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In this paper, we establish and prove common fixed point results for generalized rational mapping
satisfying a general contractive condition in complete b- metric spaces. The conditions for existence
of common fixed point had been investigated. The main results can be regarded as a generalization
of previous results in complete b-metric space.
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INTRODUCTION

Fixed point theory is rapidly moving into the mainstream of
Mathematics mainly because of its applications in diverse
fields which include numerical methods like Newton-Raphson
method, establishing Picard’s existence theorem, existence of
solution of integral equations and a system of linear equations.
In 1922, S. Banach [1], The first important and significant
result was proved a fixed point theorem for contraction
mappings in complete metric space and also called it Banach
fixed point theorem / Banach contraction principle which is
considered as the mile stone in fixed point theory. This
theorem states that, A mapping T:X — X where(X,d) is a
metric space, is said to be a contraction if there exists k € [0,1)
such that

d(Tx,Ty) < kd(x,y) forallx,y € X (1.1)

If the metric space (X,d) is complete the mapping satisfying
(1.1) has a unique fixe point.

i.e every contraction map on a complete metric space has fixed
point. Inequality (1.1) implies continuity of T. This theorem is
very popular and effective tool in solving existence problems in
many branches of mathematical analysis and engineering.
There are a lot of generalizations of this principle has been
obtained in several directions, such as ordered Banach
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spaces(see[2]), partially ordered metric spaces (see[3,4]), 2-
metric spaces(see[5,6,7]), Quasi —metric spaces(see[8]), Cone
metric spaces(see[9]), metric type spaces(see[10,11,12]), G-
metric spaces(see[13]), fuzzy metric spaces(see[14]), B-metric
spaces(see[15,16]).

One of the most influential spaces is b-metric spaces,
introduced by Bakhtin[17] in 1989, who used it to prove a
generalization of the Banach principle. In 1993, Czerwik
[18,19] extended the results of b-metric spaces that generalized
the famous Banach contraction principle in metric space. Using
this idea researcher presented generalization of the renowned
Banach fixed point theorem in the b-metric space. Akkoochi,
M.[20], Ayadi, et al.[21], Boriceanu[22], Mehmetkir et
al.[23],0latinwo, et al. [24], Pacurar [25] extended the fixed
point theorem in b-metric space. A b- metric space was also
called a metric type spaces in [26]. The fixed point theory in
metric type spaces was investigated in [26] and [11].Recently,
Pankaj et al. [27] gave some results related fixed point theorem
in b-metric spaces. They have shown the extension theorem
given by Reich [28], and Hardy and Rogers [29] to the b-
metric spaces. In sequel, A.K. Dubey et al.[30] obtained unique
fixed point results in b- metric spaces, which is generalized
results of [31]. Siqi Xie,et al.[32], proved some fixed point
theorems in b- metric spaces and give the example. In 2018,
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IsaYildirim and A. H. Ansari [33 ], proved some new fixed
point results in b-metric spaces.

The aim of this paper is to consider and establish results on the
setting of b- metric spaces, regarding common fixed point of
two mappings, using a generalized rational contraction.

The Preliminaries

In this section, at first, we recall some definitions and
properties of their in b- metric spaces:

Definition 2.1([(17] & [21] ): Let X be a non empty set and
s =1 be a given real number. A function d:X X X - R, is
called a b- metric provided that, for all x,y,z € X,

1. d(x,y) = 0 iff x =y,

2' d(x'ZV) = d(}/'x) >

3. d(x,2z) < s[d(x,y) +d(y,z)] .Then

A pair (X,d) is called a b-metric space. It is clear that
definition of b-metric space is a extension of usual metric
space.

Example2.2 (see [22]): The spacel, (0 <P < 1),

lp ={(xn)c R: Zn=1lx, P < oo},
functiond: l,, X I, > R,

together  with  the

1
d(x,y) = Bn=1lxn — ¥alP)P , wherex =xp,y =y, €l,isa
b-metric space. By an elementary calculation we obtain that

d(x,z) < 2%[d(x,y) +d(y,2)].

