

Available Online at http://www.recentscientific.com

CODEN: IJRSFP (USA)

International Journal of Recent Scientific Research Vol. 13, Issue, 12 (A), pp. 2686-2688, December, 2022

International Journal of Recent Scientific Rerearch

DOI: 10.24327/IJRSR

Research Article

NEW TYPE OF HOMEOMORPHISM IN TOPOLOGICAL SPACE

Shikha Agarwal

Department of Mathematics, S C R I E T, C C S University, Meerut (U.P.)

DOI: http://dx.doi.org/10.24327/ijrsr.2021.1211.0551

ARTICLE INFO

ABSTRACT

Article History: Received 1st November, 2022 Received in revised form 15th November, 2022 Accepted 10th December, 2022 Published online 28th December, 2022 In this paper we introduce and study new class of homeomorphisms called \overline{g} -homeomorphisms and \overline{g} c-homeomorphisms. Further we show that the set of all \overline{g} c-homeomorphisms form a group under the operation composition of mappings

Keywords:

 \overline{g} -homeomorphisms; \overline{g} c-homeomorphisms.

Copyright © Shikha Agarwal 2022, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The notion homeomorphism plays an important role in topology. A homeomorphism is a bijective map $f: X \to Y$ when both f and f^{-1} are continuous. Maki et al⁽⁵⁾ introduced and investigated g-homeomorphisms and gc-homeomorphisms. Devi et al⁽⁶⁾ introduced and studied sg-homeomorphisms and gs-homeomorphisms. Veera kumar⁽⁸⁾ introduced and studied *g-homeomorphisms and *gc-homeomorphisms. Recently the

authors $^{(9)}$ introduced and studied $\hat{\hat{g}}$ -homeomorphisms and $\hat{\hat{g}}$ c-homeomorphisms.

In this paper we introduce and study new class of homeomorphisms called \overline{g} -homeomorphisms and \overline{g} c-homeomorphisms. Further we show that the set of all \overline{g} c-homeomorphisms form a group under the operation composition of maps.

PRELIMINARIES

We recall the following definitions:

Definition 2.1

A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called semi-closed map⁽¹⁾ (resp. gclosed ⁽⁵⁾, gs-closed⁽⁶⁾, sg-closed⁽⁶⁾, *g-closed⁽⁸⁾, ψ -closed⁽¹¹⁾, \hat{g} closed⁽⁹⁾) map if the image of each closed set in (X, τ) is semi closed set (resp. g-closed set, gs-closed set, sg-closed set, *gclosed set, ψ -closed set, \hat{g} -closed set) in (Y, σ) .

Definition 2.2

A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called g-continuous⁽¹²⁾ (resp. gs-continuous⁽⁷⁾, sg-continuous⁽¹³⁾, *g-continuous⁽⁸⁾, ψ continuous⁽¹⁵⁾, \hat{g} -continuous⁽¹⁴⁾) if the inverse image of every σ -closed set in Y is g-closed (resp. gs-closed, sg-closed, *gclosed, ψ -closed, \hat{g} -closed) in X.

Definition 2.3

A bijection f: $(X, \tau) \rightarrow (Y, \sigma)$ is called :

(i) g-homeomorphism⁽⁹⁾ if f is both g-continuous and g-open (ii) gc-homeomorphism⁽⁹⁾ if f and f¹ are g-irresolute (iii) gshomeomorphism⁽¹²⁾ if f is both gs-continuous and gs-open (iv) sg-homeomorphism⁽¹²⁾ if f is both sg-continuous and sg-open map (v) *g-homeomorphism⁽⁸⁾ if f is both *g-continuous and *g-open (vi) *gc-homeomorphism⁽⁸⁾ if f and f¹ are *girresolute (vii) ψ -homeomorphism⁽¹¹⁾ if f is both ψ -continuous and ψ -open (viii) \hat{g} -homeomorphism⁽⁹⁾ if f is both \hat{g} continuous and \hat{g} -open (ix) \hat{g} c-homeomorphism⁽⁹⁾ if f and f¹ are \hat{g} -irresolute (x) semi-homeomorphism (B)⁽³⁾ if f is continuous and open map.

3.0 \overline{g} -homeomorphism and \overline{g} c-homeomorphsim

In this section we introduce the following definitions.

^{*}Corresponding author: Shikha Agarwal

Department of Mathematics, S C R I E T, C C S University, Meerut(U.P.)

Definition 3.1

A bijection f: $(X, \tau) \rightarrow (Y, \sigma)$ is called \overline{g} -homeomorphism if f is both \overline{g} -continuous and \overline{g} -closed map i.e. both f and f¹ are \overline{g} -continuous maps.

Theorem 3.2

Every homeomorphism is \overline{g} -homeomorphism.

The converse of the above theorem is not necessarily true as it can be seen by the following example.

Example 3.3: Let $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = a, f(b) = b and f(c) = c then f is \overline{g} -homeomorphism but not homeomorphism.

