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The spread of HIV is a major issue which has received the attention of the medical personnel, 
mathematicians and also the people in the government. The rate of spread is really alarming. Till this 
day no medicine for complete cure is available. The mathematicians and statisticians use stochastic 
models to study the different aspects of this infection. An interesting aspect of study is to estimate the 
expected time to seroconversion using the concept of antigenic diversity. In this paper using two 
thresholds namely antigenic diversity and virulence thresholds expected time to seroconversion is found 
out under the assumption that the seroconversion occurs if any one of the two thresholds is crossed due 
to accumulation of antigens on successive occasions of exposure. The antigenic diversity threshold is 
taken to be a random variable which undergoes of change distribution. Numerical illustrations are also 
provided. 
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INTRODUCTION 
 
The incidence and spread of Human Immune Deficiency Virus (HIV) and the consequent Acquired Immune Deficiency Syndrome 
(AIDS) is really a matter of great concern in many of the countries. The spread of HIV is at an alarming rate and the complete cure 
from the same is not yet available. The people in the field of medicine strive hard and do research to find a medicine to cure the 
disease. The use of mathematical namely stochastic models to describe the rate of spread of epidemic, to determine the likely time 
at which a person becomes seropositive and also the likely time at which a person becomes an AIDS case are all area of interest in 
medical research. In the present work the expected time to seroconversion    is obtained using the stochastic model which is based 
on the shock model approach. In doing so, the two thresholds namely antigenic diversity threshold and virulence threshold are 
assumed. Antigenic diversity is the divergence of antigens so that the attack on the immune system is more pronounced. Virulence 
threshold expresses the intensity of virulence of the invading pathogens beyond which the human immune system fails. Several 
authors have studied the concept of virulence for example Levin and Svanborg Eden (1990), Weiss (2002) and Graham et al. 
(2005). Using    the concept of antigenic diversity threshold and virulence threshold the expected time to seroconversion is derived. 
The shock model and cumulative damage process has been discussed by Esary et al. (1973). 
 
Assumptions  

 
1. A person is exposed to sexual contacts with an infected partner and on each occasion of contact the transmission of HIV 

takes place. 
2. The mode of transmission of HIV on successive occasions results in the contribution to the antigenic diversity of the 

invading antigens. Also there is increase in the virulence of the invading antigens. 
3. As and when the total antigenic diversity crosses a particular level called the antigenic diversity threshold, then the 

seroconversion takes place. Similarly if the total virulence of the invading antigens crosses the virulence threshold, then 
the seroconversion will occur. 

4. The crossing of both antigenic diversity threshold and virulence threshold simultaneously is considered to be an 
impossible event. 

5. The two thresholds are random variables and are mutually independent. 
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Notations  
 

Xi : a random variable denoting the contribution to antigenic diversity on    the𝑖P

th contact  i=1,2,3,….,k and with probability density function g(.) with 
cumulative distribution function G(.) 

Yi : the increase in the virulence due to the 𝑖P

th contact, i=1,2,3,….,k with probability density function q (.) and cumulative distribution  function Q(.) 
Z1 : a random variable denoting antigenic threshold and has    probability     density  function h(.) and cumulative distribution function H(.) 
Z2 : a random variable denoting the virulence threshold with   probability  density   function m(.) and  cumulative distribution function M(.) 

Ui : a random variable  denoting the   inter  arrival  times    between contact i=1,2,3,….,k with probability density function of f (.) and cumulative 
distribution function F(.) 

l*(s) : Laplace transform of  l(t) 
T : time to seroconversion 

 

RESULTS  
 
When the virulence threshold undergoes change of distribution.  
The survivor function 𝑆(𝑡) is given by 
 
𝑆(𝑡) = 𝑃[𝑇 > 𝑡] = 𝑃[The antigenic diversity as well as the virulence due to k successive contacts do not cross the respective 
thresholds] 
 
 𝑆(𝑡) = 𝑃�∑ 𝑋𝑖 < 𝑍1 ⋂∑ 𝑌𝑖 < 𝑍2𝑘

𝑖=1
𝑘
𝑖=1 �  

         = 𝑃�∑ 𝑋𝑖 < 𝑍1]𝑘
𝑖=1 �𝑃�∑ 𝑌𝑖 < 𝑍2]𝑘

𝑖=1 � 
         = 𝑃[There are 𝑓𝑘 constant in (0, t) and the total antigenic diversity as well       
                as total virulence do not cross the respective thresholds] 
 
