wise comparison of Mandibular Dental arch width with vertical facial morphology.

All the parameters are highly significant ($p \le 0.001^{**}$)

Amit Kumar Khera et al $(2012)^7$ mandibular 1stintermolar width is least in hyperdivergent.

Genetic and environmental factors, with skeletal, dental or functional repercussions is responsible dental arch width variations stated byHemamaliniBalaji by 2017⁸

Increased loading of the jaws from masticatory muscle hyperfuction might lead to increased sutural growth and bone apposition, resulting in increased transversal growth of the maxilla and broader bone bases for the dental arches by Wagner and Chung in 2005^9

Mandibular dental arch width also shows variation intercanine width is less in hypo and hyper than normo, Interpremolar width is more in hypo than normo and hyper andintermolar width (mesiobuccal and buccal) is more in hypo followed by hyper and normo, intermolar (mesiolingual) is more in hyper than normo and hypo and intermolar (central) is more in normo than in hypo and hyper.

Mandava Prasad et al (2013)⁴ stated the relationship is found to be an inverse relation in both males and females of untreated South Indian adults, as MP-SN angle increased, the dental arch widths tended to decrease. A generalized prediction is done for the dental arch widths with a given SN-MP. The dental arch widths of males were found to be wider than females among untreated South Indian adults.

Sadia ShabbirJumani and Gul-E-Erum, Imtiaz Ahmed (2014)⁵ stated relationship is found to be an inverse relation in both males and females of untreated Pakistani adults, as MP-SN angle increased, the dental arch widths tended to decrease. Secondly, the dental arch widths of males were found to be wider than females among untreated adults.

For Maxillary and Mandibular Dental arch Width

Accordingto Amber Farooq, Amjad Mahmood and Abdul Jabbar (2015)¹⁰ as SN-MP angle increased inter canine width tended to decrease in both maxilla and mandible with

nonsignificant gender difference. There is significant but weak correlation of SN-MP angle with inter canine width.

Amber Farooq, Abdul Jabbarb and Afeef Umar Zia (2016)¹¹stated that in both males and females, as SN-MP angle increased; arch width tended to decrease at inter pre-molar and inter-molar areas. P value is significant at 0.05 level in comparison of SN-MP angle with inter first pre-molar width and Inter-molar width in maxilla and mandible in low, normal and high SN-MP angle categories.

R. Ferro et al $(2017)^6$ stated that small variations in upper and lower intercanine width while higher variations were observed in the upper intermolar width.

SUMMARY AND CONCLUSION

Dentofacial pattern of every individual is different and consists of many variations. Evaluating the relationship between the dental arch and vertical facial morphology is imperative in order to understand the variation in size and shape of the dental arches.

Following Conclusions were drawn from the study

Sexual dimorphism found incephalometric parameters

Males have higher anterior facial height, posterior facial height, Jarabak's ratio and GoGn to SN than females in hypodivergent and normodivergent growth pattern.

Sexual dimorphism for Maxillary Dental arch width

Hypodivergent group - females had greater interpremolar width (palatal), Intermolar width (mesiobuccal) and Intermolar width (buccal).

Normodivergent group - males had greater interpremolar width (palatal), Intermolar width (mesiobuccal) and Intermolar width (buccal). Females had more calculated intermolar width (Pont's index).

Hyperdivergent group - males had greater intercanine width, interpremolar width except in buccal aspect and greater intermolar width.

Sexual dimorphism for Mandibular Dental arch width

Hypodivergent group- females had greater intercanine and interpremolar width (buccal) but no gender difference was found in intermolar width.

Normodivergent group- males had greater intercanine and interpremolar (buccal) but females had greater intermolar (mesiobuccal) width. No gender difference was found in other intermolar width.

Hyperdivergent group - no gender difference for intercanine and interpremolar width. Males had more intermolar width except intermolar width (mesiolingual).

On comparingMaxillary Dental arch width in vertical facial morphology groups.

- Hyperdivergent had more interpremolar (palatal and distal), intermolar with (mesiobuccal, central and mesial) and calculated intermolar width (Pont's index).
- Normodivergent had moreintercanine, interpremolar (buccal) and intermolar (mesiopalatal).
- Hypodivergent had more intermolar width (buccal).

