

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 6, Issue, 5, pp.4328-4333, May, 2015 International Journal of Recent Scientific Research

# **RESEARCH ARTICLE**

# SELECTION OF BAYESIAN DOUBLE SAMPLING PLAN BASED ON BETA PRIOR DISTRIBUTION INDEX THROUGH QUALITY REGION

## <sup>1</sup>M.Latha and <sup>2</sup>\*R. Arivazhagan

<sup>1</sup>Government Arts and Science College, Thiruvadanai-623401, Tamil Nadu, India <sup>2</sup>Department of Statistics, Government Arts College, Udumalpet- 642126, Tamil Nadu, India

| ARTICLE INFO                           | ABSTRACT                                                                                                                                                                                              |  |  |  |  |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Article History:                       | This paper is concerned with the set of tables for the selection of Bayesian Double Sampling Plan (DSP-                                                                                               |  |  |  |  |
| Received 2 <sup>nd</sup> , April, 2015 | (0,1)) on the basis of different combinations of entry parameters. Double Sampling Plan involving<br>Producer's and consumer's risks and Probabilistic Quality Region Indifference Quality Region for |  |  |  |  |

Received 2<sup>nd</sup>, April, 2015 Received in revised form 10<sup>th</sup>, April, 2015 Accepted 4<sup>th</sup>, May, 2015 Published online 28<sup>th</sup>, May, 2015 This paper is concerned with the set of tables for the selection of Bayesian Double Sampling Plan (DSP-(0,1)) on the basis of different combinations of entry parameters. Double Sampling Plan involving Producer's and consumer's risks and Probabilistic Quality Region, Indifference Quality Region for specified AQL and LQL. Beta distributions are considered as prior distribution. Comparison is made with conventional Double Sampling Plan.

#### Key words:

Acceptance Quality Level(AQL), Limiting Quality Level (LQL), Producer's Risks (), Consumer's Risks(), Probabilistic Quality Region (PQR), Indifference Quality Region (IQR).

**Copyright** © M. Latha and R. Arivazhagan., This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

## **INTRODUCTION**

Bayesian acceptance sampling using sampling procedure to determine whether to accept or reject a product or process. It has been a common quality control technique that used in industry and particularly in military for contracts and procurement of products. It is usually done as products that leave the factory or in some cases even within the factory. Most often a producer supplies number of items to consumer and decision to accept or reject the lot is made through determining the number of defective items in a sample from that lot. The lot is accepted, if the number of defectives falls below the acceptance number or otherwise the lot is rejected. Acceptance sampling by attributes each item is tested and classified as conforming or non-conforming. A sampling is taken and contains too many non-conforming items, then the batch is rejected, otherwise it is accepted. For this method to be effective, batches containing some non-conforming items must be acceptable. If the only acceptable percentage of nonconforming items is zero, this can only be achieved through examine every items and removing the item which are non-

conforming. This is known as 100% inspection. Effective acceptance sampling involves effective selection and the application of specific rules for lot inspection. The acceptance sampling plans applied on a lot-by-lot basis become an element in the overall approach to maximize quality at minimum cost. Since different sampling plans may be statistically valid at different times during the process, therefore all sampling plans should be periodically reviewed. Bayesian acceptance sampling approach is associated with the utilization of prior process history for the selection of distribution (viz., gamma Poisson, beta binomial) to describe the random fluctuations involved in acceptance sampling, Bayesian sampling plan requires the user to specify explicitly the distribution of defective from lotto lot. The prior distribution is the expected distribution of a lot quality on which the sampling plan is going to operate. The distribution is called prior, because it is formulated prior to the taking of samples. The combination of prior knowledge, represented with the prior distribution and the empirical knowledge based on the sample leads to the decision on the lot.

A complete statistical model for Bayesian sampling inspection contains three components:

- 1. The prior distribution (i.e) the expected distribution of submitted lots according to quality.
- 2. The cost of sampling inspection, acceptance and rejection.
- 3. A class of sampling plans that usually defined by means of a restriction designed to give a protection against accepting lot of poor quality.

Risk-based sampling plans are traditional in nature, drawing upon producer and consumer type of risks as depicted by the OC curve. Economically based sampling plans explicitly consider certain factors as cost of inspection, accepting a nonconforming units and rejection a conforming unit, in an attempt to design a cost-effective plan. Bayesian plan design procedures take into account the past history of similar lots submitted previously for the inspection purposes. Non-Bayesian plan design methodology is not explicitly based upon the past history.

