

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 6, Issue, 4, pp.3684-3689, April, 2014 International Journal of Recent Scientific Research

RESEARCH ARTICLE ** CLOSED SETS INBITOPOLOGICAL SPACES M. Pauline Mary Helen and I. Marina Jennifer

Department of Mathematics, Nirmala College for Women, Coimbatore,India ABSTRACT

ARTICLE INFO Article History:

Received 2nd, March, 2015 Received in revised form 10th, March, 2015 Accepted 4th, April, 2015 Published online 28th, April, 2015

Key words:

(i,j)- **-closed sets, (i,j)- T ** spaces, (i,j) gT ** spaces, (i,j)- gsT ** spaces, (i,j) gT ** spaces, (i,j)- gspT ** spaces, (i,j) gpT ** spaces, (i,j)- gprT ** spaces

INTRODUCTION

A triple (X, τ_i, τ_i) where X is a non-empty set and τ_i and τ_i are topologies in X is called a bitopological space and Kelly[7] initiated the study of such spaces. Levine [10] introduced the class of generalized closed sets, a super class of closed sets in 1970. In 1985, Fukutake[3] introduced the concepts of g-closed sets in bitopological spaces. Veerakumar[18] introduced and studied the concepts of g*-closed sets and g*-continuity in topological spaces. Sheik John and Sundaram[15] introduced and studied the concepts of g*-closed sets in bitopological spaces in 2002. Pauline Mary Helen, et. al [14] introduced g**closed sets in topological spaces in 2012. In this paper we introduce the concepts of (i,j)- **-closed sets, (i,j)- T ** spaces, (i,j)- gT ** spaces, (i,j)- gsT ** spaces, (i,j) - gT ** spaces, (i,j)- gspT ** spaces,(i,j)- gpT ** spaces,(i,j)gprT ** spaces in bitopological spaces and investigate some of their properties.

Preliminaries

Definition

A subset A of a topological space (X,τ) is said to be

- 1. a pre-open set[11] if $A\subseteq int(cl(A))$ and a pre-closed set if $cl(int(A)) \subseteq A$
- a semi-open set [9] if A⊆ cl(int(A)) and a semi-closed set if int(cl(A)) ⊆A
- 3. a regular open set[11] if A=int(cl(A))
- 4. a generalized closed set[10] (briefly g-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X,τ) .
- 5. an -open set [12] if $A \subseteq int(cl(int(A)))$ and an closed set if $cl(int(cl(A))) \subseteq A$
- 6. a semi-preopen set[1] if $A \subseteq cl(int(cl(A)))$ and a semi preclosed set if $int(cl(int(A))) \subseteq A$.
- 7. an u^* -closed set [19] if cl(A) \subseteq U whenever A \subseteq U and U is -open in (X, τ).

If A is a subset of X with topology τ , then the closure of A is denoted by τ -cl(A) or cl(A), the interior of A is denoted by τ -

In this paper, we introduce **-closed sets in bitopological spaces. Properties of these sets are investigated and seven new bitopological spaces namely, (i,j)- T **, (i,j)- gT **,(i,j)- gST **, (i,j)- gST **, (i,j)-

© Copy Right, IJRSR, 2015, Academic Journals. All rights reserved.

int(A) or int(A) and the complement of A in X is denoted by A^{c} .

For a subset A of(X, τ_i , τ_j), τ_j -cl(A)(resp. τ_i -int(A)) denotes the closure (resp.interior) of A with respect to the topology τ_i .