𝑆(𝑡) = ∑ [𝐹𝑘(𝑡) − 𝐹𝑘+1(𝑡)]∞

𝑘=0  �∫ 𝑔𝑘(𝑥)𝐻(𝑥)�������𝑑𝑥
∞
0 � �∫ 𝑞𝑘(𝑦)𝑀(𝑦)�������𝑑𝑦

∞
0 �                                                                                       … (1) 

 
Now, the random variable 𝑍2 denoting the virulence threshold undergoes change of distribution. 
 𝑍1~ℎ(. ) with cumulative distribution function 𝐻(. ) . 
𝑍1 is the antigenic diversity threshold and 𝑍2 does not undergoes changes 
 𝑍2~𝑚(. ) with cumulative distribution function 𝑀(. ). 
Suresh Kumar (2006) has dealt with the concept of the change of distribution of a random variable at a change point. 
Now it is assume that the virulence threshold 𝑍2 has a change of distribution after a particular point called the truncation point  𝜏 
which is a constant. The random variable 𝑍1 is such that 
 
𝑍1~𝑒𝑥𝑝(𝜃1)  
𝐻(𝑥) = 1 − 𝑒−𝜃1𝑥 
𝐻(𝑥)������� = 𝑒−𝜃1𝑥                                                                                                                                                                                  … (2) 
𝑍2~𝐸2(𝜃2) 

ℎ(𝑦) = 𝜃1𝑒−𝑦(𝜃1+𝜆) +
𝜆𝜃22𝑦

(𝜆 + 𝜃1 − 𝜃2)
𝑒−𝜃2𝑦 −

𝜆𝜃22

(𝜃1 − 𝜃2 + 𝜆)2
𝑒−𝜃2𝑦 +

𝜆𝜃22

(𝜆 + 𝜃1 − 𝜃2)2
𝑒−(𝜆+𝜃1)𝑦 

 

𝐻(𝑦) = 𝜃1 � 𝑒−𝑥(𝜃1+𝜆)
𝑦

𝑜
𝑑𝑥 +

𝜆𝜃22

(𝜆 + 𝜃1 − 𝜃2)
� 𝑥𝑒−𝜃2𝑥
𝑦

𝑜
𝑑𝑥 −

𝜆𝜃22

(𝜃1 − 𝜃2 + 𝜆)2
� 𝑒−𝜃2𝑥
𝑦

𝑜
𝑑𝑥 

 

  +
𝜆𝜃22

(𝜆 + 𝜃1 − 𝜃2)2
� 𝑒−𝑥(𝜆+𝜃1)
𝑦

𝑜
𝑑𝑥 

 

𝐼1 = 𝜃1 � 𝑒−𝑥(𝜃1+𝜆)
𝑦

𝑜
𝑑𝑥 

 

    = 𝜃1 �
𝑒−𝑥(𝜃1+𝜆)

−(𝜃1 + 𝜆)�
𝑜

𝑦

 

 

     = 𝜃1 �
𝑒−𝑦(𝜃1+𝜆)

−(𝜃1 + 𝜆) +
𝑒0

(𝜃1 + 𝜆)� 

 

    =
𝜃1

𝜃1 + 𝜆
�1 − 𝑒−𝑦(𝜃1+𝜆)� 
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𝐼2 =
𝜆𝜃22

(𝜆 + 𝜃1 − 𝜃2)
� 𝑥𝑒−𝜃2𝑥
𝑦

𝑜
𝑑𝑥 

 

     =  
𝜆𝜃22

(𝜆 + 𝜃1 − 𝜃2)
�−𝑥

𝑒−𝜃2𝑥

𝜃2
−
𝑒−𝜃2𝑥

𝜃22
�
𝑜

𝑦

 

 

=
𝜆𝜃22

(𝜆 + 𝜃1 − 𝜃2)
�−𝑦

𝑒−𝜃2𝑦

𝜃2
−
𝑒−𝜃2𝑦

𝜃22
� + �

1
𝜃22

� 

 

=
𝜆𝜃22

(𝜆 + 𝜃1 − 𝜃2)
�
1 − 𝑒−𝜃2𝑦 − 𝑦𝜃2𝑒−𝜃2𝑦

𝜃22
� 

 