To improve the quality for any product and services, it is customary to modernize the quality practices and simultaneously reduce the cost for inspection and quality improvement. As a result of increasing customer quality requirements and development for new product technology many existing quality assurance practices and techniques need to be modified.

The need for such statistical and analytical techniques in quality assurance is rapidly increasing owing to stiff competition in industry towards product quality improvement. This paper introduces a method for selection of Bayesian Chain Sampling Plan based on range of quality instead of point wish description of quality by invoking a Novel approach called quality interval sampling (QIS) plan. This method seems to be versatile and can be adopted in the elementary production process where the stipulated quality level is advisable to fix at later stage and provides a new concept for selection of BDSP -(0,1) plan involving quality levels.

The sampling plan provides both vendor and buyer decision rules for the product acceptance to meet the present product quality requirement. Due to rapid advancement of manufacturing technology. Suppliers require their products to be of high quality with very low fraction defectives often measured in parts per million. Unfortunately, traditional methods in some particular situations fail to find out a minute defect in the product. In order to overcome such problems quality interval sampling (QIS)plan is introduced. This paper designs the parameters for the plan indexed with quality regions involving QIS.

Dodge (1955) has derived Chain Sampling inspection Plans. Case and Keats (1982) have examined the relationship between defectives in the sample and defectives in the remaining lot for each of the five prior distributions, they observe that the use of a binomial prior renders sampling useless and inappropriate. These results serve to make the designers and users of Bayesian sampling plans more aware of the consequence associated with selection of particular prior distribution. Calvin (1984) has presented in a clear and concise treatment by means of 'how and when to perform Bayesian acceptance sampling'. These procedure are suited to the sampling of lots from process or assembly operations, which contain assignable causes. These causes may be unknown and awaiting isolation, known but irremovable due to the state of the art limitations, or known but uneconomical to remove. He has considered the Bayesian sampling in which primary concern is with the process average function non conforming  $p_1$  with lot fraction non-conforming p and its limitations being discussed.

Hald (1960) has derived optimal solutions for the cost function k(n,c) in the cases where the prior distribution is rectangular, polya and binomial. Tables are given for optimum n,c and k(n,c) for various values of the parameters, which is an important result on Bayesian acceptance sampling (BAS). Hald(1965) has given a rather system of single sampling attribute plans obtained by minimizing average cost, under the assumptions that the cost linear in the fraction defective p. Wortham and Baker (1976) have given Multiple Deferred State Sampling Plan inspection. Soundararajan(1978a) procedures and tables for construction and selection of Chain Sampling Plans (ChSP-1). Varest (1981) A Procedure of Construct Multiple Deferred State Sampling Plans. Raju (1984) Contribution to the study of Chain Sampling Plans. Soundararajan and Vijayaraghavan (1989) have designing Multiple deferred state sampling (MDS-1(0,2)) plans involving minimum risks. Subramani and Govindaraju (1990) have Selection of Multiple Deferred State MDS-1 Sampling Plan for given Acceptable and Limiting Quality Levels involving Minimum Risks. Suresh and Ramkumar (1996) have Selection of a Sampling Plan indexed with a Maximum Allowable Average Outgoing Quality. Suresh and Latha (2001) have discussed Bayesian Single Sampling Plan for a gamma prior distribution. Suresh and Latha (2002) discussed the Construction and Evaluation of Performance Measures of Bayesian Chain Sampling Plan using Gamma Distribution as the prior distribution. Latha and Javabharathi (2012) have studied the selection of Bayesian Chain Sampling attributes Plan based on geometric distribution. Suresh and Sangeetha (2010) have studied the selection of Repetitive Deferred Sampling Plan with Quality Regions. Latha and Arivazhagan (2015) have studied the selection of Multiple Deferred State Sampling plan based on Beta Prior Distribution. Latha and Arivazhagan (2015) have studied the Bayesian Chain Sampling Plan using Beta Prior Distribution.

This paper designs the parameters of the plan indexed with AQL, LQL and , and IQL, PQR and IQR for specified s and  $n_1$ ,  $n_2$  the parameter of the prior distribution with numerical illustrations are also provided.