Example2.3 (see [21]): Let X ={0,1,2} and d(2,0) =
d(0,2) =m = 2,

d(0,1) = d(1,2) = d(1,0) = d(2,1) = 1 and d(0,0) =
d(1,1) = d(2,1) = 0.

Then

d(x,y) < Z[d(x,2) +d(z,y)] for all x,y,z€X. Ifm>2
then the triangle inequality does not hold.

Example2.4 (see [22]): The [, [0, 1] where (0 < p < 1) of all
real functionsx(t), t € [0,1] such that follx(t)lp dt < o, is a b-
metric space if we take

d(x,y) =(f 1x(t) — y(©)|Pdt)?, for each x,y € L,[0,1].

Definition 2.5[22] (i) Let (X,d)be a b-metric space. Then a
sequence {x,} in X is called a Cauchy sequence if and only if
for all € > 0 there exists n(e) € N such that for each n,m >
n(e) we have d(x,, x,,) < €.

(ii) Let (X, d)be a b-metric space. Then a sequence {x,,} in X is
called a Convergent sequence if and only if there exists x €
Xsuch that for all there exists n(e) € N such that for all
n, = n(e)we have d(x,, x) < e.In this case 1 i gL, x,, = x.
(iii) The b-metric space is complete if every Cauchy sequence
convergent.

Regarding the properties of a b- metric space, we recall that if
thev limit of a convergent sequence exist, then it is
unique.Also, each convergent sequence is a Cauchy sequence.
But note that a b- metric, in general case, is not continuous.

The continuity of a mapping with respect to a b- metric defined
as follow:

Definition 2.6[32]: Let (X,d) and (X’,d’) be two b- metric
spaces with s and s, respectively. A mapping f:X - X' is
called continuous if for each sequence{x,} in X, Which
converges to x € X with respect to d, thenfx,, converges to fx
with respect to d .

MAIN RESULTS

In this section, we shall prove common fixed point results for
pair of mappings in b- metric spaces.

Theorem 3.1: Let (X,d)be a complete b-metric space with
s>1land T;,T,:X - Xbe a self mappings satisfies the
conditions

d(x,T1x)d(T1x,T2y)

sd(Tyx, T,y) < ad(x,y) + b 430y Tay)

3.1)

. . 1 2
Where a, b are nonnegative real with a < Ta +b < e for

allx,y € X. then T; and T, have a unique common fixed

point.

Proof: Let x, € X and define sequence {x,} in X such that
Xak+1 = T1Xz and

Xok4+2 = T2x2k+1 for all k EN (32)

Suppose that there is some k € N such that xj;, = x4, . If
k =2n. Then x,, = X,,4, and from the condition (3.1) put
X = Xon,Y = Xani1, W have

Sd(Xon+1) Xon42) = SA(T1 %20, ToXom41)
<

A(x2n,T1x2n)d(T1X2n, T2 X2n+1)
1+d(x2n+1,T2X2n+1)

ad(Xn, Xpn41) + b

Xomes) + b d(x2n1r9iz;+1)d(x2n+1rx2n+2)
(X2n+1,X2n+2)
=0.
Since s = 1, we have d(Xz541 X2n42) = 0.
Xon+1 = Xon4o - Thus we have

Xon = Xan+1 = Xopt2. By (3.2), it means xp, = TyXp =
T,x,,, that is, x,, is a common fixed point of Tjand T5.

If k=2n+1, then using the same argument as in the
CaseX,, = Xu41, it can be show that x,,,; is a common fixed
point of Tyand T,.

ad(xyy,

Hence

From now on, we suppose that x; # x4, forallk € N.
Stepl: we will show that

i, d(xy, x,41) =0, forallk € N. (3.3)

There are two cases which we have to consider.

