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INTRODUCTION

Preliminaries

Let ( ) denote the class of analytic functions in the open unit disk = { : ∈ ℂ | | < 1} and let [ , ] denote the subclass
of ( ) of the form ( ) = + + +⋯,where ∈ ℂ and ∈ with = [0,1] and = [1,1].If , are
members of ( ) we say that a function is subordinate to a function or is said to be superordinate to if there exists a
Schwarz function ( ) which is analytic in , with (0) = 0 , | ( )| < 1 for all ( ∈ ), such that ( ) = ( ( )). In such a
case we write ≺ . Further, if the function is univalent in then we have the following equivalent,(see [3,9]).( ) ≺ ( ) if and only if (0) = (0) and ( ) ⊂ ( ).
Let ( ) denote the class of all analytic functions of the form

( ) = + ∞ , ( ∈ , ∈ = {1,2,3, … }). (1.1)
For function ∈ ( ) given by ( ) = + ∑∞ , ( ∈ ), the Hadmard product (or convolution) of and is defined
by( ∗ )( ) = + ∞ = ( ∗ )( ).
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For function , ∈ ( ), we defined the linear operator , : ( ) → ( ) ( ≥ 0 , ∈ = ∪ {0}) by : , ( ∗ )( ) =( ∗ )( ),
, ( ∗ )( ) = , ( ∗ )( ) = (1 − )( ∗ )( ) + ( ∗ )( ) ′

= + + ( − )∞ ,
and, ( ∗ )( ) = , , ( ∗ )( ) ,
therefore, it can be easily seen that

, ( ∗ )( ) = , , ( ∗ )( )
= + + ( − )∞ , ( ≥ 0). (1.2)
From (1.2) we can easily deduce that

, ( ∗ )( ) ′ = , ( ∗ )( ) − (1 − ) , ( ∗ )( ), ( > 0). (1.3)
The operator , ( ∗ ) was introduced and studied by Selvaraj and Selvakumaran [14], Aouf and Mostafa [2] and for = 1 , was
introduced by Aouf and Mostafa [1].

Remark

1. Taking = 0 and = ( ) …..( ) ……( ) ( ) ( , ∈ ℂ∗ = ℂ\{0}, ( = 1,2… ), ( = 1,2… ),
2. ≤ + 1 , , ∈ in (1.2), the operator , ( ∗ ) reduces to the Dziok-Srivastava operator , , ( ) which

generalized many other operator (see [6]).

3. Taking = 0 and = ( ) ( > 0 ; ∈ ; , ∈ ) in (1.2), the operator , ( ∗ ) reduces to Catas

operator ( , ) which generalizes many other operators (see [4]).
4. The method of differential subordinations (also known as the admissible functions method) was introduced by Miller and

Mocanu [7,8] and developed in [9,10].
5. Let Ω and ∆ be any sets in ℂ and let be an analytic function in the unit disk with (0) = and let ( , , ; ): ℂ ×→ ℂ. The heart of this theory deals with generalizations of the following implication :
6. { ( ( ), ′( ), ′′( ); ), ( ∈ )} ⊂ ⇒ ( ) ⊂ ∆. In [10] the authors introduce the dual problem of the

differential subordination which they call differential superordination.
7. Ω ⊂ { ( ( ), ′( ), ′′( ); ), ( ∈ )} ⇒ ∆⊂ ( ).
8. Definition 1.1 [9] Let ∶ ℂ × → ℂ and let ℎ be univalent in . If is analytic in and satisfies the (second – order)

differential subordination,
9. { ( ( ), ′( ), ′′( ); ), ( ∈ )} ≺ ℎ( ), then is called a solution of differential subordination. The univalent

function is called a dominant, if ≺ for all satisfying (iii).
10. A dominant that satisfies ≺ for all dominants of (iii) is said to be the best dominant of (iii).
11. Definition 1.2 [10] Let ∶ ℂ × → ℂ and let ℎ be analytic in . If and ( ( ), ′( ), ′′( ); ) are univalent in

and satisfy the (second – order) differential superordination.
12. ℎ( ) ≺ ( ( ), ′( ), ′′( ); ), then is called a solution of the differential superordination. An analytic function

is called a subordinant of the solutions of the differential superordination,, or more simply  a subordinate if ≺ for all
satisfying (iv). A univalent subordinant that satisfies ≺ for all subordinants of (iv) is said to be the best

subordinant. (Note that the best subordinant is unique up to a rotation of ). For Ω a set in ℂ, with and as given in
Definition 1.2, suppose (iv) is replaced by

13. Ω ⊂ { ( ( ), ′( ), ′′( ); ), ( ∈ )}.
To prove our results, we need the following definitions and Lemmas.