=
𝜆

(𝜆 + 𝜃1 − 𝜃2)
�1 − 𝑒−𝜃2𝑦 − 𝑦𝜃2𝑒−𝜃2𝑦� 

 

𝐼3 =
−𝜆𝜃22

𝜃2(𝜃1 − 𝜃2 + 𝜆)2
�1 − 𝑒−𝜃2𝑦� 

 

𝐼4 =
𝜆𝜃22

(𝜆 + 𝜃1)(𝜃1 − 𝜃2 + 𝜆)2
�1 − 𝑒−(𝜆+𝜃1)𝑦� 

 

𝑀(𝑦)������� =
𝜃1

𝜃1 + 𝜆
�1 − 𝑒−𝑦(𝜃1+𝜆)� +

𝜆
(𝜆 + 𝜃1 − 𝜃2)

�1 − 𝑒−𝜃2𝑦 − 𝑦𝜃2𝑒−𝜃2𝑦� 

 

                   − 𝜆𝜃2
2

𝜃2(𝜃1−𝜃2+𝜆)2
�1 − 𝑒−𝜃2𝑦� + 𝜆𝜃2

2

(𝜆+𝜃1)(𝜃1−𝜃2+𝜆)2
�1 − 𝑒−(𝜆+𝜃1)𝑦�                                                                                      … (3) 

 

Where    𝑝1 = 𝜃1
𝜃1+𝜆

  , 𝑞1 = 𝜆
(𝜆+𝜃1−𝜃2)

   , 𝑝2 = 𝜆𝜃2
2

𝜃2(𝜃1−𝜃2+𝜆)2
  and 𝑞2 = 𝜆𝜃2

2

(𝜆+𝜃1)(𝜃1−𝜃2+𝜆)2
 

 
   𝑀(𝑦)������� = 𝑝1�1 − 𝑒−𝑦(𝜃1+𝜆)� + 𝑞1�1 − 𝑒−𝜃2𝑦 − 𝑦𝜃2𝑒−𝜃2𝑦�  − 𝑝2�1 − 𝑒−𝜃2𝑦� 
 
    +𝑞2�1 − 𝑒−(𝜆+𝜃1)𝑦� 
 
Now, 
𝑆(𝑡) = 𝑃𝑟{that there are exactly 𝑘 contacts in (0, 𝑡)and the antigenic diversity,  virulence developed do not cross the respective 
threshold levels} 
 

𝑆(𝑡) = �[𝐹𝑘(𝑡) − 𝐹𝑘+1(𝑡)]
∞

𝑘=0

 

 

            ×   �� 𝑔𝑘(𝑥)
∞

0

𝐻(𝑥)������� 𝑑𝑥� �� 𝑔𝑘(𝑦)
∞

0

𝑀(𝑦)������� 𝑑𝑦� 

 

= �[𝐹𝑘(𝑡) − 𝐹𝑘+1(𝑡)]
∞

𝑘=0

�� 𝑔𝑘(𝑥)
∞

0

𝑒−𝜃1𝑥 𝑑𝑥� �� 𝑞𝑘(𝑦)
∞

0

�𝑝1�1 − 𝑒−𝑦(𝜃1+𝜆)� + 𝑞1�1 − 𝑒−𝜃2𝑦 − 𝑦𝜃2𝑒−𝜃2𝑦�  

− 𝑝2�1 − 𝑒−𝜃2𝑦�+𝑞2�1 − 𝑒−(𝜆+𝜃1)𝑦��  𝑑𝑦� 

 
                                                                                    … (4) 
where 𝐹𝑘(𝑡) − 𝐹𝑘+1(𝑡) denotes the probability that there are exactly 𝑘 contacts in (0, 𝑡) as per renewal theory.  
Hence it is seen that 
 

= �[𝐹𝑘(𝑡) − 𝐹𝑘+1(𝑡)]
∞

𝑘=0

�[𝑔∗(𝜃1)]𝑘 + 𝑝1[𝑞∗(𝜃1 + 𝜆)]𝑘 + 𝑞1[𝑞∗(𝜃2)]𝑘 − 𝑞1𝜃2
𝑑
𝑑𝜃2

[𝑞∗(𝜃2)]𝑘 − 𝑝2[𝑞∗(𝜃2)]𝑘 + 𝑞2[𝑞∗(𝜆 + 𝜃1)]𝑘� 
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= �[𝐹𝑘(𝑡) − 𝐹𝑘+1(𝑡)][𝑔∗(𝜃1)]𝑘 + 𝑝1�[𝐹𝑘(𝑡) − 𝐹𝑘+1(𝑡)[𝑞∗(𝜃1 + 𝜆)]𝑘]
∞

