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INTRODUCTION

n
Definition: Let ¢ be any non zero simple function and ¢ = 1 @;Cg; where q; are  non zero distinct and E; are non empty
i=1

digoint measurable sets. Then ¢p = Z a@;Cg, is called the Standard form or Canonical form of ¢.
i=1

Definition: Let ¢ be any non negative simple function, then if ¢ =0 on X then we
define [, ¢ du = 0.

Suppose ¢ = 0 and ¢ = z a;Cg, is the standard form of ¢, then we define
i=1
feddu=Y"_ ayu(E;) where E; are all disjoint measurable sets.

Theorem: Let ¢¢ and ¥ are non negative simple functions, a be any non negative real number. then

€y Jap=af¢ and(2) [(p+P)=d+ [

n

Proof: Let ay,ay, ......ay, arethevaluesof ¢ and E; = { ¢ = a; } then ¢ —E a;Cg, where a; are non negative, E; are digoint
5 |

i=

n
measurable sets and X = U E;
1=1

m

Similarly Let By, 3, ... ... B be €ll the values of 1, F; = { = B; } thenp 4} B;Cr; where B, are al non negative and F; are
j=1

m
al digoint end measurableand U F; = X.
Jj=1

D If @ = 0 then both sides are zero, hence equal.
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Leta>0thena ¢ = Z (aa;)Cg,= Z (@;)Cg, where a; = a a;, a; are all non negative, E; arc all digoint measurable,
i=1 i=1

Therefore [ ap =Y | (a))u(E) = Y| (@adu(E)=a 3| (@)u(E) =a [ ¢.

) ¢ +y= E 1 E;n:] (@ + B;) C,nr; Where a; + B; are non negative, E; N F;

are measurable.

Hence [ ¢+ = 2 Z} (@i +8) u(E;nF)
-3 TR uEOE)T S (0) )
:z I.=](ce1) E;n:] u(E;nF) +Zi=1(ﬁ’j) Z:n:l w(E;nF)

‘ _1n m m n
=, alUEnm) ) BHUENE)]

li=1
n

‘ 4 m n
=z _‘Fla@u[a N (U +Z;—=1 AU (E) 0 )
=) o +Zi1ﬁi”[x”5)]:§ " aulBl+) " BRLEL=T 44 .

Hence [ ¢+ =f ¢+ v.

Cor(1): If ¢y,¢; ... ... are n non negative simple functions then above said result can be extended as [ (¢, + ¢, +

) = [y By e + [ ¢y.
Cor (2): If ¢ &1 are non negative smple functionsand «, 8 are non negative real numbers then [ (ap+8 V) = af ¢+B [ 1.
Cor (3): If ¢y, qb2 < o Py @re N non negative simple functions and a,, ay, ... ... ...., @, are non negative real numbers, then

f Z( la! Z:':l ai.r qbl'-
Cor (4): Let¢p = E (a;)Cg, where a; are non negative and E; are measurable then [¢ =§ a;pu(Ep).
i=1 i=1

Definitien: Let ¢ be any non negative ssimple function and E be any measurable set. Let ¢p* be the restriction of ¢ to E. Then we
define [.¢ = [ ¢".

Note: [, ¢ = J ¢C;

Theorem: Let ¢ be a non negative simple function. For measurable set E
define A(E) = [, ¢ du, Then 4 is;ameasure.

Proof: Obviously 4 > 0. Mareover A(¢) = [, ¢ = J ¢Cp=0

But E baing measurable set, ¢ = 51 a;Cg be the standard form of ¢. Fof any measurable set A we define u;(A) = u(A N Ey)
i=1

then y; is a measure.

We have A(E) = IE d=J dCp=J i1 o Ceng, = iy @i i (E)

Hence A(E) = (2?21 o ﬂ!)( E() ¥ measurable set E('.
This means A=Y, @; y;, Since @; = 0 for every 1< i < n. It followsthat 4 is;a measure.

