

International Journal Of

Recent Scientific Research

ISSN: 0976-3031 Volume: 7(1) January -2016

ON NANO GENERALIZED STAR PRE-CLOSED SETS IN NANO TOPOLOGICAL SPACES

Rajendran V., Sathishmohan P., and Suresh N

THE OFFICIAL PUBLICATION OF INTERNATIONAL JOURNAL OF RECENT SCIENTIFIC RESEARCH (IJRSR) http://www.recentscientific.com/ recentscientific@gmail.com

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 7, Issue, 1, pp. 8066-8070, January, 2016 International Journal of Recent Scientific Research

RESEARCH ARTICLE

ON NANO GENERALIZED STAR PRE-CLOSED SETS IN NANO TOPOLOGICAL SPACES

Rajendran V¹., Sathishmohan P² and Suresh N³

^{1,2,3} Department of Mathematics, KSG College, Coimbatore, TN

ARTICLE INFO

ABSTRACT

Article History:

The purpose of this paper is to define and study the notion of nano g^*p -closed sets and nano g^*p -open sets in nano topological spaces. Also to investigate nano g^*p -interior and nano g^*p -closure.

Received 15th October, 2015 Received in revised form 21st November, 2015 Accepted 06th December, 2015 Published online 28st January, 2016

Key words:

nano closed set, nano g-closed set, nano g * -closed set, nano g * -closed set, nano g * p-closed set.

Copyright © **Rajendran V., Sathishmohan P and Suresh N., 2016**, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Levine [6] introduced the class of g-closed sets in 1970. Lellis Thivagar [5] introduced Nano topological space with respect to a subset X of a universe which is defined in terms of lower and upper approximations of X. He has also defined Nano closed sets Nano-interior and Nano-closure of a set. Bhuvaneswari [1, 2, 3& 4, 9] introduced Nano g-closed, Nano gs-closed, Nano α g-closed, Nano g α -closed, Nano gr-closed and Nano rgclosed sets, Nano gp-closed sets and Nano pg-closed sets and studied some their properties.

Definition 1.1 [10]

A subset A of a topological space (X,τ) is called a generalized star closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in (X, τ) .

Definition 1.2 [5]

Let U be a non-empty finite set of objects called the universe and R be an equivalence relation on U named as the indiscernibility relation. Then U is divided into disjoint equivalence classes. Elements belongings to the same equivalence class are said to be indiscernible with one another.

*Corresponding author: Rajendran V

The pair (U, R) is said to be the approximation space. Let $X \subseteq \! U$

- 1. The lower approximation of X with respect to R is the set of all objects, which can be for certainly classified as X with respect to R and its denoted by $L_R(X)$. That is $L_R(X) = U_{X \in U} \{R(x) : R(x) \subseteq X\}$, where R(x) denotes the equivalence class determined by $X \in U$.
- 2. The upper approximation of X with respect to R is the set of all objects, which can be possibly classified as X with respect to R and it is denoted by $U_R(X)$.
- 3. That is $U_R(X) = U_{X \in U} \{ R(x) : R(x) \cap X \neq \Phi \}$
- 4. The boundary region of X with respect to R is the set of all objects, which can be classified neither as X nor as not X with respect to R and it is denoted by $B_R(X)$. That is $B_R(X) = U_R(X) - L_R(X)$.

Property 1.3 [5]

If (U, R) is an approximation space and X, $Y \subseteq U$, then

- $L_R(X) \subseteq X \subseteq U_R(X)$
- $L_R(\Phi) = U_R(\Phi) = \Phi$ and $L_R(U) = U_R(U) = U$
- $U_R(X \cup Y) \equiv U_R(X) \cup U_R(Y)$
- $U_R(X \cap Y) \subseteq U_R(X) \cap U_R(Y)$
- $L_R(X \cup Y) \supseteq L_R(X) \cup L_R(Y)$

