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INTRODUCTION

The notion homeomorphism plays an important role in
topology. A homeomorphism is a bijective map f : X —» Y
when both f and f* are continuous. Maki et al® introduced and
investigated g-homeomorphisms and gc-homeomorphisms.
Devi et al® introduced and studied sg-homeomorphisms and
gs-homeomorphisms. Veera kumar® introduced and studied
g-homeomorphisms and gc-homeomorphisms. Recently the
authors @ introduced and studied § -homeomorphisms and 4 c-
homeomorphisms.

In this paper we introduce and study new class of
homeomorphisms called g -homeomorphisms and g c-
homeomorphisms. Further we show that the set of all gc-
homeomorphisms form a group under the operation
composition of maps.

PRELIMINARIES

We recall the following definitions:

Definition 2.1

Amap f: (X, 1) > (Y, o) is called semi-closed map"¥ (resp. g-

closed ®, gs-closed®, sg-closed®, *g-closed®, y-closed™, § -

closed®) map if the image of each closed set in (X, 1) is semi
closed set (resp. g-closed set, gs-closed set, sg-closed set, *g-

A

closed set, y-closed set, § -closed set) in (Y, o).

*Corresponding author: Shikha Agarwal

Definition 2.2

A function f : (X, 1) > (Y, o) is called g-continuous®? (resp.

gs-continuous”,  sg-continuous™,  *g-continuous®, -

continuous™, § -continuous™) if the inverse image of every
o-closed set in Y is g-closed (resp. gs-closed, sg-closed, *g-
closed, y-closed, g -closed) in X.

Definition 2.3

A bijection f: (X, 1) = (Y, o) is called :

(i) g-homeomorphism® if f is both g-continuous and g-open
(ii) gc-homeomorphism® if f and f* are g-irresolute (iii) gs-
homeomorphism® if f is both gs-continuous and gs-open (iv)
sg-homeomorphism™® if f is both sg-continuous and sg-open
map (v) *g-homeomorphism® if f is both *g-continuous and
*g-open (vi) *gc-homeomorphism® if f and f' are *g-
irresolute (vii) y-homeomorphism™ if f is both y-continuous

and y-open (viii) § -homeomorphism® if f is both § -
continuous and § -open (ix) § c-homeomorphism® if f and f

are § -irresolute (x) semi-homeomorphism (B)® if f is
continuous and open map.

3.0 g -homeomorphism and g c-homeomorphsim

In this section we introduce the following definitions.
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Definition 3.1

A bijection f: (X, 7) — (Y, o) is called g -homeomorphism if
f is both g -continuous and g -closed map i.e. both f and f* are
g -continuous maps.

Theorem 3.2

Every homeomorphism is g -homeomorphism.

The converse of the above theorem is not necessarily true as it
can be seen by the following example.

Example 3.3: Let X =Y ={a, b, ¢}, 1= {¢, {a}, {b, ¢}, X} and
c=1{¢, {a}, Y}. Define f: (X, 1) > (Y, o) by f(a) = a, f(b) = b
and f(c) = c¢ then f is g-homeomorphism but not
homeomorphism.

Theorem 3.4
Every g -homeomorphism and so g c-homeomorphism is g -
homeomorphism.

The converse of the above theorem is not necessarily true as it
can be seen by the following example.

Example 3.5: X =Y ={a, b, c}, t={¢, {b}, {a, c}, X} and
o = {9, {a}, Y}. Define f: (X, 1) = (Y, o) by identity mapping

A

then f is g -homeomorphism but not § -homeomorphism and
é c-homeomorphism .

Theorem 3.6

Every g -homeomorphism is g-homeomorphism.

Theorem 3.7

Every *g-homeomorphism is g -homeomorphism.

The converse of the above theorem is not necessarily true as it
can be seen by the following example.

Example 3.8: In example (3.5), Define f : (X, 1) —> (Y, o) by
f(a) = b, f(b) = ¢ and f(c) = a then f is g -homeomorphism but
not *g-homeomorphism.

Theorem 3.9

Every g -homeomorphism is gs-homeomorphism.

The converse of the above theorem is not necessarily true as it
can be seen by the following example.

Example 3.10: X =Y ={a, b, c}, 1= {¢, {a}, {a, b}, {a, c}, X}
and o = {¢, {b}, {a, b}, Y}. Define f: (X, 1) > (Y, o) by f(a) =
b, f(b) = a and f(c) = ¢ then f is gs-homeomorphism but not g -
homeomorphism.