### **Double Sampling Plans DSP-(0,1)**

The Operating Procedure of Double Sampling Plan with  $c_1=0$ ,  $c_2=1$  designated as DSP-(0,1) Plan is as follows,

- 1. Draw a random sample of size  $n_1$  from each lot and observe the number of nonconforming units  $d_1$ .
- 2. If  $d_1=0$ , accept the lot; if  $d_1>1$ , Reject the lot; if  $d_1=1$ , draw a second random sample of size  $n_2$  and observe the number of non conforming units  $d_2$ . If  $d_2=0$ , accept the lot; if  $d_2$  1, rejected the lot. Thus the DSP –(0,1) plan has two parameters  $n_1$  and  $n_2$ ,

### **Bayesian Average Probability of Acceptance**

The oc expression for  $P_a(p)$  to the double sampling plan was Presented by Dodge and Roming (1959) as

$$P_a(p) = P(d_1 \le c_1; n_1) + \sum_{d_1 \ge c+1}^{c_2} P(d_1; n_1) P(d_2 \le c_2 - d_1; n_2)$$

The Binomial Model of the OC function of DSP-(0,1) plan is given by,  $P_a(p) = (1-p)^{n_1} + n_1 p (1-p)^{n_1-1} (1-p)^{n_2}$ 

$$P_a(p) = (1-p)^{n_1} + n_1 p (1-p)^{n_1 + n_2 - 1}$$
(1)

The past history its observe that the process average p the Beta prior distribution. The parameter s and t with density function,

$$f(p) = \frac{p^{s-1}(1-p)^{t-1}}{\beta(s,t)}, 0 0, q = 1-p$$
(2)

Where  $\mu = \frac{s}{s+t}$ , Under the proposed Double Sampling Plans, the Probability of Acceptance of Double Sampling Plan of type DSP-(0,1) plan based on the Beta Binomial Distribution is given by,  $\overline{P} = \int_0^1 p_a(p) f(p) dp$ 

$$\overline{P} = \int_{0}^{1} (1-p)^{n_{1}} + n_{1}p(1) - p)^{n_{1}+n_{2}-1} \left(\frac{p^{s-1}(1-p)^{t-1}}{\beta(s,t)}\right) dp$$

$$\overline{P} = \frac{1}{\beta(s,t)} \left\{\beta(s,n_{1}+t) + n_{1}\beta(s+1,n_{1}+n_{2}+t-1)\right\}$$

$$\overline{P} = \frac{\Gamma_{s+t}}{\Gamma_{s}\Gamma_{t}} - \frac{s^{\Gamma}n_{1}+t}{s+t+n_{1}} + \frac{n_{1}\Gamma_{s+t}}{\Gamma_{s}\Gamma_{t}}$$
(3)

|   |                |                | Probability of Acceptance |          |          |          |          |          |         |  |
|---|----------------|----------------|---------------------------|----------|----------|----------|----------|----------|---------|--|
| S | n <sub>1</sub> | $\mathbf{n}_2$ | 0.99                      | 0.95     | 0.90     | 0.50     | 0.10     | 0.05     | 0.01    |  |
| 1 | 100            | 100            | 0.000646                  | 0.001686 | 0.002722 | 0.014482 | 0.103201 | 0.193695 | 0.55381 |  |
|   | 100            | 50             | 0.000788                  | 0.002045 | 0.003286 | 0.017052 | 0.117866 | 0.217773 | 0.58956 |  |
|   | 50             | 100            | 0.001012                  | 0.002678 | 0.004371 | 0.024402 | 0.168767 | 0.298445 | 0.68792 |  |
|   | 50             | 50             | 0.001293                  | 0.003372 | 0.005437 | 0.028586 | 0.187254 | 0.324756 | 0.71305 |  |
|   | 25             | 20             | 0.002781                  | 0.007214 | 0.011581 | 0.058734 | 0.326525 | 0.502790 | 0.83926 |  |
|   | 20             | 25             | 0.003007                  | 0.007844 | 0.012647 | 0.065282 | 0.355550 | 0.535490 | 0.85634 |  |
| 2 | 100            | 100            | 0.000727                  | 0.001828 | 0.002856 | 0.012016 | 0.049751 | 0.076373 | 0.17729 |  |
|   | 100            | 50             | 0.000888                  | 0.002222 | 0.003458 | 0.014204 | 0.056985 | 0.086734 | 0.19784 |  |
|   | 50             | 100            | 0.001136                  | 0.002889 | 0.004557 | 0.020203 | 0.086736 | 0.132337 | 0.29230 |  |
|   | 50             | 50             | 0.001455                  | 0.003657 | 0.005709 | 0.023846 | 0.095980 | 0.144491 | 0.31214 |  |
|   | 25             | 20             | 0.003132                  | 0.007838 | 0.012192 | 0.049632 | 0.186286 | 0.269501 | 0.51304 |  |
|   | 20             | 25             | 0.003383                  | 0.008505 | 0.013279 | 0.055149 | 0.209266 | 0.301160 | 0.55832 |  |
| 3 | 100            | 100            | 0.000763                  | 0.001893 | 0.002922 | 0.011309 | 0.039175 | 0.055855 | 0.11039 |  |
|   | 100            | 50             | 0.000933                  | 0.002303 | 0.003542 | 0.013394 | 0.044784 | 0.063219 | 0.12282 |  |
|   | 50             | 100            | 0.001192                  | 0.002985 | 0.004648 | 0.018970 | 0.069476 | 0.099540 | 0.19410 |  |
|   | 50             | 50             | 0.001529                  | 0.003787 | 0.005841 | 0.022477 | 0.076404 | 0.107732 | 0.20543 |  |
|   | 25             | 20             | 0.003290                  | 0.008121 | 0.012486 | 0.046966 | 0.151327 | 0.207980 | 0.36902 |  |
|   | 20             | 25             | 0.003553                  | 0.008805 | 0.013584 | 0.052140 | 0.171546 | 0.235958 | 0.41432 |  |
|   |                |                |                           |          |          |          |          |          |         |  |