Cor (1): If ¢ is any non negative simple function, A and B are any measurable digoint sets then fAqu) = fA ¢ + de) but A(E) =
J; & then 2 is ameasure.
Then A(AUB))=A(4) +A(B) = fAUBqﬁ = fAcﬁ + chﬁ.

Cor (2): If N beanull set and ¢ is a non negative simple function.
Then [, ¢=0 = A(N) = [ ¢ =0.
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Cor (3):Letp =0aethenfp=0
Suppose ¢ = 0 ot X-N where N is anull set. Then [, ¢ = f(x_N)UN ¢

=f,_y &+ [ d=0+0=0.

Definifion: Let f be any mon negative measurable function, we define

Jfr=Sup{[¢p/0< ¢ < f:¢issimple}

Definition: Let f be any non negative measurable function and E be any measurable set. Let f* be the restriction of f to E, Define
fgf :J-JF“

Note: [, f = [ fCp.
Theorem: Let f and g be any non negative measurable functions, then

[f=0iff=0ae
[, f=0ifN is a null set.

[, f<[,fifAcB
[f<fgiff<sgae
Jf=Jgiff=gae
Jaonf = S, f for every null set N.

SV A whpE

Proof:

1. Suppose f=0ae Let0< ¢ < f, ¢ beany simple function. It followsthat ¢ =0 ae.

=>[¢p=0=>Sup{[p/0< ¢ <f: pissimple}=0= [f=0.
2. Letf"=fCythen f*=0a.e.

> [f=0=[,fCy=0=[,f0
3. Let A © B beany measurable set. Let ¢b be any simple function such that 0< ¢ < f.,
Since AcB,wehave Cy < Cp=f,, < fo, 20<p<f, > [dp< [f,
SSup{f ¢} < S fep=> [ foa < fop
= fif sl

4, Suppose f < g on X-N where N is a null set. Let ¢p be asimple function such that
0<¢p<f,Then0<p<fonX-N=>0<p<gonX-N=> [ <[ g
= [, y®=S;9 [Becawse [, g </ g]
= fin®+to<Jg [fy®=0]
> ybd<Jg=>fpsfg=>s5upfp<fg=[f<[g
5. Suppose f =gae Thenf<gae=[f<[g

Similarly g < fae.= [g<JfHence> [ f=[g.
Let ¢ be any simple function such that 0 < ¢ < f on AU N.

6. ThenOS(,bf;fonA:ngb g_jﬁf:)fﬂ(b +f o< [f [[,6=0]
> [n®<[f =S, b<[f  From(3)weget
= [, f< [, fHence [  f=]f.

Monotone Convergence Theorem: Let { f,,} be an increasing sequence of non negative measurable functions and f be non negative
such that f, — fa.e.then [ f, = [ f.

Proof: First wenotethat f is measurable because the limit of a sequence of measureble functionsis measurable.
Andf, < f¥n [Because for increasing sequence Limit A, = U4,
1

And for decreasing sequence Limit 4,, = n Al

s>[f< [fynsLlimt < [ (1)

Let0< a <1lbeanyrea number. And0 < ¢ < f be any smple function.
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Define A= {a¢ < f,}, Since a¢ , f,, are measurable functions, it follows that 4,, is measurable for all n. As (f;,) is an increasing
sequence, it is clear that 4, is also an increasing sequence. Let x € X, Suppose f(x) =0 then¢p(x) =0= a¢p(x) =0

sadpx)<f,x) Yn=2x e{ap <f,}=>x €4,>x elibfln
Butf(x) >0 thenag(x) <af(x)<f(x)= ap(x)<f(x). Asf, — f wecan find k
st. fi)>apx)=2x€fap <fi}=>x€ 4, x ELIMn shows that x ELIJAm

Hence LIJA,1 =X e, (2)

For measurable set E define A(E) = [, ¢, then 1 is.ameasure
From (2) we have (A,) T X therefore A(4,,) T A(X) [Because of the continuity of the
measure for increasing limits]

