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In this article, we define the integral of real-valued functions on an arbitrary measure space and derive
some of its basic properties. We refer to this integral as the Lebesgue integral, whether or not the domain
of the functions is subset of equipped with Lebesgue measure. The Lebesgue integral applies to a much
wider class of functions than the Riemann integral and is better behaved with respect to point wise
convergence. We carry out the definition in three steps: first for positive simple functions, then for positive
measurable functions, and finally for extended real-valued measurable functions and gives the proof of the
Fatou’s Lemma and at the end proves the Lebasgue Dominated Convergence Theorem.
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INTRODUCTION

Definition: Let be any non zero simple function and = . where are   non zero distinct and are non empty

disjoint measurable sets. Then = . is called the Standard form or Canonical form of .
Definition: Let be any non negative simple function, then if =0 on X then we
define ∫ d = 0.

Suppose ≠ 0 and = . is the standard form of , then we define∫ d = ( ) where are all disjoint measurable sets.

Theorem: Let and are   non negative simple functions, be any non negative real number. then

(1) ∫ = ∫ and (2) ∫ ( + ) = ∫ + ∫
Proof: Let , , …… are the values of and = { = } then = . where are non negative, are disjoint

measurable sets and X = ⋃
Similarly  Let , , …… . be all the values of , = { = } then = β . where β . are  all non negative and are

all disjoint and measurable and ⋃. = X.

(1) If = 0 then both sides are zero, hence equal.
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Let > 0 then = ( .) = ( ∗) where ∗ = , ∗ are all non negative, are all disjoint measurable,

Therefore ∫ = ( ∗) ( ) = ( ) ( ) = ( ) ( ) = ∫ .

(2) + = + ∩ where + are non negative, ∩
are measurable.Hence ∫ + = + ∩= ∑ ( ) ∩ + ∩
= ( ) ∩ + ∩
= . [ ⋃ ( ∩ )] + [ ⋃ ( ∩ )]
= . [ ∩ ( ⋃ ( )] + [( ⋃ ( ) ∩ )]

= . [ ∩ X] + [ X ∩ )] = . [ ] + [ ] = ∫ +∫ .

Hence ∫ + =∫ +∫ .

Cor(1): If , ……… are n non negative simple functions then above said result can  be extended as ∫ ( + +⋯… .+ ) = ∫ +∫ + ⋯……+ ∫ .
Cor (2): If & are non negative simple functions and , are non negative real numbers then ∫ ( + ) = ∫ + ∫ .
Cor (3): If , ……… are n non negative simple functions and , , ……… . , are non negative real numbers, then∫ ∑ = ∫ .

Cor (4): Let = ( .) where are non negative and are measurable then ∫ = . ( ).

Definition: Let be any non negative simple function and E be any measurable set. Let ∗ be the restriction of to E. Then we
define ∫ = ∫ ∗.
Note: ∫ = ∫
Theorem: Let be a non negative simple function. For measurable set E

define (E) = ∫ d , Then is a measure.

Proof: Obviously ≥ 0. Moreover ( ) = ∫ = ∫ = 0

But E being measurable set, = . be the standard form of . Fof any measurable set A we define (A) = (A ∩ )

then is a measure.

We have ( ) = ∫ = ∫ = ∫ ∑ ∩ = ∑ (E)
Hence ( ) = ( ∑ )( ) ∀ measurable set .
This means = ∑ , Since ≥ 0 for every 1≤ i ≤ n. It follows that is a measure.

Cor (1): If is any non negative simple function, A and B    are any measurable disjoint sets then ∫ ∪ = ∫ + ∫ but ( ) =∫ then is a measure.

Then ( ∪ B)) = ( ) + (B) ⇒ ∫ ∪ = ∫ + ∫ .

Cor (2): If N be a null set and is a non negative simple function.
Then ∫ = 0 ⇒ ( ) = ∫ = 0.
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Cor (3): Let = 0 a. e. then ∫ = 0
Suppose = 0 on X-N where N is a null set. Then ∫ = ∫( )∪
= ∫ + ∫ = 0+0 = 0.