**Table 1** Certain  $\mu$  values for specified values of P( $\mu$ ) BDSP-(0,1)

**Table 2**Values of  $\mu_2/\mu_1$  tabulated against s and  $n_1$ ,  $n_2$  for given and for Bayesian Double Sampling Plan

| s | <b>n</b> 1 | <b>n</b> <sub>2</sub> | μ <sub>2</sub> /μ <sub>1</sub> for<br>=0.05<br>=0.10 | μ <sub>2</sub> /μ <sub>1</sub> for<br>=0.05<br>=0.05 | μ <sub>2</sub> /μ <sub>1</sub> for<br>=0.05<br>=0.01 | μ <sub>2</sub> /μ <sub>1</sub> for<br>=0.01<br>=0.10 | μ <sub>2</sub> /μ <sub>1</sub> for<br>=0.01<br>=0.05 | μ <sub>2</sub> /μ <sub>1</sub> for<br>=0.01<br>=0.01 | μ <sub>2</sub> /μ <sub>1</sub> for<br>=0.10<br>=0.10 | μ <sub>2</sub> /μ <sub>1</sub> for<br>=0.10<br>=0.05 | µ2/µ1 for<br>=0.10<br>=0.01 |
|---|------------|-----------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------|
| 1 | 100        | 100                   | 61.25056                                             | 71.15907                                             | 328.47570                                            | 159.75390                                            | 299.83750                                            | 857.29100                                            | 37.91367                                             | 71.15907                                             | 203.45700                   |
|   | 100        | 50                    | 57.63619                                             | 106.49050                                            | 288.29340                                            | 149.57610                                            | 276.36170                                            | 748.17260                                            | 35.86914                                             | 66.27298                                             | 179.41570                   |
|   | 50         | 100                   | 63.01979                                             | 111.44320                                            | 256.87830                                            | 166.82350                                            | 295.00820                                            | 679.9980                                             | 38.61062                                             | 68.27843                                             | 157.38270                   |
|   | 50         | 50                    | 55.53203                                             | 96.30961                                             | 211.46200                                            | 144.82130                                            | 251.16470                                            | 551.46950                                            | 34.43942                                             | 59.72854                                             | 131.14290                   |
|   | 25         | 20                    | 45.26268                                             | 69.69642                                             | 116.33770                                            | 117.41280                                            | 180.79470                                            | 301.78350                                            | 28.19489                                             | 43.41508                                             | 72.46870                    |
|   | 20         | 25                    | 45.32764                                             | 68.26747                                             | 109.17130                                            | 118.24080                                            | 178.08110                                            | 284.78220                                            | 28.11339                                             | 42.34127                                             | 67.71092                    |
| 2 | 100        | 100                   | 27.21608                                             | 41.77954                                             | 96.98304                                             | 68.43329                                             | 105.05230                                            | 243.85830                                            | 17.41982                                             | 26.74125                                             | 62.07458                    |
|   | 100        | 50                    | 25.64120                                             | 39.02718                                             | 89.02088                                             | 64.17230                                             | 97.67342                                             | 222.79280                                            | 16.47918                                             | 25.08213                                             | 57.21226                    |
|   | 50         | 100                   | 30.02285                                             | 45.80720                                             | 101.17690                                            | 76.35211                                             | 116.49380                                            | 257.30630                                            | 19.03357                                             | 29.04038                                             | 64.14308                    |
|   | 50         | 50                    | 26.24423                                             | 39.50864                                             | 85.34945                                             | 65.94778                                             | 99.27924                                             | 214.47020                                            | 16.81074                                             | 25.30725                                             | 54.67057                    |
|   | 25         | 20                    | 23.76825                                             | 34.38565                                             | 65.45881                                             | 59.48399                                             | 86.05582                                             | 163.82160                                            | 15.27886                                             | 22.10402                                             | 42.07867                    |
|   | 20         | 25                    | 24.60621                                             | 35.41142                                             | 65.64918                                             | 61.85811                                             | 89.02158                                             | 165.03690                                            | 15.75905                                             | 22.67925                                             | 42.04502                    |
| 3 | 100        | 100                   | 20.69499                                             | 29.50628                                             | 58.31577                                             | 51.31917                                             | 73.16928                                             | 144.61070                                            | 13.40783                                             | 19.11647                                             | 37.78150                    |
|   | 100        | 50                    | 19.44501                                             | 27.44907                                             | 53.32766                                             | 48.01051                                             | 67.77283                                             | 131.66810                                            | 12.64483                                             | 17.84976                                             | 34.67826                    |
|   | 50         | 100                   | 23.27569                                             | 33.34785                                             | 65.02730                                             | 58.30838                                             | 83.54035                                             | 162.90120                                            | 14.94883                                             | 21.41769                                             | 41.76385                    |
|   | 50         | 50                    | 20.17427                                             | 28.44635                                             | 54.24324                                             | 49.98626                                             | 70.48217                                             | 134.39970                                            | 13.08008                                             | 18.44331                                             | 35.16884                    |
|   | 25         | 20                    | 18.63300                                             | 25.60873                                             | 45.43770                                             | 46.00024                                             | 63.22157                                             | 112.17440                                            | 12.11964                                             | 16.65692                                             | 29.55446                    |
|   | 20         | 25                    | 19.48191                                             | 26.79697                                             | 47.05294                                             | 48.28881                                             | 66.42027                                             | 116.62770                                            | 12.62881                                             | 17.37067                                             | 30.50126                    |