= Limit 1(4,) = A(X) = Limt_j’Anqb =[¢d (3)

By definition of A, wehave a¢ < f,on4d, = fﬂna’f,f) < jAufn saf, $< [f [fﬂnf;l < Jyhl
=>Limta'fAn(,b < Limtf f, = a Limt _‘-An(ﬁ' < Limtf f, = af ¢ < Limtf f, [From (3)]
Teking limitesa — 1 weobtein [ ¢ < Limtf f, = Sup{[ ¢} < Limt[ f,

=>[f<Limtff, (4)
From (1) and (4) we get Limt[ f, = [ f proved.

Note: If the sequence {f,} is not an increasing sequence then Monotone Convergence Theorem does not hold. Consider the
following example.

Let (R,M, m) be the L'- measure space. Let f, =~ Cjoy then f;, > 0, f, is measurable ¥ n and
fuo0butf f» J0

Also Another example let f,, = ic[n-ml then f, = 0 and (f,) is monotonic decreasing sequence of measurable functionsand f,, — 0
uniformly but [ £, +» [ 0.

Fatou’s Lemma: Let { f,,} be a sequence of non negative measurable functionsand f, — f a.e. on aset E then fEf < Limt fEfn.

Proof: Without any loss of generality we may assume that the convergence being everywhere. Since integrals over set of measure
zero are zero. Let h be a bounded measurable function which is not greater than f and which vanish outside a set E’ of finite
measure.

Define h, by letting h,,(x) = min {h(x), f,(x)} then h, is bounded by the bound of h and vanish outside E’.
Now h,, — h for each x € E’ then we have [, h = [, h =limt[, h, < Limt [, f,.
Taking sup over hwe get [, h < Limt [_f,. Proved.

Another Proof: Let f = Limt f,,. Define g, = Inf{ fi, fas1, fasz, oo ove oo e }
=Inf{ fi./ k =n} Then {g,} is a monotonic increasing sequence of non negative measurable functions. Then Limit (g,,) =
sup(g,) =sup{ Inf (f, )/ k > n} =Limt f, = f.

n n

Thus From Monotone Convergence Theorem [ f =limit g, .. (1)
gn<fiVkzn=[g,<[fp vk=n= [g,<Limtf f, = Limitf g, < Limt[ f
= [ f < Limt/f fi [From (1)]

= [ Limt (f,) < Limtf f,. Proved.
Cor: If { f,} beeny sequence of non negative measurable functions and f, — f then= [ f < Limt[ f,

Preposition: Let f& g are non negative measurable functions and « be any non negative constant, then
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1. Jaf=affand@)[(f+9)=[f+Sg

Proof: Since f& g are non negative measurable functions, we can find increasing sequences {¢.,} and {1,,} of non negative simple
functionss.t. ¢, - f and i, > g.

1. (a¢,) is an increasing sequence of non negative simple functions and a¢, » af therefore [ a¢, - [ af
[By M.C.T.]
= [af =limt[ap,=limtafd,=alimt[$,=aff [ByM.CT]

2. (¢, +,,) is monotone increasing sequence of non negative simple functions and

P+ f+yg
Therefore [ (¢, + ) = [ (f + 9) [ByM.CT]
J(f+g9) =limt [ (¢n +1py) = limit (J (¢n) +f ()
=limt (f (¢n) *limt [ p)=[f+ [ g [By M.C.T.]

Proved.