Definition

A subset A of a topological space (X, τ_i, τ_i) is called

- 1. (i,j) -g-closed[3] if τ_j -cl(A) \subseteq U whenever A \subseteq U and U is open in τ_i .
- 2. (i,j) –rg-closed [13] if τ_j -cl(A) \subseteq U whenever A \subseteq U and U is regular open in τ_i .
- 3. (i,j) –gpr-closed [5] if τ_j -pcl(A) \subseteq U whenever A \subseteq U and U is regular open in τ_i .
- 4. (i,j) g-closed [4] if τ_j -cl(τ_i –int(A)) \subseteq U whenever A \subseteq U and U is open in τ_i .
- 5. (i,j) -closed [6] if τ_j -cl(A) \subseteq U whenever A \subseteq U and U is semi open in τ_i .
- (i,j)-gs-closed[17] if τ_j-scl(A) ⊆ U whenever A⊆ U and U is open in τ_i.
- 7. (i,j)-gsp-closed[2] if τ_j -spcl(A) \subseteq U whenever A \subseteq U and U is open in τ_i .
- 8. (i,j)-(g-closed[17] if τ_j -(cl(A) \subseteq U whenever A \subseteq U and U is open in τ_i .
- 9. (i,j)-g -closed[8]if τ_j -acl(A) \subseteq U whenever A \subseteq U and U is α -open in τ_i .
- 10. (i,j) g*-closed [15] if τ_j -cl(A) \subseteq U whenever A \subseteq U and U is g-open in τ_i .
- 11. (i,j) α^* -closed[20] if τ_j -cl(A) \subseteq U whenever A \subseteq U and U is α -open in τ_i .

Definition

A bitopological space (X, τ_i, τ_j) is called

- 1. an (i,j)- $T_{1/2}$ space[3] if every (i,j)-g-closed set is τ_j -closed.
- 2. an (i,j)- T_b space [17] if every (i,j)-gs-closed set is τ_j -closed.

* Corresponding author: M. Pauline Mary Helen

Department of Mathematics, Nirmala College for Women, Coimbatore, India

- 3. an (i,j)- T_d space [17] if every (i,j)-gs-closed set is (i,j)-g-closed.
- 4. an (i,j)- α T_d space [3] if every (i,j)- g-closed set is (i,j)-g-closed.
- 5. an (i,j)- α T_b space [17] if every (i,j)- g-closed set is τ_i -closed.

(i, j) - α^{**} closed sets

Definition

A subset A of a topological space (X, τ_i, τ_j) is said to be an (i, j)- α^{**} closed set if τ_j - cl(A) \subseteq U whenever A \subseteq U and U is * open in τ_i .

We denote the family of all (i, j)- α^{**} closed sets in(X, τ_i, τ_j) by **C(i, j).

Remark

By setting $\tau_i = \tau_j$ in definition (3.1), an (i, j)- α^{**} closed set is α^{**} closed set.

Proposition

Every τ_j – closed subset of (X, τ_i, τ_j) is $(i, j) - \alpha^{**}$ closed. The converse of the above proposition is not true as shown in the following example.

Example

Let X = {a, b, c}, $\tau_1 = \{ , c \}, \{a, c\}, X\}, \tau_2 = \{ , \{a\}, X\}.$ The set A = {b} is (1, 2) - α^{**} closed but not τ_2 - closed.

Proposition

If A is (i, j) - α^{**} closed and $\tau_i - \alpha^*$ open, then A is τ_j - closed.

Corollary

If A is (i, j) - α^{**} closed and $\tau_i - \alpha^*$ open, then A is $\tau_j - \alpha$ closed.

Corollary

If A is (i, j) - α^{**} closed and $\tau_i - \alpha^*$ open, then A is $\tau_j - \alpha^*$ closed.

Theorem

Every (i, j) - α^{**} closed set is (i, j) – g closed. The converse of the above theorem is not true as shown in the following example.

Example

Let X = {a, b, c}, $\tau_1 = \{$, {c}, {a, b}, X}, $\tau_2 = \{$, {a}, X}. The set A = {a, c} is (1, 2) - g closed but not (1, 2) - α^{**} closed.

Theorem

Every (i, j) - α^{**} closed set is (i, j) – rg closed. The converse of the above theorem is not true as shown in the following example.

Example

Let X = {a, b, c}, $\tau_1 = \{$, {a}, X}, $\tau_2 = \{$, {a}, {a, b}, X}. The set A = {a} is (1, 2) - rg closed but not (1, 2) - α^{**} closed.

Theorem

Every (i, j) - α^{**} closed set is (i, j) – gpr closed.

The converse of the above theorem is not true as shown in the following example.

Example

Let X = {a, b, c}, $\tau_1 = \{$, {c}, {a, b}, X}, $\tau_2 = \{$, {a}, X}. The set A = {b} is (1, 2) - gpr closed but not (1, 2) - α^{**} closed.

Theorem

Every (i, j) - α^{**} closed set is (i, j) – g closed. The converse of the above theorem is not true as shown in the following example.