Hence the above equation is mixed distribution of Beta Binomial distribution.

### **Construction of Table**

 $\overline{P}$  is reduced and  $\mu_0$  is the point of control, The above equation (3) can be reduced to Now s=1,

3. Corresponding to the located value of  $\mu_2/\mu_1$  the value of s and n<sub>1</sub>, n<sub>2</sub> can be obtained.

**Example 1** For s=1,  $n_1$ =100,  $n_2$ =50, and  $\overline{P}$  = 0.50 the corresponding Indifference Quality Level (IQL) value  $\mu_0$ =0.017052. And For s=3,  $n_1$ =50,  $n_2$ =50, and AQL value  $\mu_1$ = 0.003787 and LQL values  $\mu_2$ =0.076404.

| S | $n_1$ | $n_2$ | $\mu_1$  | $\mu_0$  | $\mu_2$  | $d_2$    | $d_{o}$  | Т        | $\mu_2/\mu_1$ |
|---|-------|-------|----------|----------|----------|----------|----------|----------|---------------|
| 1 | 100   | 100   | 0.001686 | 0.014482 | 0.103201 | 0.101515 | 0.012796 | 7.933339 | 61.21056      |
|   | 100   | 50    | 0.002045 | 0.017052 | 0.117866 | 0.115821 | 0.015007 | 7.717747 | 57.63619      |
|   | 50    | 100   | 0.002678 | 0.024402 | 0.168767 | 0.166089 | 0.021724 | 7.645415 | 63.01979      |
|   | 50    | 50    | 0.003372 | 0.028586 | 0.187254 | 0.183882 | 0.025214 | 7.292853 | 55.53203      |
|   | 25    | 20    | 0.007214 | 0.058734 | 0.326525 | 0.319311 | 0.051520 | 6.197807 | 45.26268      |
|   | 20    | 25    | 0.007844 | 0.065282 | 0.355550 | 0.347706 | 0.057438 | 6.053588 | 45.32764      |
| 2 | 100   | 100   | 0.001828 | 0.012016 | 0.049751 | 0.047923 | 0.010188 | 4.703867 | 27.21608      |
|   | 100   | 50    | 0.002222 | 0.014204 | 0.056985 | 0.054763 | 0.011981 | 4.570749 | 25.64120      |
|   | 50    | 100   | 0.002889 | 0.020203 | 0.086736 | 0.083847 | 0.017314 | 4.842728 | 30.02285      |
|   | 50    | 50    | 0.003657 | 0.023846 | 0.095980 | 0.092323 | 0.020189 | 4.572923 | 26.24423      |
|   | 25    | 20    | 0.007838 | 0.049632 | 0.186286 | 0.178448 | 0.041794 | 4.269683 | 23.76825      |
|   | 20    | 25    | 0.008505 | 0.055149 | 0.209266 | 0.200761 | 0.046644 | 4.304111 | 24.60621      |
| 3 | 100   | 100   | 0.001893 | 0.011309 | 0.039175 | 0.037282 | 0.009416 | 3.959325 | 20.69499      |
|   | 100   | 50    | 0.002303 | 0.013394 | 0.044784 | 0.042481 | 0.011091 | 3.830323 | 19.44501      |