Definition: Let be any non negative measurable function, we define∫ = Sup{ ∫ / 0≤ ≤ : is simple}
Definition: Let be any non negative measurable function and E be any measurable set. Let ∗ be the restriction of to E, Define∫ =∫ ∗.
Note: ∫ = ∫ .

Theorem: Let and be any non negative measurable functions, then

1. ∫ = 0 if = 0 a. e.
2. ∫ = 0 if N is a null set.

3. ∫ ≤ ∫ if A⊂ B
4. ∫ ≤ ∫ if ≤ a.e.
5. ∫ = ∫ if = a.e.
6. ∫ ∪ = ∫ for every null set N.:
1. Suppose = 0 a.e. Let 0≤ ≤ , be any simple function. It follows that = 0 a.e.⇒ ∫ = 0 ⇒ Sup{ ∫ / 0≤ ≤ : is simple} = 0⇒ ∫ = 0.
2. Let ∗ = then ∗ = 0 a.e.⇒ ∫ ∗ = 0⇒ ∫ = 0⇒ ∫ =0
3. Let A ⊂ B be any measurable set. Let be any simple function such that 0≤ ≤

Since A ⊂ B, we have ≤ ⇒ ≤ ⇒0≤ ≤ ⇒ ∫ ≤ ∫⇒ Sup{∫ } ≤ ∫ ⇒ ∫ ≤ ∫⇒ ∫ ≤ ∫ .
4. Suppose ≤ on X-N where N is a null set. Let be a simple function such that

0≤ ≤ , Then 0≤ ≤ on X-N ⇒ 0≤ ≤ on X-N.⇒ ∫ ≤ ∫⇒ ∫ ≤ ∫ [ Because ∫ ≤ ∫ ]⇒ ∫ +∫ ≤ ∫ [∫ = 0]⇒ ∫ ≤ ∫ ⇒ ∫ ≤ ∫ ⇒ ∫ ≤ ∫ ⇒ ∫ ≤ ∫ .
5. Suppose = a.e.  Then ≤ a.e.⇒ ∫ ≤ ∫

Similarly ≤ a.e.⇒ ∫ ≤ ∫ Hence ⇒ ∫ = ∫ .
Let be any simple function such that 0 ≤ ≤ on A∪ N.

6. Then 0≤ ≤ on A⇒ ∫ ≤ ∫ ⇒ ∫ +∫ ≤ ∫ [∫ = 0]⇒ ∫ ∪ ≤ ∫ ⇒ Sup∫ ∪ ≤ ∫ From (3) we get⇒ ∫ ≤ ∫ ∪ Hence ∫ ∪ = ∫ .
Monotone Convergence Theorem: Let { } be an increasing sequence of non negative measurable functions and be non negative
such that → a.e. then ∫ → ∫ .
Proof: First we note that is measurable because the limit of a sequence of measurable functions is measurable.

And ≤ ∀ n [Because for increasing sequence Limit = ⋃
And for decreasing sequence Limit = ∩ ]⇒ ∫ ≤ ∫ ∀ ⇒ Limt ∫ ≤ ∫ ……………(1)

Let 0 < < 1 be any real number. And 0 ≤ ≤ be any simple function.
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Define = { ≤ }, Since , are measurable functions, it follows that is measurable for all n.  As ( ) is an increasing
sequence, it is clear that is also an increasing sequence. Let ∈ , Suppose ( ) = 0 then ( ) = 0 ⇒ ( ) = 0⇒ ( ) ≤ (x) ∀ n⇒ ∈ { ≤ } ⇒ ∈ ⇒ ∈ ⋃
But ( ) > 0 then ( ) ≤ ( ) < ( ) ⇒ ( ) < ( ). As → we can find k

s.t. (x) > ( ) ⇒ ∈ { ≤ }⇒ ∈ , ∈ ⋃ shows that ∈ ⋃ ,

Hence ⋃ = X ………………. (2)

For measurable set E define ( ) = ∫ , then is a measure
From (2) we have ( ) ↑ X therefore ( ) ↑ (X) [Because of the continuity of the

measure for increasing limits]⇒ Limit ( ) = (X) ⇒ Limt∫ = ∫ ……………….. (3)

By definition of we have ≤ on ⇒ ∫ ≤ ∫ ⇒ ∫ ≤ ∫ [∫ ≤ ∫ ]⇒ Limt ∫ ≤ Limt∫ ⇒ Lim ∫ ≤ Limt∫ ⇒ ∫ ≤ Limt∫ [From (3)]

Taking limit as → 1 we obtain ∫ ≤ Limt∫ ⇒ ∫ ≤ Limt∫⇒ ∫ ≤ Limt∫ ………….. (4)

From (1) and (4) we get Limt∫ = ∫ proved.