Definition 1.3 [9] Denote by the set of all functions that are analytic and injective on \ ( ), where
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( ) = ∈ ∶ lim→ ( ) = ∞ ,
and are such that ′( ) ≠ 0 for ∈ \ ( ). Further let the subclass of for which (0) = be denoted by ( ), (0) ≡ and(1) = .

Definition 1.4 [9] Let Ω be a set in ℂ ; ∈ and be appositive integer. The class of admissible functionsΨ [Ω, ] consists of
those functions : ℂ × → ℂ that satisfy the admissimbilty condition:( , , ; ) ∉ Ω,
whenever = ( ), = ′( ),

+ 1 ≥ 1 + ′′( )
′( ) ,

where ∈ , ∈ \ ( ) and ≥ . We write Ψ [Ω, ] = Ψ[Ω, ].
In particular, when ( ) = , with > 0 and | | < , then ( ) = = { : | | < }, (0) = , ( ) = ∅ and ∈ . In

this case, we set Ψ [Ω, , ] = Ψ[Ω, ] = Ψ [Ω, ], and in the special case when the set = , the class is simply denoted by
Ψ [ , ].
Definition 1.5[10] Let Ω be a set in ℂ , ( ) ∈ [ , ] with ′( ) ≠ 0. The class of admissible functions Ψ′[Ω, ] consist of this
functions ∶ ℂ × → ℂ that satisfy the admissibility condition:( , , ; ) ∈ ,
whenever = ( ), = ′( ),+ 1 ≤ 1 1 + ′′( )

′( ) ,
when ∈ , ∈ and ≥ ≥ 1. In particular, we write Ψ′ [Ω, q] = Ψ′[Ω, q].
Lemma 1.1 [9] Let ∈ Ψ [Ω, q] with (0) = . If the analytic function ( ) = + + +. . ., satisfies( ( ), ′( ), ′′( ); ) ∈ ,
Then( ) ≺ ( ), ( ∈ ).
Lemma 1.2 [10] Let ∈ Ψ′ [ , ] with (0) = , ∈ ( ) and ( ( ), ′( ), ′′( ); ) is univalent in , then⊂ { ( ( ), ′( ), ′′( ); ), ( ∈ )},
implies( ) ≺ ( )
In fact, the study of the class of admissible functions was revived recently by Mustafa and Darus [11] and Cho [5]. A similar
problem for analytic functions was studied by many others for example see [10,12,13]

The object of the present paper, we give some results for differential subordination and superordination for multivalent function
involving the linearoperator , ( ∗ )( ).
Differential suboridination results associated with linear operator

Difintion 2.1 Let Ω be a set in ℂ, ∈ ∩ [0, ]. The class of admissible functions Ψ [Ω, q] consists of those functions ∶ ℂ ×→ ℂ that satisfy the admissibility condition:( , , ; , ) ∉ Ω
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whenever= ( ), = ′( ) + (1 − ) ( )
And + 2 (1 − ) − 3 (1 − )− (1 − ) ≥ 1 + ′′( )

′( ) ,
where ∈ , ∈ \ ( ), > 0 ≥ .
Theorem 2.1 Let ∈ [Ω, q]. If ∈ ( ) satisfies

, ( ∗ )( ), , ( ∗ )( ) , , ( ∗ )( ) ⊂ Ω , (2.1)

where > 0, ∈ = {0,1,2… }, ∈ .
Then, ( ∗ )( ) ≺ ( ), ( ∈ ).
Proof. By using (1.2) and (1.3), we get the equivalent relation

, ( ∗ )( ) = , ( ∗ )( ) ′ + (1 − ) , ( ∗ )( ) (2.2)
Assum that( ) = , ( ∗ )( ). (2.3)
Then

, ( ∗ )( ) = ′( ) + (1 − ) ( ) . (2.4)
Further computation show that

, ( ∗ )( ) = ′′( ) + 1 + 2 (1 − ) ′( ) + (1 − ) ( ) . (2.5)
Define the transformation from ℂ to ℂ by