Remark 3.11

g -homeomorphism and s-homeomorphism (B) (or sg-
homeomorphism or y-homeomorphism) are independent.
Definition 3.12

A bijection f: (X, 1) = (Y, o) is called a g c-homeomorphism
if fand f* are g -irresolute.

We denote the family of all g c-homeomorphism of a
topological space (X, 1) onto itself by g c-h(X, 7).

Theorem 3.13

Every g c-homeomorphism is g -homeomorphism.

The following example supports that the converse of the above
theorem is not true.

Example 3.14: In example (3.3), f is g -homeomorphism but
not g c-homeomorphism since f* is not g -irresolute for {a} is
closed set in X but (f*)*({a}) = {a} is not a g -closed setin Y.

Therefore the class of g -homeomorphisms properly contains

the class of homeomorphisms, the class of g

homeomorphisms, the class of g c-homeomorphisms, the class
of *g-homeomorphisms. Also this new class is properly
contained in the class of g-homeomorphisms and the class of
gs-homeomorphisms.

All the above discussions can be represented by the following
diagram.
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Theorem 3.15

If f: (X, 1)~ (Y, o) be a bijective and g -continuous maps
then following are equivalent :

(i)f is g -open map.

(i)f is g -homeomorphism.

(iii)f is g -closed map.

Theorem 3.16

Iff: X,1)—> (Y, o) and g : (Y, 6)—> (Z, n) are gc-
homeomorphism then their composition gof : (X, 1) > (Z, 1) is
also g c-homeomorphism.

Theorem 3.17

The set g ¢c-h(X, 1) is a group under the composition of maps.
Proof: Define a binary operation » : g c-h(X, 1) x g c-h(X, 1)
— g c-h(X, 1) by f.g = gof for all f and g € g c-h(X, 7), then
by theorem (3.17) gof € gc-h(X, t). Again composition of
maps is associated and the identity map I: (X, 1) > (X, 1)
belonging to g c-h(X, 7) is identity element of g c-h(X, 7). If f
e gc-h(X, 1) then f* e gec-h(X, 1) s.t. fof* = flof = | so
inverse exist for all element of g c-h(X, 7). Thus (g c-h(X, 1),
0) is a group under the operation of composition of maps.
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Theorem 3.18
Let f: (X, t) = (Y, o) be a g c-homeomorphism then f induces

an isomorphism from the group g c-h(X, t) onto the group g c-
h(Y, o).

Proof : Define 6;: g c-h(X, 1) = g c¢-h(Y, o) by 6; (h) = fohof
! for every h e g c-h(X, t). Then 6 is a bijection. Again for all
hy, h, € gc-h(X, 1), 6; (hyohy) = fo (h,oh,)of* = (fohyof?) o
(foh,f%) = 6 (h1)06s (h,) so 65 is a homeomorphism and so it is
an isomorphism induced by f.

Theorem 3.19

5.
g C-homeomorphism is an equivalence relation in the
collection of all topological spaces.
Theorem 3.20 6.
If f: (X, ©) > (Y, o) isa gc-homeomorphism then g -cl(f
Y(A) = fi(g-cl(A) forall AcC Y. 7.
Corollary 3.21
If f: (X, 1) > (Y, 0) is g cchomemorphism then g -cl(f(A))
= £(g -cl(A)) for all A  X. 8.
Proof: Follows from theorem (3.20).
Definition 3.22 S
Let (X, 1) be a topological space and A < X. We define the
g -interior of A (g -int(A)) to be the union of all g -open 10.
sets contained in A.
Lemma 3.23 11.
For any A c X, int(A) c g -int(A) c A.
Proof: Since every open set is g -open so proof follows 12.
immediately.
Theorem 3.24 13
If f: (X, ©) = (Y, o) is a g -open mapping then for a subset A
of (X, 1), f (int(A)) < g -int(f(A)).
Theorem 3.25 14.
If f. (X, 1)—= (Y, o) is a g c-homeomorphism then f (g -
int(A)) = g -int(f(A)) for all A < X.
Proof: For any set A of X, g -int(A) = (g -cl(A%)°. o
Thus (g -int(A)) = f((g -cI(A))°) = (f(g -cI(A)°
= (g -cl(f(A%))) by corollary (3.21)
= (9 -cl((f(A))° = g -int(f(A)).

Corollary 3.26
If f: (X, 1) = (Y, o) is g c-homeomorphism then (g -int (A))
= g-int (FY(A)) forallAcY.
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