Theorem 3.4

Every \hat{g} -homeomorphism and so \hat{g} c-homeomorphism is \overline{g} -homeomorphism.

The converse of the above theorem is not necessarily true as it can be seen by the following example.

Example 3.5 : $X = Y = \{a, b, c\}, \tau = \{\phi, \{b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a\}, Y\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by identity mapping

then f is \overline{g} -homeomorphism but not $\hat{\hat{g}}$ -homeomorphism and

ĝ c-homeomorphism.

Theorem 3.6

Every \overline{g} -homeomorphism is g-homeomorphism.

Theorem 3.7

Every *g-homeomorphism is \overline{g} -homeomorphism.

The converse of the above theorem is not necessarily true as it can be seen by the following example.

Example 3.8: In example (3.5), Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = c and f(c) = a then f is \overline{g} -homeomorphism but not *g-homeomorphism.

Theorem 3.9

Every \overline{g} -homeomorphism is gs-homeomorphism.

The converse of the above theorem is not necessarily true as it can be seen by the following example.

Example 3.10: $X = Y = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{b\}, \{a, b\}, Y\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = b, f(b) = a and f(c) = c then f is gs-homeomorphism but not \overline{g} - homeomorphism.

Remark 3.11

 \overline{g} -homeomorphism and s-homeomorphism (B) (or sghomeomorphism or ψ -homeomorphism) are independent.

Definition 3.12

A bijection f: $(X, \tau) \rightarrow (Y, \sigma)$ is called a \overline{g} c-homeomorphism if f and f¹ are \overline{g} -irresolute.

We denote the family of all \overline{g} c-homeomorphism of a topological space (X, τ) onto itself by \overline{g} c-h(X, τ).

Theorem 3.13

Every \overline{g} c-homeomorphism is \overline{g} -homeomorphism.

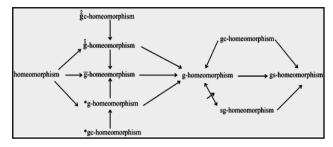
The following example supports that the converse of the above theorem is not true.

Example 3.14: In example (3.3), f is \overline{g} -homeomorphism but not \overline{g} c-homeomorphism since f^{-1} is not \overline{g} -irresolute for {a} is closed set in X but $(f^{-1})^{-1}(\{a\}) = \{a\}$ is not a \overline{g} -closed set in Y.

Therefore the class of \overline{g} -homeomorphisms properly contains

the class of homeomorphisms, the class of \hat{g} homeomorphisms, the class of \hat{g} c-homeomorphisms, the class of *g-homeomorphisms. Also this new class is properly contained in the class of g-homeomorphisms and the class of gs-homeomorphisms.

All the above discussions can be represented by the following diagram.



Theorem 3.15

If f: $(X, \tau) \rightarrow (Y, \sigma)$ be a bijective and \overline{g} -continuous maps then following are equivalent :

(i)f is \overline{g} -open map.

(ii) f is \overline{g} -homeomorphism.

(iii)f is \overline{g} -closed map.

Theorem 3.16

If f: $(X, \tau) \rightarrow (Y, \sigma)$ and g : $(Y, \sigma) \rightarrow (Z, \eta)$ are \overline{g} c-homeomorphism then their composition gof : $(X, \tau) \rightarrow (Z, \eta)$ is also \overline{g} c-homeomorphism.

Theorem 3.17

The set \overline{g} c-h(X, τ) is a group under the composition of maps. *Proof:* Define a binary operation $_*$: \overline{g} c-h(X, τ) $\times \overline{g}$ c-h(X, τ) $\rightarrow \overline{g}$ c-h(X, τ) by f*g = gof for all f and g $\in \overline{g}$ c-h(X, τ), then by theorem (3.17) gof $\in \overline{g}$ c-h(X, τ). Again composition of maps is associated and the identity map I: (X, τ) \rightarrow (X, τ) belonging to \overline{g} c-h(X, τ) is identity element of \overline{g} c-h(X, τ). If f $\in \overline{g}$ c-h(X, τ) then f¹ $\in \overline{g}$ c-h(X, τ) s.t. fof¹ = f¹of = I so

Theorem 3.18

Let $f: (X, \tau) \to (Y, \sigma)$ be a \overline{g} c-homeomorphism then f induces an isomorphism from the group \overline{g} c-h(X, τ) onto the group \overline{g} c-h(Y, σ).

Proof : Define θ_f : \overline{g} c-h(X, τ) → \overline{g} c-h(Y, σ) by θ_f (h) = fohof ¹ for every h ∈ \overline{g} c-h(X, τ). Then θ_f is a bijection. Again for all h₁, h₂ ∈ \overline{g} c-h(X, τ), θ_f (h₁oh₂) = fo (h₁oh₂)of¹ = (foh₁of¹) o (foh₂f¹) = θ_f (h₁)oθ_f (h₂) so θ_f is a homeomorphism and so it is an isomorphism induced by f.