𝑘=0

∞

𝑘=0

 

 

+𝑞1�[𝐹𝑘(𝑡) − 𝐹𝑘+1(𝑡)][𝑞∗(𝜃2)]𝑘 − 𝑞1𝜃2�[𝐹𝑘(𝑡) − 𝐹𝑘+1(𝑡)]
𝑑
𝑑𝜃2

[𝑞∗(𝜃2)]𝑘
∞

𝑘=0

∞

𝑘=0

 

 

−𝑝2�[𝐹𝑘(𝑡) − 𝐹𝑘+1(𝑡)][𝑞∗(𝜃2)]𝑘
∞

𝑘=0

+ 𝑞2�[𝐹𝑘(𝑡) − 𝐹𝑘+1(𝑡)]
∞

𝑘=0

[𝑞∗(𝜆 + 𝜃1)]𝑘 

 
 
= 𝑇1 + 𝑇2 + 𝑇3 − 𝑇4 − 𝑇5 + 𝑇6                                                                                … (5) 
Now, 
 

𝑇1 = �[𝐹𝑘(𝑡) − 𝐹𝑘+1(𝑡)][𝑔∗(𝜃1)]𝑘
∞

𝑘=0

 

 

= [1 − 𝑔∗(𝜃1)]�𝐹𝑘(𝑡)[𝑔∗(𝜃1)]𝑘−1
∞

𝑘=1

 

 

𝑇2 = 𝑝1�[𝐹𝑘(𝑡) − 𝐹𝑘+1(𝑡)][𝑞∗(𝜃1 + 𝜆)]𝑘
∞

𝑘=0

 

 

= 𝑝1[1 − 𝑞∗(𝜃1 + 𝜆)]�𝐹𝑘(𝑡)[𝑞∗(𝜃1 + 𝜆)]𝑘−1
∞

𝑘=1

 

 

𝑇3 = 𝑞1�[𝐹𝑘(𝑡) − 𝐹𝑘+1(𝑡)][𝑞∗(𝜃2)]𝑘
∞

𝑘=0

 

 

= 𝑞1[1 − 𝑞∗(𝜃2)]�𝐹𝑘(𝑡)[𝑞∗(𝜃2)]𝑘−1
∞

𝑘=1

 

 

𝑇4 = −𝑞1𝜃2�[𝐹𝑘(𝑡) − 𝐹𝑘+1(𝑡)]
𝑑
𝑑𝜃2

[𝑞∗(𝜃2)]𝑘
∞

𝑘=0

 

 

= 𝑞1𝜃2�[𝐹𝑘(𝑡) − 𝐹𝑘+1(𝑡)]𝑘[𝑞∗(𝜃2)]𝑘−1
𝑑
𝑑𝜃2

𝑞∗(𝜃2)
∞

𝑘=0

 

 

𝑇5 = −𝑝2�[𝐹𝑘(𝑡) − 𝐹𝑘+1(𝑡)][𝑞∗(𝜃2)]𝑘
∞

𝑘=0

 

 

= −𝑝2[1 − 𝑞∗(𝜃2)]�𝐹𝑘(𝑡)[𝑞∗(𝜃2)]𝑘−1
∞

𝑘=1

 

 
And 
 

𝑇6 = 𝑞2�[𝐹𝑘(𝑡) − 𝐹𝑘+1(𝑡)][𝑞∗(𝜆 + 𝜃1)]𝑘
∞

𝑘=0
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= 𝑞2[1 − 𝑞∗(𝜆 + 𝜃1)]�𝐹𝑘(𝑡)[𝑞∗(𝜆 + 𝜃1)]𝑘−1
∞

𝑘=1

 

 
Now, since 𝐿(𝑡) = 1 − 𝑆(𝑡) and taking the Laplace transform we get, 

𝐿∗(𝑠) = [1 − 𝑔∗(𝜃1)]𝑓∗(𝑠)�[𝑓∗(𝑠)𝑔∗(𝜃1)]𝑘−1
∞

𝑘=1

 

 

+𝑝1[1 − 𝑞∗(𝜃1 + 𝜆)]𝑓∗(𝑠)�[𝑓∗(𝑠)𝑞∗(𝜃1 + 𝜆)]𝑘−1
∞

𝑘=1

 