Example

Let X = {a, b, c}, $\tau_1 = \{$, {c}, {a, b}, X}, $\tau_2 = \{$, {a}, X}. The set A = {a} is (1, 2) - g closed but not (1, 2) - α^{**} closed.

Theorem

Every (i, j) - α^{**} closed set is (i, j) – gs closed. The converse of the above theorem is not true as shown in the following example.

Example

Let X = {a, b, c}, $\tau_1 = \{$, {c}, {a, b}, X}, $\tau_2 = \{\varphi, \{a\}, X\}$. The set A = {b} is (1, 2) - gs closed but not (1, 2) - α^{**} closed.

Theorem

Every (i, j) - α^{**} closed set is (i, j) – gp closed. The converse of the above theorem is not true as shown in the following example.

Example

Let X = {a, b, c}, $\tau_1 = \{$, {c}, {a, b}, X}, $\tau_2 = \{$, {a}, X}. The set A = {b} is (1, 2) - gp closed but not (1, 2) - α^{**} closed.

Theorem

Every (i, j) - α^{**} closed set is (i, j) – g closed. The converse of the above theorem is not true as shown in the following example.

Example

Let X = {a, b, c}, $\tau_1 = \{ , \{c\}, \{a, b\}, X\}, \tau_2 = \{ , \{a\}, X\}.$ The set A = {a, c} is (1, 2) - g closed but not (1, 2) - α^{**} closed.

Theorem

Every (i, j) - α^{**} closed set is (i, j) – gsp closed. The converse of the above theorem is not true as shown in the following example.

Example

Let X = {a, b, c}, $\tau_1 = \{$, {c}, {a, c}, X}, $\tau_2 = \{$, {a}, X}. The set A = {c} is (1, 2) - gsp closed but not (1, 2) - α^{**} closed.

Remark

(i, j) - α^{**} closedness is independent of (i, j) - g closedness.

Exampie

Let $X = \{a, b, c\}, \tau_1 = \{ , \{a\}, X\}, \tau_2 = \{ , \{a\}, \{a, b\}, X\}.$ The set $A = \{a, b\}$ is (1, 2) - ** closed but not $(1, 2) - g\alpha$ closed.

Example

Let X = {a, b, c}, $\tau_1 = \{ , \{a, b\}, X\}, \tau_2 = \{\phi, \{a\}, X\}$. The set A = {b} is (1, 2) - g\alpha closed but not (1, 2) - α^{**} closed.

Remark

(i, j) - α^{**} closedness is independent of (i, j) – closedness.

Example

Let $X = \{a, b, c\}$, $\tau_1 = \{ , \{a\}, \{b\}, \{a, b\}, X\}$, $\tau_2 = \{ , \{a\}, \{a, b\}, X\}$. The set $A = \{a, c\}$ is $(1, 2) - \alpha^{**}$ closed but not (1, 2) - closed.

Example

Let X = {a, b, c}, $\tau_1 = \{$, {c}, {a, b}, X}, $\tau_2 = \{$, {a}, X}. The set A = {a, c} is (1, 2) - closed but not (1, 2) - α^{**} closed.

Theorem

If A,B **C(i, j), then (AUB) (**C(i, j)

Remark

The intersection of two (i, j) - α^{**} closed sets need not be (i, j) - α^{**} closed.

Example

Let X = {a, b, c}, $\tau_1 = \{$, {a}, X}, $\tau_2 = \{$, {a}, {a, b}, X}. Let A = {a, b} and B = {a, c}. The sets A and B are (1, 2) - α^{**} closed but A \cap B = {a} is not (1, 2) - α^{**} closed.

Remark

**C(1, 2) is generally not equal to **C(2, 1)

Example

Let X = {a, b, c}, $\tau_1 = \{\varphi, \{c\}, \{a, c\}, X\}, \tau_2 = \{\varphi, \{a\}, X\}.$ The set A = {c} $\notin \alpha^{**}C(1, 2)$ but A = {c} $\notin \alpha^{**}C(2, 1).$ Therefore, $\alpha^{**}C(2, 1) \neq \alpha^{**}C(1, 2).$

Theorem

If A is (i, j) - α^{**} closed, then $\tau_j - cl(A) \setminus A$ contains no nonempty $\tau_i - *$ - closed set.