= , = + (1 − ) , = + (1 + 2 (1 − )) + (1 − ) (2.6)
Let

( , , ; ) = ∅( , , ; ) = , + (1 − ) , + (1 + 2 (1 − )) + (1 − ) . (2.7)
The proof shall make use of Lemma 1.1 using equations (2.3), (2.4) and (2.5), we obtain( ( ), ′( ), ′′( ); ) = , ( ∗ )( ) , , ( ∗ )( ) , , ( ∗ )( ), (2.8)
Therefore, by making use (2.1), we get( ( ), ′( ), ′′( ); ) ∈ Ω . (2.9)
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The proof is completed if it can be show, that the admissibility condition for ∈ Ψ [Ω, q] is equivalent to the admissibility for as
given in Definition 1.4. Note that+ 1 = + 2 (1 − ) − 3 (1 − )− (1 − ) , (2.10)
and hence ∈ Ψ [Ω. q]. By Lemma 1.1,( ) ≺ ( ),
or, ( ∗ )( ) ≺ ( ).
We consider the special situation when Ω ≠ ℂ is a simply connected domain. In this case = ℎ( ), where ℎ is a conformal
mapping of onto Ω and the class is written as Ψ [ℎ, ]. The following results is an immediate consequence of Theorem 2.1.

Theorem 2.2 Let ∈ Ψ [ℎ, ]. If ∈ ( ) satisfies

, ( ∗ )( ) , , ( ∗ )( ) , , ( ∗ )( ) ; ≺ ℎ( ) (2.11)
where > 0 , ∈ , ∈ .
Then, ( ∗ )( ) ≺ ( ), ( ∈ ).
The next result is an extension of Theorem 2.2 to the case where the behavior of ( ) on is unknown.

Corollary 2.1 Let Ω ⊂ ℂ, be univalent in and (0) = 0. Let ∈ [ , ] for some ∈ (0,1), where ( ) = ( ). If∈ ( ) and satisfies

, ( ∗ )( ), , ( ∗ )( ) , , ( ∗ )( ) ; ∈ Ω,
where > 0 , ∈ ∈ .
Then, ( ∗ )( ) ≺ ( ), ( ∈ ).
Proof From Theorem 2.1 yields , ( ∗ )( ) ≺ ( ).The result now deduced from ( ) ≺ ( ).
Theorem 2.3 Let ℎ and be univalent in , with (0) = 0 and set ( ) = ( ) and ℎ ( ) = ℎ( ). Let ∶ ℂ × → ℂ satisfy
one of the following conditions:

1. ∈ Ψ [ℎ, ], for some ∈ (0,1).
2. There exists ∈ (0,1) such that ∈ Ψ [ℎ , ], for all ∈ ( , 1). If ∈ ( ) and satisfies (2.11), then, ( ∗ )( ) ≺ ( ).

Proof Case (1) : By using Theorem 2.1, we obtain , ( ∗ )( ) ≺ ( ), since ( ) ≺ ( ), we deduce

, ( ∗ )( ) ≺ ( ).
Case (2): Let ( ) = , ( ∗ )( ) and ( ) = ( ).
Then ( ) , ′ ( ) , ′′( ); = ( ( ), ′( ), ′′( ); ) ∈ ℎ ( ). By using Theorem 2.1 and the comment
associated with ( ( ) , ′( ) , ′′( ); ( )) ∈ Ω,where is any mapping in to , with ( ) = , we obtain ( ) =( ) for ∈ ( , 1). By letting → 1 , we get ( ) ≺ ( ).
Therefore,

, ( ∗ )( ) ≺ ( ).
The next result gives the best dominant of the differential subordination (2.11).

Theorem 2.4 Let ℎ be univalent in and let ∶ ℂ × → ℂ. Suppose that the differential equation
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( ( ), ′( ), ′′( ); ) = ℎ( ) (2.12)

has a solution with (0) = 0 and satisfy one of the following conditions:

1. ∈ and ∈ Ψ [ℎ, ].
2. is univalent in and ∈ Ψ ℎ, , for some ∈ (0,1).
3. is univalent in and there exists ∈ (0,1) such that ∈ Ψ ℎ , , for all ∈ ( , 1). If ∈ ( )satisfies (2.11),

then, ( ∗ )( ) ≺ ( ),
and is the best dominant.

Proof.By using Theorem 2.2 and Theorem 2.3, we deduce that is a dominant of (2.11). Since satisfies (2.12), it is also a solution
of (2.11) and therefore will be dominated by all dominants of (2.11). Hence, is the best dominant of (2.11).
In the particular case ( ) = , > 0, and in view of the Definition 1.4, the class of admissible function Ψ [Ω, q] denoted by
Ψ [Ω, M] is described below.

Definition 2.4 Let Ω be a set in ℂ , > 0. The class of admissible functions Ψ [Ω, M] consists of those functions ∶ ℂ × → ℂ
that satisfy the admissibility condition:

, + (1 − ) , + 1 + 2 (1 − ) + (1 − ) ; ∉ Ω,
where > 0 , ∈ , ( ) ≥ ( − 1) for all real , ≥ 1, ∈ .