On comparing Mandibular Dental arch width in vertical facial morphology groups.

- Hypodivergent had more Interpremolar (buccal), intermolar (mesiobuccal and buccal).
- Normodivergent had more intercanine and intermolar (central) width.
- Hyperdivergent had more intermolar (mesiolingual) width.

Arch shape(U, V and square shape) was non-significant in all groups of vertical facial morphology.

Dental arch width is susceptible to vary along with vertical facial morphology

Bucco-lingual inclination and width, Arch shape, Rotations, type of Occlusion & alveolar growth could be probable contributing factors for disparity in dental arch width.

Correct identification of a patient's dental arch width and arch form is an important aspect for achieving a stable treatment result, failure to preserve the arch integrity might increase the probability of relapse. Improper shape of arch wire can result in periodontal breakdown, recurrence of crowding particularly when inter-canine width and inter-molar width have been expanded. So, individual customization of arch wire should be preferred for particular patient.

Further study can be advocated to overcome the limitations of present study with more sample size and other growth parameters which influence the dento-facial framework along with sagittal discrepancy indicators.

References

- 1. Ribeiro JS, Ambrosio AR, dos Santos-Pinto A, Shimizu IA, Shimizu RH. Evaluation of transverse changes in the dental arches according to growth pattern: a longitudinal study.
- 2. Isaacson JR, ISAACSON RJ, SPEIDEL TM, WORMS FW. Extreme variation in vertical facial growth and associated variation in skeletal and dental relations. The Angle Orthodontist. 1971 Jul;41(3):219-29.
- Forster CM, Sunga E, Chung CH. Relationship between dental arch width and vertical facial morphology in untreated adults. The European Journal of Orthodontics. 2008 Feb 8;30(3):288-94.
- Prasad M, Kannampallil ST, Talapaneni AK, George SA, Shetty SK. Evaluation of arch width variations among different skeletal patterns in South Indian population. Journal of Natural Science, Biology, and Medicine. 2013 Jan;4(1):94.
- 5. Sadia ShabbirJumani, Gul-E-Erum, Imtiaz Ahmed. Correlation oof vertical facial morphology and dental arch width in untreated Pakistani adults. International Journal of Dental and Health Sciences. Volume 01, issue 06: 890-99.
- R. Ferro, M.Pasini, A.Fortini, A.Arrighi, E. Carli, M.R.Giuca.Evaluation of maxillary and mandibular arch forms in Italian adolescents sample with normocclusion. European Journal of Paediatric Dentistry. Volume 18/3-2017 :193-98.
- Khera AK, Singh GK, Sharma VP, Singh A. Relationship between dental arch dimensions and vertical facial morphology in class I subjects. Journal of Indian Orthodontic Society. 2012 Jan 1;46(6):316-24.
- 8. Balaji H. Dental Arch Patterns and its role in Orthodontics–A review. Int J Pharm Sci Health Care. 2017;2:91-8.
- 9. Wagner DM, Chung CH. Transverse growth of the maxilla and mandible in untreated girls with low, average, and high MP-SN angles: a longitudinal study. American journal of orthodontics and dentofacial orthopedics. 2005 Dec 1;128(6):716-23.
- Farooq A, Mahmood A, Jabbar A. CORRELATION OF INTER CANINE WIDTH WITH VERTICAL FACIAL MORPHOLOGY IN PATIENTS SEEKING ORTHODONTIC TREATMENT. Pakistan Oral & Dental Journal. 2015 Jun 1;35(2).
- 11. Farooq A, Jabbar A, Zia AU. Correlation of interpremolar and inter-molar width with vertical facial morphology in patients seeking orthodontic treatment. Pakistan Orthodontic Journal. 2016;8(1):58-61.

How to cite this article:

Dr Karishma Raval *et al.*, 2019, Correlation of Dentalarch width in Vertical Facial Morphology. *Int J Recent Sci Res.* 10(05), pp. 32633-32642. DOI: http://dx.doi.org/10.24327/ijrsr.2019.1005.3512