Note: If the sequence { } is not an increasing sequence then Monotone Convergence Theorem does not hold. Consider the
following example.

Let (ℛ,ℳ, ) be the - measure space. Let = [ , ] then ≥ 0, is measurable ∀ n and→ 0 but ∫ ↛ ∫ 0Also Another example let = [ , ] then ≥ 0 and ( ) is monotonic decreasing sequence of measurable functions and → 0
uniformly but ∫ ↛ ∫ 0.
Fatou’s Lemma: Let { } be a sequence of non negative measurable functions and → a.e. on a set E then ∫ ≤ Limt ∫ .
Proof: Without any loss of generality we may assume that the convergence being everywhere. Since integrals over set of measure
zero are zero. Let ℎ be a bounded measurable function which is not greater than and which vanish outside a set of finite
measure.

Define ℎ by letting ℎ (x) =min {ℎ( ), ( )} then ℎ is bounded by the bound of h and vanish outside .
Now ℎ → h for each ∈ then we have ∫ ℎ = ∫ ℎ = limt∫ ℎ ≤ Limt ∫ .

Taking sup over h we get ∫ ℎ ≤ Limt ∫ . Proved.

Another Proof: Let = Limt . Define =  Inf { , , ,……… . }
= Inf{ / k ≥ n} Then { } is a monotonic  increasing sequence of non negative  measurable  functions. Then Limit ( ) =sup( ) =sup{ Inf ( )/ k ≥ n} = Limt = .
Thus From Monotone Convergence Theorem ∫ = limit ∫ …………… (1)≤ ∀ k ≥ n ⇒ ∫ ≤ ∫ ∀ k ≥ n ⇒ ∫ ≤ Limt∫ ⇒ Limit∫ ≤ Limt∫⇒ ∫ ≤ Limt∫ [From (1)]⇒ ∫ Limt ( )≤ Limt∫ . Proved.

Cor: If { } be any sequence of non negative measurable functions and → then⇒ ∫ ≤ Limt∫
Preposition: Let & are non negative measurable functions and be any non negative constant, then
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1. ∫ = ∫ and (2) ∫ ( + ) = ∫ + ∫
Proof: Since & are non negative measurable functions, we can find  increasing sequences { } and { } of non negative simple
functions s.t. → and → .

1. ( ) is an increasing sequence of non negative simple functions  and → therefore ∫ → ∫
[By  M.C.T.]⇒ ∫ = limt ∫ = limt ∫ = limt ∫ = ∫ [By M.C.T.]

2. ( + ) is monotone increasing sequence of non negative simple functions and+ → +
Therefore ∫ ( + ) → ∫ ( + ) [By M.C.T.]∫ ( + ) = limt ∫ ( + ) = limit (∫ ( ) +∫ ( ))
= limt (∫ ( ) + limt ∫ ( ) = ∫ + ∫ [By M.C.T.]
Proved.

Cor (1) Let & are non negative measurable functions and be any non negative constants, then∫ ( + )= ∫ + ∫ .
Cor (2) If , , … . . , are  non negative  measurable functions and , , ……… , are non negative constants then ∫ .
= ∫ .

Theorem: Let ∑ be a series of non negative measurable functions,

then ∫ ∑ = ∫ .