Cor (1) Let f& g are non negative measurable functions and a and g be any non negative constants, then

[ (af +Bg)=af f+B[ g.

n
Cor (2) If fi, f2, ..., f» are non negative measurable functionsand a;, a;, ... ... ..., @, are non negative constants then [ E @;f;
=1
=2 ?:1 a [ fi-
Theorem: Let 35, f,, be a series of non negative measurable functions,
then [ 37, f = anl J s

Proof: Let g, =Xi, fiand f = Y&, f, theri (g,) — f and (g,) is en increasing sequence of non negative measurable functions.
Hence by M.C.T. we have

Jf=limit [ g, = [ EX fu=limt [ (fi+fot-Af)=Limt(ffi + [ fot i tf)
=limit () [ f)= 2., [ f whichshowathat [ T2, fo= D [ fu-

Preposition: Let f be non negative measurable function. For any measurable set E define A(E) = fEf, then A isia measure.
Proof: Itisclear that 1 = 0 and A(¢p) =0

Let (E,,) be any sequence of disjoint measurable sets and E = U E,,. since the sets are disjoint we get

oo

=1
G=)  Co=o[C=) [Co=[fGe=[) faa =Y [fts,
n=1_ n=1 n=1 n=d

= [ f= ) L. f=1()= > W_IA(EH). Which provesthat 1 is a measure.
n=1 n n=
Cor(1): If A and B are disjoint measurable sets, then [, .f = [, f+ [ .
Cor(2): Let (E,) is any sequence of digoint measurable sets, then foGEf:E fE f.
1 1 "

Theorem: Let £ be non negative measurable function, then [ f = 0iff f = 0 ae.

Proof: If f =0 a.e. then | f = 0 obviously.
Conversely let [ f =0 ae., to show that f = Q a.c.

Define E, = { f > ~}, and E= { f > 0} then E= UE,.
1

SinCe-:;CEHE,fWC‘gc[fiCEnSffﬁi,u(En)SO vn= u(E,) <0 vn= u(E,)=0 vn
>y u(E)=0= pu(E) <¥Pu(E,) Wefindthat u (E) =0, ThusE isanull setand f = 0 on X-E. Provesthat f =0 ae.

Definition: Let f be any non negative measurable function. If [ f < oo then f is said to be integrable.
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(F+g)+f-gl (F+g)-If-g|
2

Note: fV g = and fAg=
Also f+= v o=L ang po= —(p a0y = LU =UDT o g+ pom foand £+ - = |f]

2 2

Definition: Let f be any measurable function. If f* and f~ both are integrable then f is said to be integrable and we define [ f =
TEr=[F

Theorem: Let f be measurable function then (1) f is integrable iff | f| is integrable and
If fI<JIf]. 2 1fgisintegrableand |f] < g then f is integrable.

Proof: (1) Suppose |f| is integrable. Then f* + f~ =|f| ,wesecthat f* <|f|, f~ <|f]
> [fr<[Ifl.fJf<[Ifl = [ft<owand [f~ <o = f*and f~ both are integrable.
= f isintegrable.

For the converse assume that f is integrable. That means f* and f~ both are integrable.
> [ft<owand [ f-<owBut|f] = f*+ f whichgives [ [f| =[(f*+f")

= [f*+[f <= [|f|] <ooshows that|f] isintegrable.

Further |f f| = f*+[fI<UU I+ fI=0 5+ =[P+ ) =[Ifl.
@ Let g be integrable and |f| < gthen [ |f| < [ g < o = |f] is integrable
2 = fisintegrable. [From part (1))

Definition: Let f be any measurable function and E be any measurable set. Let f* = f/E. If f is integrable then we say that f is
integrable over Eand [, f = [ f".

Remark: f is integrable over Eiff f,_isintegrableand [,f = [ f;. -
Theorem: Let f be any measurable function, then

If f is integrable and E is any measrurable set, then f is integrable over E.

Jof = 0if Nbeanull set.

[f =0if f=0ae

If £ is integrable and g = f a.e. then g is integrable. And [ f = [ g

If f is integrable and for a measurable set E v(E) = fEf then v is finite, v(¢p) = 0 and v is countably additive.

agrwdheE

Proof: Suppose f is integrable and E be a measurable set then f* and f~ are integrable

= [f*<wand [f~ <owfrom [, f* <[, f*<oo f fT <[ f~ <00

Notethat f* and f~ are integrable over E = f is integrable over E.