The converse of the above theorem is not true as shown in the following example

Example

Let X = {a, b, c}, τ_1 = { , {b}, {c}, {b, c}, {a, c}, X}, τ_2 = { φ , {a}, {b, c}, X}. The set A = {b} is not (1, 2) - α^{**} closed. $\tau_2 - cl(A) \land A = {b, c} \land {b} = {c}$ which is not τ_1 - α - closed. Therefore, $\tau_2 - cl(A) \land A$ contains no non-empty τ_1 - (- closed set and A = {b} is not (1, 2) - ** closed.

Theorem

If A is (i, j) - α^{**} closed in (X, τ_i , τ_j), then A is τ_j – closed if and only if τ_j – cl(A)\ A is τ_i – * - closed.

Theorem

If A is an (i, j) - α^{**} closed set of (X, τ_i, τ_j) such that A \subseteq B $\subseteq \tau_j - cl(A)$, then B is also an (i, j) - α^{**} closed set of (X, τ_i, τ_j)

Theorem

For each element 'x' of (X, τ_i, τ_j) , {x} is either $\tau_i -$ * - closed or X - {x} is (i, j) - α^{**} closed

Theorem

Every (i, j) - g^* closed set is (i, j) - α^{**} closed. The converse of the above theorem is not true as shown in the following example.

Example

Let X = {a, b, c}, $\tau_1 = \{ , \{a\}, X\}, \tau_2 = \{ , \{a\}, \{a, b\}, X\}.$ The set A = {b} is (1, 2) - α^{**} closed but not (1, 2) - g* closed.

Remark

(i, j) - α^{**} closedness is independent of (i, j) - α^{*} closedness.

Example

Let X = {a, b, c}, $\tau_1 = \{ , \{a\}, X\}, \tau_2 = \{ , \{a\}, \{a, b\}, X\}.$ The set A = {b} is (1, 2) - α^{**} closed but not (1, 2) - α^* closed.

Example

Let X = {a, b, c}, $\tau_1 = \{ , \{c\}, \{a, b\}, X\}, \tau_2 = \{ , \{a\}, X\}.$ The set A = {a, c} is (1, 2) - * closed but not (1, 2) - α^{**} closed.

The following figure gives the results we have proved.

Here A=> B represents A implies B and $A \neq>$ B represents A does not imply D

Applications of $(i, j) - \alpha^{**}$ closed sets

As applications of (i, j) - α^{**} closed sets, we introduce seven new bitopological spaces, namely, (i, j) - T_{α}^{**} space, (i, j) - $_{\alpha g}$ T_{α}^{**} space, (i, j) - $_{gs}$ T_{α}^{**} space, (i, j) - $_{g}$ T_{α}^{**} space, (i, j) - $_{gsp}$ T_{α}^{**} space, (i, j) - $_{gp}$ T_{α}^{**} space and (i, j) - $_{gpr}$ T_{α}^{**} space.

We introduce the following definitions.

Definition

A bitopological space (X, τ_i, τ_j) is said to be an (i, j) - T_{α}^{**} space, if every (i, j) - α^{**} closed set is τ_j - closed.

Definition

A bitopological space (X, τ_i, τ_j) is said to be an $(i, j) - \alpha g$ T_{α}^{**} space, if every $(i, j) - \alpha g$ closed set is $(i, j) - \alpha^{**}$ closed.

Definition

A bitopological space (X, τ_i, τ_j) is said to be an (i, j) - gs T_{α}^{**} space, if every(i, j) - gs closed set is $(i, j) - \alpha^{**}$ closed.

Definition

A bitopological space (X, τ_i, τ_j) is said to be an (i, j) - g T_{α}^{**} space, if every(i, j) - g closed set is $(i, j) - \alpha^{**}$ closed.

Definition

A bitopological space (X, τ_i, τ_j) is said to be an $(i, j) - g_{sp} T_{\alpha}^{**}$ space, if every(i, j) –gsp closed set is $(i, j) - \alpha^{**}$ closed.

Definition

A bitopological space (X, τ_i, τ_j) is said to be an (i, j) - gp T_{α}^{**} space, if every(i, j) - gp closed set is $(i, j) - \alpha^{**}$ closed.