Casel. k =2n+1, n € N.
From the condition (3.1) where x = x,,,y = X,,41 We have

Sd(Xon+1) Xan+2) = SA(T1 X200, ToXom41)
<

Ad(x2n,T1x2n)d(T1X2n T2 X2n+1)
1+d(X2n+1,T2X2n+1)

ad(xzn, Xan41) + b

d(x2nX2n+1)d(X2n+1.X2n+2)
ad(Xn, Xpn41) + b
1+d(X2n+1,X2n+2)
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d(x2nX2n+1)d(X2n+1.X2n+2)
<ad(Xzn, X2n+1) +b
d(Xz2n+1,X2n+2)

= ad(Xan, X2n41) Thd(X2n, X2n41)
< ( (21 +b )d(xZn' x2n+1)

s d(Xz2n, Xan+1)-

Thus we proved that

sd(xy, Xpy1) < id(xk_l,xk Yk=2n+1,neN. (3.4)
Case 2. k = 2n, ne€N.

Using the same argument as in the Case 1, it it can be proved
that (3.3) holds for k = 2n, that is

5d (X Xer1) < 5= d (e, ;). foralln € N, 3.5)
From (3.4) and (3.5) we can conclude that
5A (i Xer1) < 5= d (e, ;). foralln € N (3.6)

Therefore, the sequence {d(xy,xn)} is monotone decreasing
and bounded below. Then there exist A>0 such
that 11 1m0, d(xg, Xk41) = A Suppose that A >0, then letting
n = 4o, from (3.6) we have

sA< i/1, s=1.
2+s
Thus

A<sA< 22:/1 < 2/1. which is contradiction. Hence, A = 0,
Thus we proved that (3.3) holds.

Step2: We will prove that {x,} is a b- Cauchy sequence in
(X,d).It is sufficient to show that{x,;} is a b- Cauchy
sequence in (X, d). Suppose to contrary, that is {x,; } is not a b-
Cauchy sequence in (X, d). Then there exist € > 0 for which
we can find two subsequences {x2m(i)} and {ka(i)} of {x,}
such that k(i) is the smallest index for which

k(@) >m(@) > i,d(me(i)_ka(i)) > €. (3.7)
This means that
d(Xamiy Xar(iy-2) < € (3.8)

From (3.7) and using the triangular in equation, we have
e < d(me(i),ka(i)) <
sld(xam@y Xar-2) + dFarqy-2. %2 -1))-

Taking the upper limit as i — +oo, by (3.3) we have
E S g dOma)+1,%2k(0))- (3.9)
Again, using the triangular inequality, we have,

d(Xam@iy X2ky-1) <
s[d(czmey X2ray-2) + dCor(iy-2%2k0)-1) |-

Taking the upper limit as i — +o, by (3.3) we have

Vi B, oo d(Xom 41, X20()-1) < SE-
(3.10)
Now, from (3.1) we have

dom@+1,X2k@) = SA(T1Xam), T2 X2k ) -1)

d(%2m (i) T1%2m(i)) A (T1X2m(i) T2 X2k (i) —1)
1+d X2k (i) -1 T2X2k(i)-1)

< ad(me(i)_ka(i)_l) +b

=ad (Xzm(i) X2k(1)-1)
+bd(me(i)erm(i)+1)d(x2m(i)+1rx2k(i))
1+d (X2k(i)-1%2k(i))

Again i > +o0, by (3.3),(3.9), (3.10) we have € = s X % < ase,
since a is non negative real with a < %,S > 1,we have

€ < ase < €, which is a contradiction. Consequently, {x, } is a
b- Cauchy sequence in (X,d). Since (X,d) is a complete b-
metric space, then {x; } converges to some u € X as n - +oo.
Step3: we will prove that Tyu = T,u = u. Without loss of
generality, we can suppose that

Tiu = u. If not there exist a u* € X such that
du,Tyu) =u">0. (3.11)
So, by using the triangular inequality and (3.1), we have

u =d(u, Tyu)
< s[d(w, Xap42) + d(gps2, Tr)]
= sld(w, x2x42) + d(Tyw, ToXp41)]

< s d(u, Xap42) +a d(w, xzp41) +
AT W d(T1w,T2X2k+1)

1+(X2k+1.T2X2k+1)

Taking the limit as k — 400, we obtain that
u =du,Tyu)
< 0, Which is a contradiction with (3.11),
sou” = 0. Hence Tyu = u.
Similarly, we obtainT,u = u, thus uis common fixed point of
T, and Ts,.