Corollary 2.2 Let ∈ Ψ [Ω, ]. If ∈ ( ) satisfies

, ( ∗ )( ) , , ( ∗ )( ) , , ( ∗ )( ) ; ∈ Ω,
where > 0 , ∈ , ∈ > 0. Then

, ( ∗ )( ) < , ( ∈ ).
Proof By using Theorem 2.1 gives

, ( ∗ )( ) ≺ ( ) =, ( ∗ )( ) ≺ ( ) = ( ).
Hence

, ( ∗ )( ) < , where | ( )| < 1.
In the special case = ( ) = { ∶ | | < 1} the class [ , ] is simply denote by Ψ [ ].
Corollary 2.3 Let ∈ Ψ [Ω, ]. If ∈ ( ) satisfies( , ( ∗ )( ) , , ( ∗ )( ), , ( ∗ )( ) ; ) < ,
where > 0 , ∈ , ∈ > 0. Then, ( ∗ )( ) < , ( ∈ ).
Differential superordination results associated with linear operator

DIFINITION 3.1 Let Ω be a set in ℂ ; ∈ ∩ [0, ], ′( ) ≠ 0.The class of admissible function Ψ′ [Ω, q] consists of those
function ∶ ℂ × → ℂ that satisfy the admissibility condition:( , , ; ) ∈ Ω,
whenever
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= ( ), = 1 ′( ) + (1 − ) ( ) ,
and + 2 (1 − ) − 3 (1 − )− (1 − ) ≤ 1 1 + ′′( )

′( ) ,
where ∈ , ∈ \ ( ), > 0 ≥ .
Theorem 3.1 Let ∈ Ψ [Ω, ]. If ∈ ( ), , ( ∗ )( ) ∈ and, ( ∗ )( ) , , ( ∗ )( ) , , ( ∗ )( )
Is univalent in , then

Ω ⊂ , ( ∗ )( ) , , ( ∗ )( ) , , ( ∗ )( ) (3.1)

where > 0 , ∈ , ∈ , implies( ) ≺ , ( ∗ )( ), ( ∈ ).
Proof From (2.8) and (3.1), we have

Ω ⊂ ( ( ), ′( ), ′′( ); , ), (z ∈ U).
From (2.6), we see that the admissibility condition for ∈ Ψ′ [Ω, ] is equivalent to the admissibility condition for as given in
Definition 1.5. Hence and by Lemma 1.2 we get ( ) ≺ ( ).( ) ≺ , ( ∗ )( ), ( ∈ ).
If Ω ≠ ℂ is a simply connected domain, then Ω = ℎ(U) for some conformed mapping ℎ( ) of onto Ω. In this case the class
Ψ′ [ℎ( ), ] is written as Ψ′ [ℎ, ]. Proceeding similarly as in the previous section, the following result is an immediate
consequence of Theorem 3.1.

Theorem 3.2 Let ℎ( ) is analytic on and ∈ Ψ′ [ℎ, ]. If ∈ ( ), , ( ∗ )( ) ∈ and

, ( ∗ )( ) , , ( ∗ )( ) , , ( ∗ )( ) is univalent in , then

ℎ( ) ≺ , ( ∗ )( ) , , ( ∗ )( ) , , ( ∗ )( ) , (3.2)

where > 0 , ∈ , ∈ , implies( ) ≺ , ( ∗ )( ), ( ∈ ).
Proof From (3.2), we getℎ( ) = Ω ⊂ ( , ( ∗ )( ) , , ( ∗ )( ) , , ( ∗ )( )),
and also by Theorem 3.1, we get( ) ≺ , ( ∗ )( ), ( ∈ ).
Theorems 3.1 and 3.2, can only be used to obtain subordinations of differential superordination of the form (3.1) or (3.2). The
following Theorem proof the existence of the best subordinate of (3.2) for certain .

Combining Theorem 2.2 and 3.2, we obtain the following sandwich type Theorem.

Corollary 3.1 Let ℎ ( ) and ( ) be analytic functions in , ℎ ( ) be univalent function in , ( ) ∈ with (0) = (0) =0 and ∈ [ℎ , ] ∩ ′ [ℎ , ] . If ∈ ( ), , ( ∗ )( ), ∈ [0, ] ∩ and∅ , ( ∗ )( ), , ( ∗ )( ), , ( ∗ )( ), , is univalent in , then
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ℎ ( ) ≺ , ( ∗ )( ), , ( ∗ )( ), , ( ∗ )( ), ≺ ℎ ( ) (3.3)
when > 0 , ∈ , ∈ , implies that( ) ≺ , ( ∗ )( ), ≺ ( ), ( ∈ ).
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