 

+𝑞1[1 − 𝑞∗(𝜃2)]𝑓∗(𝑠)�[𝑓∗(𝑠)𝑞∗(𝜃2)]𝑘−1
∞

𝑘=1

 

 

+𝑞1𝜃2
𝑑
𝑑𝜃2

𝑞∗(𝜃2) ��𝑘[𝑓𝑘
∗(𝑡)][𝑞∗(𝜃2)]𝑘−1 −

∞

𝑘=0

�𝑘[𝑓𝑘+1
∗(𝑡)][𝑞∗(𝜃2)]𝑘−1

∞

𝑘=0

� 

 

−𝑝2[1 − 𝑞∗(𝜃2)]𝑓∗(𝑠)�[𝑓∗(𝑠)𝑞∗(𝜃2)]𝑘−1
∞

𝑘=1

 

 

+𝑞2[1 − 𝑞∗(𝜆 + 𝜃1)]𝑓∗(𝑠)�[𝑓∗(𝑠)𝑞∗(𝜆 + 𝜃1)]𝑘−1
∞

𝑘=1

 

 
= 𝐴 + 𝐵 + 𝐶 + 𝐷 − 𝐸 + 𝐹  (on simplification )                                                                                                            ... (6) 
Where 
 

𝐴 =
[1 − 𝑔∗(𝜃1)]𝑓∗(𝑠)
[1 − 𝑓∗(𝑠)𝑔∗(𝜃1)] 

 
Similarly 
 

𝐵 =
𝑝1[1 − 𝑞∗(𝜃1 + 𝜆)]𝑓∗(𝑠)

[1 − 𝑓∗(𝑠)𝑞∗(𝜃1 + 𝜆)]  

 

𝐶 =
𝑞1[1 − 𝑞∗(𝜃2)]𝑓∗(𝑠)

[1 − 𝑓∗(𝑠)𝑞∗(𝜃2)]  

 

𝐷 =
𝑞1𝜃2[1 − 𝑓∗(𝑠)][𝑓∗(𝑠)] 𝑑

𝑑𝜃2
𝑞∗(𝜃2)

[1 − 𝑓∗(𝑠)𝑞∗(𝜃2)]2  

 

𝐸 = −
𝑝2[1 − 𝑞∗(𝜃2)]𝑓∗(𝑠)

[1 − 𝑓∗(𝑠)𝑞∗(𝜃2)]  

 

𝐹 =
𝑞2[1 − 𝑔∗(𝜆 + 𝜃1)]𝑓∗(𝑠)

[1 − 𝑓∗(𝑠)𝑔∗(𝜆 + 𝜃1)]  

 
(on simplification )           
 
Now 𝐸(𝑇) = Expected time to seroconversion 
 
− 𝑑

𝑑𝑠
𝐿∗(𝑠)given𝑠 = 𝑜 

 

= −�
𝑑𝐴
𝑑𝑠

+
𝑑𝐵
𝑑𝑠

+
𝑑𝐶
𝑑𝑠

+
𝑑𝐷
𝑑𝑠

−
𝑑𝐸
𝑑𝑠

+
𝑑𝐹
𝑑𝑠
�
𝑠=0
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Let us assume that 
𝑓(. )~exp (𝛽) , 𝑔(. )~exp (𝛾), q(. )~exp (𝛿) 
 

∴ 𝑓∗(𝑠) =
𝛽

𝛽 + 𝑠
,𝑔∗(𝜃1) =

𝛾
𝛾 + 𝜃1

, 𝑞∗(𝜃1 + 𝜆) =
𝛾

𝛾 + 𝜃1 + 𝜆
 

 
  𝑔∗(𝜃2) =

𝛾
𝛾 + 𝜃2

, 𝑞∗(𝜆 + 𝜃1) =
𝛾

𝛾 + 𝜆 + 𝜃1
 

 
Now  − �𝑑𝐴

𝑑𝑠
�
𝑠=0

 
 
Now, it is seen that 

𝐴 =
[1 − 𝑔∗(𝜃1)]𝑓∗(𝑠)
[1 − 𝑓∗(𝑠)𝑔∗(𝜃1)] 

 