Definition

A bitopological space (X, τ_i, τ_j) is said to be an (i, j) - gpr T_{α}^{**} space, if every(i, j) - gpr closed set is $(i, j) - \alpha^{**}$ closed.

Theorem

Every (i, j) - $T_{1/2}$ space is an (i, j) - T_{α}^{**} space. The converse of the above theorem is not true as shown in the following example.

Example

Let X = {a, b, c}, $\tau_1 = \{$, {c}, {a, b}, X}, $\tau_2 = \{$, {a}, X}. Here all the (1, 2) - α^{**} closed sets are τ_2 -closed. \therefore (X, τ_1, τ_2) is an (1, 2) - τ_{α}^{**} space. The set A = {a, c} is (1, 2) - g closed but not τ_2 - closed. Hence (X, τ_1, τ_2) is not a (1, 2)- $T_{1/2}$ space.

Theorem

Every (i, j) - T_b space is an (i, j) - T_{α}^{**} space. The converse of the above theorem is not true as shown in the following example.

Example

Let X = {a, b, c}, τ_1 = { , {c}, {a, b}, X}, τ_2 = { , {a}, X}. Here all the (1, 2) - α^{**} closed sets are τ_2 -closed. \therefore (X, τ_1, τ_2) is an (1, 2) - T_{α}^{**} space. The set A = {b} is (1, 2) - gs closed but not τ_2 - closed. Hence (X, τ_1, τ_2) is not a (1, 2)- T_b space.

Theorem

A space which is both (i, j) - α T_d and (i, j) - $T_{1/2}$ is an (i, j) - T_{α}^{**} space.

Theorem

Every (i, j) - α T_b space is an (i, j) - T_{α}^{**} space. The converse of the above theorem is not true as shown in the following example.

Example

Let X = {a, b, c}, $\tau_1 = \{$, {c}, {a, b}, X}, $\tau_2 = \{$, {a}, X}. Here all the (1, 2) - α^{**} closed sets are τ_2 -closed. \therefore (X, τ_1, τ_2) is an (1, 2) - T_{α}^{**} space. The set A = {b} is (1, 2) - g closed but not τ_2 - closed. Hence (X, τ_1 , τ_2) is not a (1, 2)- $_{\alpha}$ T_b space.

Theorem

Every (i, j) - T_b space is an (i, j) - g_s T_{α}^{**} space. The converse of the above theorem *is* not true as shown in the following example.

Example

Let X = {a, b, c}, $\tau_1 = \{q, \{a\}, X\}, \tau_2 = \{q, \{a\}, \{a, b\}, X\}.$ Here every (1,2) – gs closed set is (1, 2) - α^{**} closed. \therefore (X, τ_1 , τ_2) is a (1, 2) - $_{gs}$ T_{α}^{**} space. The set A = {b} is (1, 2) - $_{gs}$ closed but not τ_2 - closed. Hence (X, τ_1, τ_2) is not a (1, 2)- T_b space.

Theorem

Every (i, j) - α T_b space is an (i, j) - αg T_{α}^{**} space. The converse of the above theorem is not true as shown in the following example.

Example

Let X = {a, b, c}, $\tau_1 = \{\varphi, \{a\}, X\}, \tau_2 = \{\varphi, \{a\}, \{a, b\}, X\}.$ Here every (1,2) – α g closed set is (1, 2) - α^{**} closed. \therefore (X, τ_1, τ_2) is a (1, 2) - $_{\alpha g}$ T_{α}^{**} space. The set A = {b} is (1, 2) - $_{\alpha g}$ closed but not τ_2 - closed. Hence (X, τ_1, τ_2) is not a (1, 2)- $_{\alpha}$ T_b space.

Theorem

Every (i, j) - $T_{1/2}$ space is an (i, j) - T_{α} ** space.

The converse of the above theorem is not true as shown in the following example.

Example

Let X = {a, b, c}, $\tau_1 = \{\iota, \{a\}, X\}, \tau_2 = \{\varphi, \{a\}, \{a, b\}, X\}.$ Here every (1, 2) – g closed set is (1, 2) - α^{**} closed. \therefore (X, τ_1 , τ_2) is a (1, 2) - $_g$ T_{α}^{**} space. The set A = {b} is (1, 2) - g closed but not τ_2 - closed. Hence (X, τ_1, τ_2) is not a (1, 2)- $T_{1/2}$ space.