Theorem 3.19

 \overline{g} C-homeomorphism is an equivalence relation in the collection of all topological spaces.

Theorem 3.20

If $f : (X, \tau) \to (Y, \sigma)$ is a \overline{g} c-homeomorphism then \overline{g} -cl(f¹(A)) = f¹(\overline{g} -cl(A)) for all $A \subseteq Y$.

Corollary 3.21

If $f : (X, \tau) \to (Y, \sigma)$ is \overline{g} c-homemorphism then \overline{g} -cl(f(A)) = $f(\overline{g} - cl(A))$ for all $A \subseteq X$.

Proof: Follows from theorem (3.20).

Definition 3.22

Let (X, τ) be a topological space and $A \subseteq X$. We define the \overline{g} -interior of A $(\overline{g}$ -int(A)) to be the union of all \overline{g} -open sets contained in A.

Lemma 3.23

For any $A \subseteq X$, $int(A) \subseteq \overline{g}$ - $int(A) \subseteq A$.

Proof: Since every open set is \overline{g} -open so proof follows immediately.

Theorem 3.24

If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a \overline{g} -open mapping then for a subset A of (X, τ) , f $(int(A)) \subseteq \overline{g}$ -int(f(A)).

Theorem 3.25

If f: $(X, \tau) \rightarrow (Y, \sigma)$ is a \overline{g} c-homeomorphism then f $(\overline{g} - int(A)) = \overline{g} - int(f(A))$ for all $A \subseteq X$.

Proof: For any set A of X, $\overline{g} - int(A) = (\overline{g} - cl(A^C))^C$. Thus $f(\overline{g} - int(A)) = f((\overline{g} - cl(A^C))^C) = (f(\overline{g} - cl(A^C)))^C$ $= (\overline{g} - cl(f(A^C)))^C$ by corollary (3.21) $= (\overline{g} - cl((f(A))^C))^C = \overline{g} - int(f(A)).$

Corollary 3.26

If f: $(X, \tau) \to (Y, \sigma)$ is \overline{g} c-homeomorphism then $f^{-1}(\overline{g} - int (A))$ = \overline{g} -int $(f^{-1}(A))$ for all $A \subseteq Y$.

References

- Levine N.: Semi open sets and semi continuity in topological spaces, *Amer. Math. Monthly*, **70** (1963), 36-41.
- 2. Levine N: Generalized closed sets in topology, *Rend. Circ. Mat. Palermo*, **19** (1970), 89-96.
- 3. Biswas N: Bull. Calcutta Math. Soc., (1969), 127-135.
- 4. Malghan S.R.: Generalized closed maps, J. Karnataka Univ. Sci. 27(1982), 82-88.
- 5. Maki H., Sundaram P. and Balachandran K..: On generalized homeomorphisms in topological spaces, *Bul.Fukuoka Univ. Ed.Part III.* 40(1991), 23-31.
- 6. Devi R., Maki H and Balachandran K.: Semi Generalized closed maps and generalized semi closed maps *Mem.*, *Fac. Sci. Kochi. Univ. Ser., A. Math.*, 14, (1993), 41-54.
- 7. Devi R., Maki H and Balachandran K. : Semi Generalized homeomorphism and generalized semi homeomorphism in topological spaces, *Indian Jour. Pure Appl. Math.*, 26(3), (1995), 271-284.
- 8. Veera Kumar M.K.R.S. : Between g^{*}-closed sets and gclosed sets, *Antarktika J. Math.* (Reprint).
- Garg M., Agarwal S., Goel S. and Goel C.K. : On ĝ homeomorphisms in topological spaces, *Ultra Sci.*, 19(3)M, (2007), 697-706.
- 10. Goel C.K., Garg M. and Agarwal P.: On **gs-closed sets in topological spaces, *Ultra Sci.*, 27(2)B, 2015, 95-104.
- 11. Garg M., Agarwal S. and Goel C.K.: On ψ -homeomorphisms in topological spaces, *Reflection des ERA-JPS*, 4, 2010, 9-24.
- 12. Balachandran K., Sundaram P. and Maki H.: On generalized continuous maps in topological space, *Mem. Fac. Sci. Kochi Univ. Ser. A. Math. 12(1991), 5-13.*
- Sundaram P., Maki H. and Balachandran K.: Semigeneralized continuous maps and semi-T_{1/2} spaces *Bull. Fukukoa Univ. Ed. Part-III*, 40(1991), 33-40.
- Garg. M., Agarwal S. and Goel C.K., on ĝ -closed sets in topological spaces, *Acta., Cinecia Indica* vol. XXXII M., 4 (2007) 1643-1652.
- 15. sVeera Kumar M.K.R.S. :Between semi closed set and semi pre closed set, *Rend. Istint. Math. Univ. Trieste* (*Italy*). XXXII, (2010), 25-41.