Department of Mathematics, KSG College, Coimbatore, TN

- $L_R(X \cap Y) = L_R(X) \cap L_R(Y)$
- $L_R(X) \subseteq L_R(Y)$ and $U_R(X) \subseteq U_R(Y)$ whenever $X \subseteq Y$
- $U_R(X^C) = [L_R(X)]^C$ and $L_R(X^C) = [U_R(X)]^C$
- $U_R[U_R(X)] \equiv L_R[U_R(X)] \equiv U_R(X)$
- $L_R[L_R(X)] = U_R[L_R(X)] = L_R(X)$

Definition 1.4 [5]

Let U be the universe, R be an equivalence relation on U and $\tau_R(X) = \{U, \Phi, U_R(X), L_R(X), B_R(X)\}$ where $X \subseteq U$. Then by Property 1.3, $\tau_R(X)$ satisfies the following axioms.

- U and $\Psi \in \tau_R(X)$.
- The union of the elements of any sub collection of $\tau_R(X)$ is $in\tau_R(X)$.
- The intersection of the elements of any finite sub collection of $\tau_R(X)$ is $in\tau_R(X)$.

That is, $\tau_R(X)$ is a topology on U called the Nano topology on U with respect to X. we call $(U, \tau_R(X))$ is called the Nano topological space. Elements of $\tau_R(X)$ are called as Nano open sets in U. Elements of $[\tau_R(X)]^C$ are called Nano closed sets with $[\tau_R(X)]^C$ being called dual Nano topology of $\tau_R(X)$.

Remark 1.5 [5]

If $\tau_R(X)$ is the Nano topology on U with respect to X. Then the set

B = {U, L_R(X), B_R(X)} is the basis for $\tau_R(X)$.

Definition 1.6 [5]

If $(U, \tau_R(X))$ is a nano topological space with respect to X where $X \subseteq U$ and if $A \subseteq U$, then

- The Nano interior of the set A is defined as the union of all nano open subsets contained in A and is denoted by Nint (A). Nint (A) is the largest nano open subset of A.
- The Nano closure of the set A is defined as the intersection of all nano closed sets containing A and is denoted by Ncl (A). Ncl (A) is the smallest nano closed set containing A.

Definition 1.7

Let $(U, \tau_R(X))$ be a nano topological space and $A \subseteq U$. Then A is said to be

- 1. Ng-closed [1] if Ncl (A) \subseteq V whenever A \subseteq V and V is Nano-open in U.
- 2. Ngr-closed [9] if Nrcl (A) \subseteq V whenever A \subseteq V and V is Nano-open in U.
- 3. Ngs-closed [2] if Nscl (A) \subseteq V whenever A \subseteq V and V is Nano-open in U.
- 4. Ng α -closed [3] if N α cl (A) \subseteq V whenever A \subseteq V and V is Nano-open in U.
- 5. Ng*-closed [7] if Ncl (A) \subseteq V whenever A \subseteq V and V is Nano g-open in U.
- Ng*s-closed[8]if Nscl(A) ⊆ V whenever A ⊆ V and V is Nano g-open in U

Nano Generalized Star Pre-Closed Sets

Throughout this paper $(U,\tau_R(X)$ is a nano topological space with respect to X where X \subseteq U,R is an equivalence relation on U,U/R denotes the family of equivalence classes of U by R.

Definition 2.1 Let $(U,\tau_R(X)$ be a nano topological space. A subset Aof $(U,\tau_R(X)$ is called nano generalized star pre –closed set(briefly Ng*p-closed) if Npcl(A) \subseteq V where A \subseteq V and V is nano g-open

Example 2.2 Let U={a,b,c,d}withU/R={{a},{c},{b,d}} and X={a,b}.Then $\tau_R(X)$ ={ U,Ø.{a},{b,d},{a,b,d}} whichnano open sets. Then