Theorem

A space is both (i, j) - $_g T_{\alpha}^{**}$ space and (i, j) - T_{α}^{**} space if and only if it is an (i, j) - $T_{1/2}$ space.

Theorem

A space (X, τ_i, τ_j) which is both (i, j) - g_s T_{α}^{**} space and (i, j) - T_{α}^{**} space is an (i, j) - T_b space.

Theorem

A space (X, τ_i, τ_j) which is both $(i, j) - \alpha T_{\alpha} **$ space and $(i, j) - T_{\alpha} **$ space is an $(i, j) - \alpha T_b$ space.

Theorem

Every (i, j) - $_{\alpha g}$ T_{α}^{**} space is an (i, j) - $_{g}$ T_{α}^{**} space. The converse of the above theorem is not true as shown in the following example.

Example

Let X = {a, b, c}, $\tau_1 = \{\cdot, \{c\}, \{a, c\}, X\}, \tau_2 = \{\phi, \{a\}, X\}.$ Here every (1, 2) – g closed set is (1, 2) - α^{**} closed. \therefore (X, τ_1 , τ_2) is a (1, 2) - $_g$ T_{α}^{**} space. The set A = {c} is (1, 2) - $_{ag}$ closed but not (1, 2) - α^{**} closed. Hence (X, τ_1, τ_2) is not a (1, 2)- $_{\alpha g}$ T_{α}^{**} space.

Theorem

Every (i, j) - g_s T_{α}^{**} space is an (i, j) - g_{α}^{**} space. The converse of the above theorem is not true as shown in the following example.

Example

Let X = {a, b, c}, $\tau_1 = \{$, {c}, {a, c}, X}, $\tau_2 = \{\varphi, \{a\}, X\}$. Here every (1, 2) – g closed set is (1, 2) - α^{**} closed. \therefore (X, τ_1 , τ_2) is a (1, 2) - $_g$ T_{α}^{**} space. The set A = {c} is (1, 2) – gs closed but not (1, 2) - α^{**} closed. Hence (X, τ_1, τ_2) is not a (1, 2)- $_{gs}$ T_{α}^{**} space.

Theorem

Every (i, j) - $_{gp}$ T_{α}^{**} space is an (i, j) - $_{g}$ T_{α}^{**} space. The converse of the above theorem is not true as shown in the following example.

Example

Let X = {a, b, c}, $\tau_1 = \{$, {c}, {a, c}, X}, $\tau_2 = \{\varphi, \{a\}, X\}$. Here every (1, 2) – g closed set is (1, 2) - α^{**} closed. \therefore (X, τ_1 , τ_2) is a (1, 2) – $_g$ T_{α}^{**} space. The set A = {c} is (1, 2) – gp closed but not (1, 2) - α^{**} closed. Hence (X, τ_1, τ_2) is not a (1, 2)- $_{ap}$ T_{α}^{**} space.

Theorem

Every (i, j) - $_{gsp}$ T_{α}^{**} space is an (i, j) - $_{g}$ T_{α}^{**} space. The converse of the above theorem is not true as shown in the following example.

Example

Let X = {a, b, c}, $\tau_1 = \{$, {c}, {a, c}, X}, $\tau_2 = \{\varphi, \{a\}, X\}$. Here every (1, 2) – g closed set is (1, 2) - α^{**} closed. \therefore (X, τ_1 , τ_2) is a (1, 2) - $_g$ T_{α}^{**} space. The set A = {c} is (1, 2) – gsp closed but not (1, 2) - α^{**} closed. Hence (X, τ_1, τ_2) is not a (1, 2)- $_{gsp}$ T_{α}^{**} space.

Theorem

Every (i, j) - $_{gpr}$ T_{α}^{**} space is an (i, j) - $_{g}$ T_{α}^{**} space. The converse of the above theorem is not true as shown in the following example.

Example

Let X = {a, b, c}, $\tau_1 = \{$, {c}, {a, c}, X}, $\tau_2 = \{\varphi, \{a\}, X\}$. Here every (1, 2) – g closed set is (1, 2) - α^{**} closed. \therefore (X, τ_1 , τ_2) is a (1, 2) - $_g$ T_{α}^{**} space. The set A = {a} is (1, 2) – gpr closed but not (1, 2) - α^{**} closed. Hence (X, τ_1, τ_2) is not a (1, 2)- $_{gpr}$ T_{α}^{**} space.