   =
�1 − 𝛾

𝛾 + 𝜃1
� � 𝛽
𝛽 + 𝑠�

�1 − � 𝛽
𝛽 + 𝑠� �

𝛾
𝛾 + 𝜃1

��
=

𝛽𝜃1(𝛽 + 𝑠)−1
𝛾 + 𝜃1
�

(𝛽 + 𝑠)(𝛾 + 𝜃1) − 𝛽𝛾
(𝛽 + 𝑠)(𝛾 + 𝜃1)�

 

 

    =
𝛽𝜃1

𝛽𝜃1 + 𝑠(𝛾 + 𝜃1) = 𝛽𝜃1[𝛽𝜃1 + 𝑠(𝛾 + 𝜃1)]−1 

 
= [𝛽𝜃1] − 1[𝛽𝜃1 + 𝑠(𝛾 + 𝜃1)]−2(𝛾 + 𝜃1) 
 

−�
𝑑𝐴
𝑑𝑠
�
𝑠=0

=
𝛾 + 𝜃1
𝛽𝜃1

 

 
Similarly 

−�
𝑑𝐵
𝑑𝑠
�
𝑠=0

=
𝑝1[𝛾 + 𝜃1 + 𝜆]
𝛽[𝜃1 + 𝜆]  

 

−�
𝑑𝐶
𝑑𝑠
�
𝑠=0

=
𝑞1[𝛾 + 𝜃2]
𝛽[𝜃2]  

 

−�
𝑑𝐷
𝑑𝑠
�
𝑠=0

=
𝑞1𝛾
𝛽𝜃2

 

 

−�
𝑑𝐸
𝑑𝑠
�
𝑠=0

= −
𝑝2[𝛾 + 𝜃2]
𝛽[𝜃2]  

 

−�
𝑑𝐹
𝑑𝑠
�
𝑠=0

=
𝑞2[𝛾 + 𝜆 + 𝜃1]
𝛽[𝜆 + 𝜃1]  

 

𝐸(𝑇) =
𝛾 + 𝜃1
𝛽𝜃1

+
𝑝1[𝛾 + 𝜃1 + 𝜆]
𝛽[𝜃1 + 𝜆] +

𝑞1[𝛾 + 𝜃2]
𝛽[𝜃2] +

𝑞1𝛾
𝛽𝜃2

−
𝑝2[𝛾 + 𝜃2]
𝛽[𝜃2] +

𝑞2[𝛾 + 𝜆 + 𝜃1]
𝛽[𝜆 + 𝜃1]  

 

Where    𝑝1 = 𝜃1
𝜃1+𝜆

  , 𝑞1 = 𝜆
(𝜆+𝜃1−𝜃2)

   , 𝑝2 = 𝜆𝜃2
2

𝜃2(𝜃1−𝜃2+𝜆)2
  and 𝑞2 = 𝜆𝜃2

2

(𝜆+𝜃1)(𝜃1−𝜃2+𝜆)2
 

 

𝐸(𝑇) =
𝛾 + 𝜃1
𝛽𝜃1

+
𝜃1

𝜃1 + 𝜆
�
[𝛾 + 𝜃1 + 𝜆]
𝛽[𝜃1 + 𝜆] � +

𝜆
(𝜆 + 𝜃1 − 𝜃2)

�
[𝛾 + 𝜃2]
𝛽[𝜃2] � +

𝜆
(𝜆 + 𝜃1 − 𝜃2)