|   | 50    | 100   | 0.002985 | 0.018970 | 0.069476 | 0.066491 | 0.015985 | 4.159542 | 23.27569      |
|   | 50    | 50    | 0.003787 | 0.022477 | 0.076404 | 0.072617 | 0.018690 | 3.885319 | 20.17427      |
|   | 25    | 20    | 0.008121 | 0.046966 | 0.151327 | 0.143206 | 0.038845 | 3.686594 | 18.63300      |
|   | 20    | 25    | 0.008805 | 0.052140 | 0.171546 | 0.162741 | 0.043334 | 3.755460 | 19.48190      |

 $\overline{P} = \frac{(1-\mu)}{(n_1\mu + 1 - \mu)} + \frac{n_1\mu(1-\mu)}{(n_1\mu + n_2\mu + 1 - \mu)(n_1\mu + n_2\mu + 1 - 2\mu)}$ Now s=2,  $\overline{P}$  as

$$=\frac{(2-2\mu)(2-\mu)}{(n_1\mu+2-2\mu)(n_1\mu+2-\mu)}$$

+  $\frac{2n_1\mu(2-2\mu)(2-\mu)}{(n_1\mu+n_2\mu+2-3\mu)(n_1\mu+n_2\mu+2-2\mu)(n_1\mu+n_2\mu+2-\mu)}$ Now s=3,

$$\bar{P} = \frac{(3-3\mu)(3-2\mu)(3-\mu)}{(n_1\mu+3-3\mu)(n_1\mu+3-2\mu)(n_1\mu+3-\mu)}$$

$$\bar{P} = \frac{(3-3\mu)(3-2\mu)(3-\mu)}{(n_1\mu+3-3\mu)(n_1\mu+3-2\mu)(n_1\mu+3-\mu)}$$

Designing Plans for given AQL, LQL, and

Tables 1 and 2 are used for selecting a Bayesian Double Sampling Plan for specified AQL and LQL, , by the following steps.

The steps utilized for selecting Bayesian Double Sampling Plan (BDSP-(0,1)) are as follows:

- 1. To design a plan for given (AQL, 1- ) and (LQL, ) first calculate the operating ratio  $\mu_2/\mu_1$
- 2. For a fixed  $n_1$ ,  $n_2$  locate the tabular value of  $\mu_2/\mu_1$  which is equal to or just less than the desired  $\mu_2/\mu_1$  in the column of desired , .

From Table 1 for the given variation Average Probability of Acceptance of the above equations. The average product quality level  $\mu$  using Newton's approximation method is obtained. The above examples, we can understand that when s and  $n_1,\ n_2$  are increased, the average product quality is decreased.

**Example 2** Suppose the value for  $\mu_1$  is assumed as 0.0027 and value for  $\mu_2$  is assumed as 0.30 then the operating ratio is calculate as 111.11111. Now the integer approximately equal to this calculated operating ratio and their corresponding parametric values are observed from the table2. The actual values s=1, n<sub>1</sub>=50, n<sub>2</sub>=100  $\mu_1$ =0.002678 and  $\mu_2$ =0.298445 at (=0.05 and =0.05).