Theorem

A space which is both (i, j) - T_d and (i, j) - $T_{1/2}$ is an (i, j) - $as T_a^{**}$ space.

Theorem

Theorem

Every (i, j) - g_s T_{α}^{**} space is an (i, j) - T_d space. **Theorem**

A space is both (i, j) - T_d space and (i, j) - $_g$ T_{α}^{**} space if and only if it is an (i, j) - $_{gs}$ T_{α}^{**} space.

Theorem

Every (i, j) - α_{ag} T_{α}^{**} space is an (i, j) - α T_{d} space.

Theorem

A space is both (i, j) - $_{\alpha}$ T_{d} space and (i, j) - $_{g}$ T_{α}^{**} space if and only if it is an (i, j) - $_{\alpha g}$ T_{α}^{**} space.

The following figure gives the results we have proved.

 $A \rightarrow B$ represents A implies B and A $\rightarrow B$ represents A does not imply B

References

- 1. Andrijevic. D, Semi-pre open sets, Mat.vesnik, 38(1)(1986),24-32.
- 2. Dontchev.J, On generalizing semi preopensets,Mem.Fac.Sci.Kochi.Univ.Ser.A.Math.,16 (1995),35-48.
- 3. Fukutake.T, Bull, Fukuoka Univ.Ed. Part III,35(1985),19-28.
- 4. Fukutake. T,P. Sundaran and M. Sheik John, Bull, Fukuoka Univ. Ed. Part III,51(2002),1-9.
- 5. Fukutake. T,P. Sundaran and M. SheikJohn, -closed sets, -open sets and -continuity in bitopological spaces Bull, Fukuoka Univ.Ed. Part III,51(2002),1-9.
- 6. Fukutake. T,P. Sundaran and N. Nagaveni, Bull, Fukuoka Univ. Ed. Part III,48(1999),33-40.
- 7. Kelley.J.C,proc,London.Math,Sci,13(1963),71-89.
- Khedr, F.H and Hanan S. AlSaddi, On pair wise semi generalized closed sets, JKAU; Sci, Vol 21 No.2, PP:269 – 295(2009 A.D/1430 AH); DOI 10.4197 Sci. 21-27
- 9. Levine. N, Generalized closed sets in topology, Rend, Circ. Math. Palermo, 19(2)(1970)89-96
- 10. Levine. N, Semi-open sets and Semi continuity in topological spaces, Amer. Math. Monthly, 70(1963),36-41
- 11. Mashhour. A.S, M.E.Abd El-Mon sef and S.N.El-Deeb, On Pre-continuous and weak-pre continuous

mappings, proc. Math and Phys.Soc.Egypt,53(1982),47-53.

- 12. Njastad.O, On some classes of nearly open sets, Pacific J.Math.,15(1965),961-970.
- 13. Palaniappan.N and K.C.Rao,Regular generalized closed sets,KyungpookMath.J,33(2)(1993),211-219.
- 14. Pauline Mary Helen. M, Ponnuthai Selvarani, Veronicavijayan,g**-closed sets in topological spaces,IJMA,3(5)(2012),1-15.
- 15. Sheik John.M and P. Sundaram,g*-closed sets in bitopological spaces, Indian J.Pure,Appl.Math,35(1) (2004),71-80.
- 16. Stone. M,Trans. Amer.Math.Soc,41(1937),374-481.

- 17. Tantawy.O.A.El and H.M.Abu Donia, Generalized
- 18. separation Axioms in bitopological spaces. The Arabian JI for science and Engg.Vol.30.No.1A(2005),117-129.
- 19. Veerakumar. M.K.R.S, Mem. Fac.Sci. Kochi. Univ(Math),21(2000),1-19.
- 20. Veronica Vijayan, Abarna.A, * closed sets in bitopological spaces, IJCA, Issue 3, Volume 4(July-August 2013), ISSN: 2250-1797, PP : 30-39
- 21. Veronica Vijayan, Priya.F., *-closed sets in topological spaces, IJCA, Issue 3, Volume 4(July-August 2013), ISSN: 2250-1797, PP : 49-60