�
𝛾
𝛽𝜃2

�     −
𝜆𝜃22

𝜃2(𝜃1 − 𝜃2 + 𝜆)2
�
[𝛾 + 𝜃2]
𝛽[𝜃2] �

+
𝜆𝜃22

(𝜆 + 𝜃1)(𝜃1 − 𝜃2 + 𝜆)2
�
[𝛾 + 𝜆 + 𝜃1]
𝛽[𝜆 + 𝜃1] � 

                                     … (7) 
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𝐸(𝑇2) = �
𝑑2

𝑑𝑠
𝐿∗(𝑠)�

𝑠=0
 

 
𝑑2𝐴
𝑑𝑆2

= [𝛽𝜃1](−1)(−2)[𝛽𝜃1 + 𝑠(𝛾 + 𝜃1)]−3(𝛾 + 𝜃1)2 
 
= 2[𝛽𝜃1][𝛽𝜃1 + 𝑠(𝛾 + 𝜃1)]−3(𝛾 + 𝜃1)2 
 

=
2[𝛽𝜃1](𝛾 + 𝜃1)2

[𝛽𝜃1 + 𝑠(𝛾 + 𝜃1)]2 

 
𝑑2𝐴
𝑑𝑆2

=
2(𝛾 + 𝜃1)2

[𝛽𝜃1]2  

 
Similarly 
𝑑2𝐵
𝑑𝑆2

=
2𝑝1[𝛾 + 𝜃1 + 𝜆]2

𝛽2[𝜃1 + 𝜆]2  

 
𝑑2𝐶
𝑑𝑆2

=
2𝑞1[𝛾 + 𝜃2]2

𝛽2[𝜃2]2  

 
𝑑2𝐷
𝑑𝑆2

=
4𝑞1𝛾(𝛾 + 𝜃2)
𝛽2[𝜃2]2  

 
𝑑2𝐸
𝑑𝑆2

= −
2𝑝2[𝛾 + 𝜃2]2

𝛽2[𝜃2]2  

 
𝑑2𝐹
𝑑𝑆2

=
2𝑞2[𝛾 + 𝜆 + 𝜃1]2

𝛽2[𝜆 + 𝜃1]2  

 

𝐸(𝑇2) =
2(𝛾 + 𝜃1)2

[𝛽𝜃1]2 +
2𝑝1[𝛾 + 𝜃1 + 𝜆]2

𝛽2[𝜃1 + 𝜆]2 +
2𝑞1[𝛾 + 𝜃2]2

𝛽2[𝜃2]2 +
4𝑞1𝛾(𝛾 + 𝜃2)
𝛽2[𝜃2]2 −

2𝑝2[𝛾 + 𝜃2]2

𝛽2[𝜃2]2

+
2𝑞2[𝛾 + 𝜆 + 𝜃1]2

𝛽2[𝜆 + 𝜃1]2                                                                                                                                                                … (8) 

 
   𝑉(𝑇) = 𝐸(𝑇2) − [𝐸(𝑇)]2 
 

𝑉(𝑇) = �
2(𝛾 + 𝜃1)2

[𝛽𝜃1]2 + 2 �
𝜃1

𝜃1 + 𝜆
�

[𝛾 + 𝜃1 + 𝜆]2

𝛽2[𝜃1 + 𝜆]2 + 2 �
𝜆

(𝜆 + 𝜃1 − 𝜃2)
�

[𝛾 + 𝜃2]2

𝛽2[𝜃2]2 + �
𝜆

(𝜆 + 𝜃1 − 𝜃2)
�

4𝛾(𝛾 + 𝜃2)
𝛽2[𝜃2]2

− 2 �
𝜆𝜃22

𝜃2(𝜃1 − 𝜃2 + 𝜆)2
�

[𝛾 + 𝜃2]2

𝛽2[𝜃2]2 + 2 �
𝜆𝜃22

(𝜆 + 𝜃1)(𝜃1 − 𝜃2 + 𝜆)2
�

[𝛾 + 𝜆 + 𝜃1]2

𝛽2[𝜆 + 𝜃1]2
� 

 

               −�
𝛾 + 𝜃1
𝛽𝜃1

+
𝜃1

𝜃1 + 𝜆
�
[𝛾 + 𝜃1 + 𝜆]
𝛽[𝜃1 + 𝜆] � +

𝜆
(𝜆 + 𝜃1 − 𝜃2)

�
[𝛾 + 𝜃2]
𝛽[𝜃2] � +

𝜆
(𝜆 + 𝜃1 − 𝜃2)

�
𝛾
𝛽𝜃2

�     −
𝜆𝜃22

𝜃2(𝜃1 − 𝜃2 + 𝜆)2
�
[𝛾 + 𝜃2]
𝛽[𝜃2] �

+
𝜆𝜃22

(𝜆 + 𝜃1)(𝜃1 − 𝜃2 + 𝜆)2
�
[𝛾 + 𝜆 + 𝜃1]
𝛽[𝜆 + 𝜃1] ��

2

       

                                                                                                                                                                                                         … (9) 
 
Numerical Examples 
 
The following numerical example provides an idea of  𝐸(𝑇) and 𝑉(𝑇) due to changes in the values of different parameters. 
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Table 1 Variation in E (T) and V (T) for Changes in 𝜃1𝜃2 = 0.5, 𝜆 = 0.8, 𝛾 = 1.0,𝛽 = 2.0 
 