# Designing of Quality interval Bayesian Double Sampling Plan (BDSP-(0,1))

### Probabilistic Quality Region (PQR)

It is an interval of quality ( $\mu_1 < \mu < \mu_2$ ) in which product is accepted with a minimum probability 0.10 and maximum probability 0.95, Probability Quality Range denoted as the  $d_2 = (\mu_2 - \mu_1)$  is derived from the average Probability of acceptance

$$\overline{P}(\mu_1 < \mu < \mu_2) = \frac{\Gamma_{\mathsf{s}+\mathsf{t}}}{\Gamma_{\mathsf{s}}\Gamma_{\mathsf{t}}} \frac{\Gamma_{\mathsf{s}}\Gamma_{\mathsf{n}_{\perp}+\mathsf{t}}}{\Gamma_{\mathsf{s}+\mathsf{t}+\mathsf{n}_1}} + \frac{\mathsf{n}_1\Gamma_{\mathsf{s}+\mathsf{t}}}{\Gamma_{\mathsf{s}}\Gamma_{\mathsf{t}}} \frac{\Gamma_{\mathsf{s}+\mathsf{1}}\Gamma_{\mathsf{n}_1+\mathsf{n}_2+\mathsf{t}-\mathsf{1}}}{\Gamma_{\mathsf{s}+\mathsf{t}+\mathsf{n}_1+\mathsf{n}_2}}$$

Where  $\mu = \frac{s}{s+t}$ , is the expectation of beta distribution and approximately the mean values of product quality.

### Indifference Quality Region (IQR)

It is an interval of quality ( $\mu_1 < \mu < \mu_0$ ) in which product is accepted with a minimum probability 0.50 and maximum probability 0.95. Indifference Quality Range denoted as the  $d_0 = (\mu_0 - \mu_1)$  is derived from the average Probability of acceptance

 $\overline{P}(\mu_1 < \mu < \mu_0) = \frac{\Gamma_{s+t}}{\Gamma_s \Gamma_t} \frac{\Gamma_s \Gamma_{n_1+t}}{\Gamma_{s+t+n_1}} + \frac{n_1 \Gamma_{s+t}}{\Gamma_s \Gamma_t} \frac{\Gamma_{s+1} \Gamma_{n_1+n_2+t-1}}{\Gamma_{s+t+n_1+n_2}}$ Where  $\mu = \frac{s}{s+t}$ , is the expectation of beta distribution and approximately the mean values of product quality.

## Selection of the Sampling Plan

Table 3, gives unique values of T for different values of s and n1, n2. Here Operating Ratio  $T = \frac{\mu_2 - \mu_1}{\mu_0 - \mu_1} = \frac{d_2}{d_0}$ , Where  $d_2 = (\mu_2 - \mu_1)$  and  $d_0 = (\mu_0 - \mu_1)$  is used to characterize the sampling plan. For any given values of PQR(d\_2) and IQR(d\_0) one can find the ratio  $T = \frac{d_2}{d_0}$ , Find the value in the Table 3, under the column T which is equal to or just less than the specified ratio, corresponding s and  $n_1$ ,  $n_2$  values are noted. From this ratio one can determine the parameters for the BDSP-(0,1) Plan.

In the similar way, the above equations are equated to the average probability of acceptance 0.95 and 0.10, AQL( $\mu_1$ ) and IQL( $\mu_2$ ) are obtained  $\mu_2/\mu_1$  in Table 3.

**Example 3.** Given  $\mu_1 = 0.00783$  compute the values of PQR and IQR then compute T. Select the respective values from Table 3. The nearest values of PQR and IQR corresponding to s=2,  $n_1=25$ ,  $n_2=20$  and  $\mu_1=0.007838$  are  $d_2=0.178448$  and  $d_0=0.041794$ , Then T= 4.269683. Hence the required plan has parameters  $n_1=25$ ,  $n_2=20$ , s=2, through Quality Interval.

## CONCLUSION

Bayesian Acceptance Sampling is the technique, which deals with the procedure in which decision to accept or reject lots or process based on their examination of past history or knowledge of samples. There are many way to determine an appropriate sampling plan. However all of them are either settled on a non-economic basis or do not take into consideration the produce's and consumer's quality and risk requirements. Using the Bayesian sampling attribute plan without a cost function for a prior distribution can reduce the sample size. The work presented in this paper mainly related to procedure for designing Bayesian Chain Sampling plan for Acceptable quality level, producer's and consumer's risks, indifference quality levels, indifference and probabilistic quality regions. The Risks and Quality Region for specified AQL and LQL sampling plan possesses wider potential applicable in industry ensuring higher standard of quality attainment for product or process. Thus quality level and quality region are good measure for defining and designing for acceptance sampling plan which are tailor-made, handy and ready-made uses to industrial shop-floor situations.