Proof: Let =∑ and = ∑ then ( ) → and ( ) is an increasing sequence of non negative measurable functions.
Hence by M.C.T. we have∫ = limit ∫ ⇒ ∫ ∑ = limt ∫ ( + +⋯ . . + ) =Limt (∫ + ∫ +⋯ . . + )
= limit ( ∫ ) = ∫ which shows that ∫ ∑ = ∫ .
Preposition: Let be non negative measurable function. For any measurable set E define ( ) = ∫ , then is a measure.
Proof: It is clear that ≥ 0 and ( ) = 0
Let (E ) be any sequence of disjoint measurable sets and E = ⋃ . since the sets are disjoint we get

= ⇒ ∫ = ∫ ⇒ ∫ = ∫ = ∫⇒ ∫ = ∫ ⇒ ( ) = ( ) .  Which proves that is a measure.

Cor(1): If A and B are disjoint measurable sets, then ∫ ∪ = ∫ + ∫ .

Cor(2): Let  ( ) is any sequence of disjoint  measurable sets, then ∫⋃ = ∫ .

Theorem: Let be non negative measurable function, then ∫ = 0 iff = 0 a.e.

Proof: If = 0 a.e. then ∫ = 0 obviously.
Conversely let ∫ = 0 a.e., to show that = 0 a.e.

Define E = { > }, and E = { > 0} then E = ⋃E .
Since ≤ we get ∫ ≤ ∫ ⇒ ( ) ≤ 0 ∀ n ⇒ ( ) ≤ 0 ∀ n ⇒ ( ) = 0 ∀ n⇒ ∑ ( ) = 0 ⇒ (E) ≤ ∑ ( )We find that (E) = 0, Thus E  is a null  set and = 0 on X-E. Proves that = 0 a.e.

Definition: Let be any non negative measurable function. If ∫ < ∞ then is said to be integrable.
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Note: ⋁ =
( ) | |

and ∧ =
( ) | |

Also = ∨ 0=
( ) | |

and =−{ ∧ 0} = − ( ) | |
=
(| |) ⇒ − = and + = | |

Definition: Let be any measurable function. If and both are integrable then is said to be integrable and we define ∫ =∫ − ∫ .

Theorem: Let be measurable function then (1) is integrable iff | | is integrable and|∫ | ≤ ∫ | |.  (2) If is integrable and | | ≤ then is integrable.

Proof: (1) Suppose | | is integrable. Then + = | | , we see that ≤ | |, ≤ | |⇒ ∫ ≤ ∫ | |, ∫ ≤ ∫ | | ⇒ ∫ < ∞ ∫ < ∞ ⇒ and both are integrable.⇒ is integrable.

For the converse assume that is integrable. That means and both are integrable.⇒ ∫ < ∞ ∫ < ∞ But | | = + which gives ∫ | | = ∫ ( + )= ∫ + ∫ <∞ ⇒ ∫ | | <∞ shows that | | is integrable.
Further |∫ | = | ∫ + ∫ | ≤| ∫ | + |∫ | = ∫ +∫ =∫ ( + ) = ∫ | |.
(1) Let be  integrable  and | | ≤ ℎ ∫ | | ≤ ∫ < ∞ ⇒ | | is integrable
(2) ⇒ is integrable. [From part (1)]

Definition: Let be any measurable function and E be any measurable set. Let ∗ = / . If ∗ is integrable then we say that is
integrable over E and ∫ = ∫ ∗.
Remark: is integrable over E iff is integrable and ∫ = ∫ .

Theorem: Let be any measurable function, then

1. If is integrable and E is any measrurable set, then is integrable over E.
2. ∫ = 0 if N be a null set.
3. ∫ = 0 if = 0 a.e.
4. If is integrable and = a.e. then is integrable. And ∫ = ∫
5. If is integrable and for a measurable set E ( ) = ∫ then is finite, ( ) = 0 and is countably additive.