𝜽𝟏 E(T) V(T) 
0.5 3.615 0.094 
1.0 2.666 1.037 
1.5 2.246 1.152 
2.0 2.000 1.197 
2.5 1.836 1.267 

 

 

 
 

Figure 1 Variation in E (T) and V (T) for Changes in 𝜃1  
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Table 2 Variation in E (T) and V (T) for Changes in 𝜃2 𝜃1 = 1.2, 𝜆 = 0.8, 𝛾 = 1.0,𝛽 = 2.0 
 

𝜽𝟐 E(T) V(T) 
0.5 2.246 1.152 
1.0 1.898 1.092 
1.5 1.786 0.921 
2.0 1.723 0.756 
2.5 1.681 0.563 

 
 

Figure 2 Variation in E (T) and V (T) for Changes in 𝜃2 
 

Table 3 Variation in E (T) and V (T) for Changes in 𝜆 𝜃1 = 1.2,𝜃2 = 0.5, 𝛾 = 1.0,𝛽 = 2.0 
 

𝝀 E(T) V(T) 
0.5 2.299 0.943 
1.0 2.553 1.179 
1.5 2.712 1.212 
2.0 2.822 1.328 
2.5 2.903 1.372 
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Figure3 Variation in E (T) and V (T) for Changes in 𝜆
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Table 4 Variation in E (T) and V (T) for Changes in 𝛽 𝜃1 = 1.2,𝜃2 = 0.5, 𝜆 = 0.8, 𝛾 = 1.0 
 

𝜷 E(T) V(T) 
0.5 9.866 17.937 
1.0 4.933 4.484 
1.5 3.298 1.993 
2.0 2.466 1.121 
2.5 1.973 0.717 

 

 

 
 

Figure 4 Variation in E (T) and V (T) for Changes in 𝛽 
 

Table 5 Variation in E (T) and V (T) for Changes in 𝛾 𝜃1 = 1.2,𝜃2 = 0.5, 𝜆 = 0.8,𝛽 = 2.0  
 

𝛄 E(T) V(T) 
0.5 1.733 0.280 
1.0 2.466 1.121 
1.5 3.200 2.522 
2.0 3.933 4.484 
2.5 4.666 7.006 

 

 
Figure 5: Variation in E (T) and V (T) for Changes in 𝛾 
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CONCLUSION 
 
On the basis of the numerical examples worked out for this model the following conclusions can be drawn. 
 

1. It is assumed that the random variable 𝑍1 which represents the antigenic diversity threshold is assumed to follow 
exponential distribution which parameter 𝜃1. If 𝜃1 an increase with all the other parameters kept as fixed it is seen that E 
(T) decreases. This is due to fact that 𝐸(𝑍1) = 1

𝜃1
 and so the threshold becomes as smaller as 𝜃1 increases. Therefore E 

(T) decreases. It is seen in table 1 and figure 1. 
2. It is assumed that the random variable 𝑍2 which represents the virulence threshold is assumed to follow exponential 

distribution which parameter 𝜃2. So 𝐸(𝑍2) = 1
𝜃2

 and so  𝜃2 increases the threshold becomes as smaller and so it takes 
less of time to cross the threshold. Hence E (T) decreases are seen in table 2 and figure 2. 

3. The distribution of the random variable 𝑍1 denoting the antigenic diversity threshold undergoes the change of 
distribution after a truncation point  𝜏  which is itself is a random variable that follows the exponential with parameter 𝜆 
so (𝜏) = 1

𝜆�  . As 𝜆 increases   𝐸(𝜏) = 1
𝜆�  decreases. So E (T) increases as  𝜆 increases which are seen in table 3 and 

table 3. 
4. It is assumed that the interarrival times between successive contacts is a random variable   𝑈𝑖 which has the pdf as 𝑓(. ). 

It is assumed that  𝑓(. ) follows exponential with parameter 𝛽 so that (𝑢) = 1
𝛽�  . As 𝛽 increases 𝐸(𝑢) becomes smaller. 

So that the number of contact will be more. So as  𝛽 increases E (T) decreases and it is observed will table 4 and figure 
4. 

5. If the value of 𝛾 which is the parameter of the distribution of the random variable 𝑥𝑖 denoting the contribution of 
antigenic diversity in the 𝑖𝑡ℎ contact shows an increase  then 𝐸(𝑇) increases as observed in table 5 and figure 5.  𝑉(𝑇) 
also increases. 
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