(2) LetNbeanull setthen [ f*=0end [ f=0= [ f =[,f*-[,f =0-0=0
() Let f=0ac.then f*=0ac.and f-=0ae. > ff=0and [ f~ =0

> [f=lft-Jf=0=[f=0

(4) Let f be integrableand g = f a.cthen g* = ffa.e.and g~ = f ae.

= g*and g~ areintegrable, = g is integrable.

(5) [f is finite for every E = v(E) is finite and v(¢p) = [ oF =0

Let (E,;) be any sequence of disjoint measurable sets then

vQUB)=Sg, f=So, [ =To f7=) o ft -3 Lo f =3 Upft-lpf)
= oS =T0v ED.

Note: (1) (af)*=a f*.,(af) " =a f ifa=0
and (af)* =(—a) f~,(af)”" =(—a) f* ifa<O.

Theorem: Let f and g be two integrable functions and «, f be any constants then

1. af isintegrable and [ af =a [ f
2. f+4+gisintegrable and [ (f+9)=Jf+[g.
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Proof: (1) Ifa=0then af = 0, [ af =0, @ f f =0Hence no further argument is needed.
Letae =0then [(af)t= [aft =af f* < coshowsthat (af)" is integrable.

Also f(af)" = [af =af f~ < «oshowsthat (af)" is integrable.

And [af = [(af)* = [(af)y"=af f*-af f=alf f*-[ f1=aff.

Suppose @ < 0 then [(af)* = [ (—a)f = (—a)f f~ < w

= [(af)” = [(—a)ft = —af f* < « shows that af is integrable.

Jaf =[(af)* = [(af)y =) f- () f*=alf f*-f f1=aff.

(2) writeh=f+ gthen h*- k™= f*- f~+ g*- g~ = h*+f™+ g~ = f*'+ g* + h~

These all are non negative measurable functions

Consequently [ (h*+f~+ g7)= [ (f*+g* + h")
Gives [h*+ [f~+ [ g~ = [f*+[g*+ [h~

> = =[f"-[f+[g"-[ g
>fh=[f+[g=]U+9=[f+]g

Cor (1) Let f and g be two integrable functions and «, # be any constants then af + fBg is integrable and [ (af +fg) =a [ f
+3J g.

Cor (2) Let fi,fa, o oo, f be finitely many integrable functions and a;,a,, .....,a, are constants then then a,f; + a,f; +
5 n : n ;
TN + @, f, is integrable and [ Y, @;f, = Za=1 af f.

Lebesgue Dominated Convergence Theorem: Let {f,} be any sequence off measurable functions, g be any integrable function
such that |f,| < g foraln,If f, - f a.e then f is integrable and [ f, —= [ f.

Proof: Since g is integrable, f,, is measurable and |f,,| < g for al n, it follows that f,is integrable for al n. From |f,,| < g weget -g
< fn < g.Thefactthat f, = f
gives-g <f, <g=If] =g

Thusas f, — f = f = limt (f,) and f, is measurablefor all n, It followsthat f is measurable. Hence f is integrable.
Now foreverynwehave -g <f, <g (*)

Fromt (*) we see that (g + f,,) is a sequence of non negative measurable functions. Using Fatou’s Lemma, we obtain | Limt(g +

f) € Limtf (g + f)
>[(g+f) <Lmt(fg +ff)=[g+Limt [f,
>fg+[f<fg+lmt [fp= [f <Limt [f, L. )

Also from (*) we note that (g — f;,) is a sequence of non negative measurable functions. Using Fatou’s Lemma we obtain | Limt(g
— fo) < Limtf (g — fo)

=[@-f <Limt(fg - /) >[g-[f <[yg- Limt[fy= —ff <- Limt [ f,

sLimtffo< fF )

From (1) and (2) we get Limt [ f, < [ f < Limt [ f,
SinceLimt [ f,, <Limt [ f,, we must have Limt [ f, = Limt [ f,= [ f
=>Limt [ f,= [fie [ f, = [ f.Proved.
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