Proof: Suppose is integrable and E be a measurable set then and are    integrable⇒ ∫ < ∞ ∫ < ∞ from ∫ ≤ ∫ <∞ , ∫ ≤ ∫ <∞
Note that and are    integrable over E⇒ is integrable over E.
(2) Let N be a null set then ∫ = 0 and ∫ = 0⇒ ∫ = ∫ - ∫ =0 -0 = 0
(3) Let = 0 a.e. then = 0 a.e. and = 0 a.e.⇒ ∫ = 0 and ∫ = 0⇒ ∫ = ∫ - ∫ = 0 ⇒ ∫ = 0.
(4)  Let be integrable and = a.e then = a. e. and = a. e.⇒ and are integrable,⇒ is integrable.(5) ∫ is finite for every E⇒ ( ) is finite and ( ) = ∫ = 0

Let ( ) be any sequence of disjoint measurable sets then(⋃ )= ∫⋃ = ∫⋃ − ∫⋃ = ∫ - ∫ = (∫ - ∫ )= ∫ = ∑ ( ).
: (1) ( ) = , ( ) = if ≥ 0
( ) = (− ) , ( ) = (− ) if < 0.

Theorem: Let and be two integrable functions and , be any constants then

1. is integrable  and ∫ = ∫
2. + is integrable  and ∫ ( + ) = ∫ + ∫ .
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Proof: (1) If = 0 then = 0, ∫ = 0, ∫ = 0 Hence    no further argument is needed.
Let ≥ 0 then ∫ ( ) = ∫ = ∫ < ∞ shows that ( ) is integrable.
Also ∫ ( ) = ∫ = ∫ < ∞ shows that ( ) is integrable.
And ∫ = ∫ ( ) − ∫ ( ) = ∫ - ∫ = [∫ - ∫ ] = ∫ .
Suppose < 0 then ∫ ( ) = ∫ (− ) = (− )∫ < ∞⇒ ∫ ( ) = ∫ (− ) = − ∫ < ∞ shows that is integrable.∫ = ∫ ( ) − ∫ ( ) = (− )∫ - (− )∫ = [∫ - ∫ ] = ∫ .
(2) Write h = + then ℎ - ℎ = - + - ⇒ ℎ + + = + + ℎ
These all are non negative measurable functions

Consequently ∫ ( ℎ + + ) = ∫ ( + + ℎ )
Gives ∫ ℎ + ∫ + ∫ = ∫ + ∫ + ∫ ℎ⇒ ∫ ℎ − ∫ ℎ = ∫ - ∫ + ∫ − ∫⇒ ∫ ℎ = ∫ + ∫ ⇒ ∫ ( + ) = ∫ + ∫ .

Cor (1) Let and be two integrable functions and , be any constants then + is integrable and ∫ ( + ) = ∫
+ ∫ .
Cor (2) Let , , …… . . , be finitely many integrable  functions  and , , … . . , are constants  then then + +⋯……+ is integrable  and ∫ ∑ = ∫ .

Lebesgue Dominated Convergence Theorem: Let { } be any sequence off measurable functions, be any integrable function
such that | | ≤ for all n, If → a.e. then is integrable and ∫ → ∫ .

Proof: Since is integrable, is measurable and | | ≤ for all n, it follows that is integrable for all n. From | | ≤ we get -≤ ≤ . The fact that →
gives - ≤ ≤ ⇒| | ≤ .

Thus as → ⇒ = ( ) and is measurable for all n, It   follows that is measurable. Hence is integrable.
Now for every n we have - ≤ ≤ ……………….(*)

From (*) we see that ( + ) is a sequence of non negative measurable functions. Using Fatou’s Lemma, we obtain ∫ Limt( +) ≤ Limt∫ ( + )⇒ ∫ ( + ) ≤ Limt(∫ + ∫ ) = ∫ + Limt ∫⇒ ∫ + ∫ ≤ ∫ + Limt ∫ ⇒ ∫ ≤ Limt ∫ …………… (1)

Also from (*) we note that ( − ) is a sequence of non negative measurable functions. Using Fatou’s Lemma we obtain ∫ Limt(− ) ≤ Limt∫ ( − )⇒ ∫ ( − ) ≤ Limt(∫ − ∫ ) ⇒ ∫ − ∫ ≤ ∫ - Limt ∫ ⇒ −∫ ≤ - Limt ∫⇒ Limt ∫ ≤ ∫ …………… (2)

From (1) and (2) we get Limt ∫ ≤ ∫ ≤ Limt ∫
Since Limt ∫ ≤ Limt ∫ , we must have Limt ∫ = Limt ∫ = ∫⇒ Limt ∫ = ∫ i.e. ∫ → ∫ . Proved.
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