### References

- Calvin, T.W.(1984). How and When to Perform Bayesian Acceptance Sampling, Vol.7, American Society for Quality Control, Milwaukee, Wisconsin, USA.
- Case, K.E and Keats, J.B.(1982). On the Selection of a Prior Distribution in Bayesian Acceptance Sampling, *journal* of Quality Technology, Vol.14, No 1, pp.10-18.
- Dodge, H.J.(1955). Chain Sampling Inspection Plans, Industrial Quality Control, vol.11,No.4, pp.10-13.
- Hald, A.(1960). The Compound Hypergeometric Distribution and a system of Single Sampling Inspection Plans based on Prior Distribution and Costs, Technometrics, Vol.2, pp.275-340.
- Hald, A.(1965). Bayesian Single Sampling Plans for Discrete Prior Distribution, Mat. Fys. Skr. Dan. Vid. Selsk., Vol.3, No.2, pp.88, Copenhagan, Munksgaard.
- Latha, M. and Arivazhagan, R.(2015). Bayesian Chain Sampling Plan using Beta Prior Distribution, International Journal of Emerging Trends in Engineering and Development.
- Latha, M. and Arivazhagan, R.(2015). Selection of Bayesian Multiple Deferred State Sampling Plan based on Beta Prior Distribution, *International Journal of Advanced Scientific and Technical Research*,.
- Latha, M. and Jeyabharathi, S.(2012). Selection of Bayesian Chain Sampling Attributes Plans based on Geometric Distribution, *International Journal of Scientific and Research Publication*, Vol.2, issue 7.
- Raju, C.(1984). Contribution to The Study of Chain Sampling Plans, Ph.D. Thesis, Bharathiar University, Combatore, Tamilnadu, India.
- Soundararajan, V and Vijayaraghavan, R. (1989). On designing Multiple Deferred State Sampling (MDS-1(0,2)) Plans involving Minimum Risks. *Journal of Applied Statistics*, vol 16,issue 1, pp.87-94.
- Soundararajan, V. (1978a). Procedure and Tables for Construction and Selection of Chain Sampling Plans (ChSP-1), Part 1, *Journal of Quality Technology*, Vol.10, No.2, pp.56-60.
- Subramani, K and Govindaraju, K. (1990). Selection of Multiple Deferred State MDS-1 Sampling Plan for Given Acceptable and Limiting Quality Levels involving Minimum Risks, *Journal of Applied Statistics*, vol. 17, no. 3,pp.431-434.
- Suresh, K.K and Ramkumar,T.B. (1996). Selection of a sampling plan indexed with a maximum allowable average outgoing quality, *Journal of Applied Statistics*, vol. 23,pp. 645-654.
- Suresh, K.K. and Latha, M.(2001). Bayesian Single Sampling Plans for a Gamma Prior, Economic Quality Control, Vol.16,No.1, pp.93-107.
- Suresh, K.K. and Latha, M.(2002). Construction and Evaluation of Performance Measures for Bayesian Chain Sampling Plan (BChSP-1), *Far East Journal of Theoretical Statistics*, Vol.6, No.2, pp.129-139.
- Suresh, k.k.and Sangeetha, V.(2010). Selection of Repetitive Deferred Sampling Plan Through Quality Region, *International Journal of Statistics and Systems*, Vol.5, No.3, pp.379-389.

- Vaerst, R.(1981): A Procedure to Construct Multiple Deferred State Sampling Plan, Method of Operation Research, Vol.37, pp.477-485.
- Wortham, A.W. and Baker, R.C.(1976): Multiple Deferred State Sampling Inspection, *The International Journal of Production Research*, Vol.14, No.6, pp.719-739.

### How to cite this article:

Sehrawat A *et al.*, Influence of Different Additives on Shelf life of Rhizobial Inoculants for Mungbean (Vigna Radiata 1.). *International Journal of Recent Scientific Research Vol. 6, Issue, 5, pp.4328-4333, May, 2015* 

\*\*\*\*\*\*