Now we will prove that T; and T, have a unique common
fixed point.

Suppose that u and u*are another common fixed points of T;
and T,, then from (3.1), we have

sd(u,u’) = sd(Tyu = Tou’)
. d(u, Tyw)d( Ty Tou")
<
<ad(u,u)+b 1+d(u*Tou*)
1+d(u*u*)

= ad(u,u*)+b
= ad(u,u”).
Since a is nonnegative real with a <§ ,S = 1, then we have

d(u,u*) = 0. Thus we proved thatT; and T, have a unique
common fixed point in X.

Corollary3.2: Let (X,d)be a complete b-metric space with
s = land T: X = Xbe a self mappings satisfies the conditions

d(x,Tx)d(Tx,Ty)

d(Tx,Ty) < ad(x,y) +b Tt alyTy)

(3.12)

Where a, bnonnegative real are with a < i,a +b < 22:, for

allx,y € X. then T has a unique fixed point.
Proof: We can prove this result by applying theorem 3.1 with
T1 = Tz = T.

Theorem 3.3: Let (X,d)be a complete b-metric space with
s=1and T;,T,:X —» Xbe a self mappings satisfies the
conditions

d(T,"x, T,™y) < ad(x, bd(x,Tlnx)d(Tlnx,szy)
SAT"% Ty™y) < ad(x,y) + b LI DA T

(3.13)
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2
2+s
allx,y € X. then T; and T, have a unique common fixed
point.

Where a, b are nonnegative real with a < i, a+b< , for

Proof: Let x, € X and define sequence {x;} in X such that

_ o 2k+1
Xok+1 = T1 Xz and

Xoprs = Tp2K* 2%, forallk € N (3.14)

Similar to process of theorem 3.1, we can prove {x;} is a b-
Cauchy sequence in (X,d). Since (X,d) is a complete b-
metric space, then{x;} converges to some u € X asn — +o.
Now, we shall prove that if one of the mappingT; or T, is
continuous, then we have T;u = T,u = u. without loss of
generality, we can suppose that T; is continuous. Clearly, as
X, > u, by (3.14) we have T;***'x,, = x4 2 u, as
n - +ow. Since Xy — u,and T; is continuous, then
T, 2%y, = Ty 2%+ 1y, thus, by the uniqueness of the limit in b-
metric space, we have T; %"y = u.

Then from (3.13), we have

Sd(u, T22k+2u) — Sd(T12k+1u, Tizk+2u)
d(u,T12k+1u)cl(T12 +1u,T22k+2u)
<
<ad(u,u)+ b Trdun, )
=0.
Therefore, T,>**?u = u. From (3.13), we have
sd(Tyu,u) = sd (T, T, 2 1, T,%520)

— Sd(T12k+1 Tlu, T22k+2u)
< ad(Tu,u) +

b (T, T12k+1 Tyu)d( T12k+1 T1u,T22k+2u)

1+d(u, T, 2K+ 2y)

Since a is nonnegative reals with with a < i, a+b<

2
7o0S >1. So we have Tju =u. HenceTyu = T,?**'y =

w.Similarly, we can have T,u = u = u. Hence Tyu =
T,u = u, thus we proved that uis a common fixed point of
Tyand T,. The same method with theorem 3.1 , we can prove
that u is the unique common fixed point in X.

2k+2
T,

Corollary3.4. Let (X,d)be a complete b-metric space with
s = land T: X — Xbe a self mappings satisfies the conditions

d(x, T™x)d(T"x, T™y)
1+d(y,12™y)

sd(T"x, T™y) < ad(x,y) +b (3.15)

2

2+s’ for

Where a, b are non negative real with a < i, a+b<
allx,y € X. then T has a unique fixed point.

Proof: Let x, € X and define sequence {x;} in X such that
Xpp1 = T* 1x, forallk € N (3.16)

We can prove this result by applying theorem 3.3 with T; =
TZ = T.
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