- 1. The nano closed set={ $U, \emptyset, \{c\}, \{a,c\}, \{b,c,d\}$ }
- The nano semi closed sets={
 U,Ø.{a},{c},{a,c}{b,d}{b,c,d}}
- 3. The nano pre-closed set={U,Ø,{a},{b},{c},{d},{a,c},{b,c},{c,d},{a,b,c},{a, c,d},{b,c,d}}
- 4. The nano regular closed set = { $U, \emptyset, \{b\}, \{c\}, \{d\}, \{a,c\}, \{b,c\}, \{c,d\}, \{a,b,c\}, \{a, c,d\}, \{b,c,d\}\}$
- 5. The nano g-closed set={ U,Ø,{c},{a,c},{b,c},{c,d},{a,c,d},{b,c,d}}
- 6. The nano gp-closed set ={ $U,\emptyset,\{b\},\{c\},\{d\},\{a,c\},\{b,c\},\{c,d\},\{a,b,c\},\{a,c,d\},\{b,c,d\}\}$ }
- 7. The nano gs-closed set ={ $U,\{a\},\{b\},\{c\},\{d\},\{a,c\},\{b,c\},\{b,d\},\{c,d\},\{a,b,c\},\{a, c,d\},\{b,c,d\}\}$
- 8. The nano gr-closed set ={ $U, \emptyset, \{c\}, \{b,c\}, \{c,d\}, \{a,c\}, \{a,b,c\}, \{b,c,d\}, \{a,c,d\}\}$
- 9. The nano g*-closed set ={ U,Ø,{c},{a,c},{b,c},{c,d},{a,b,c},{a, c,d},{b,c,d}}
 10. The nano g*s-closed set ={
- U, \emptyset ,{a},{c},{a,c},{b,d},{a,b,d},{b,c,d}} 11. The nano g*p-closed set ={
- U, \emptyset ,{a},{b},{c},{d},{a,b},{a,c},{a,d}, {b,c},{b,d},{c,d}, {a,b,c},{a, b,d},{a, c,d},{b,c,d}}
- **Theorem2.3.** If A is nano closed set $in(U,\tau_R(X))$, then it is a nano g^{*}p-closed set but not the converse.
- Proof. Let A be a nano closed set of U and A⊆V, where V is nano g-open in U.Since A is nano closed, we haveNcl (A) = A⊆V,That is Ncl (A) ⊆V.Also Npcl (A) ⊆Ncl (A) implies Npcl (A) ⊆V,where V is nano g-open in U.Therefore A is a nano g*p-closed set.
- *Example 2.4.*In Example 2.2, the subsets {a}, {b}, {d} are nano g*p-closed butnot nano g-closed set.

Theorem 2.5. If A is nano g-closed in(U, $\tau_R(X)$, then it is nano g*p-closed set but not the converse.

Proof. Let A be a nano g-closed set. ThenNcl (A) \subseteq V whenever A \subseteq V and Vis nano open in U,since every nano open set is nano g-open set. So V is nano g-open set in U.We have Npcl(A) \subseteq Ncl(A) which implies

Npcl(A) \subseteq V,A \subseteq V,V is nano g-open in U.Hence A is nano g*p-closed set.

- *Example 2.6.*In Example 2.2, the subsets {b}, {d} are nano g*p-closed but not a nano g-closed set.
- **Theorem 2.7.** If A is nano g*-closed in (U, $\tau_R(X)$, then it is nano g*p-closedset but the converse is not true.
- Proof. Let A be a nano g*-closed set of U and A⊆V, where V isnano g-open in U. Since A is nano g*-closed we have Ncl (A) =A. So A⊆V implies Ncl(A) ⊆U. But Npcl (A) ⊆Ncl (A) implies Npcl (A)⊆V,A⊆V, Vis nano g-open in U. Therefore A isnano a g*p-closed set.
- *Example 2.8.*In Example 2.2, the subsets {a, b}, {a, d} are nano g*p-closed set but not a nano g*-closed set.
- **Theorem 2.9.** If A is nano gp-closed in (U, $\tau_R(X)$, then it is nano g*p-closed set but the converse is not true.
- Proof. Let A be a nano gp-closed set of U and A⊆V, where V is nano open in U. But every nano open sets is nano g-open set. This implies V is nano g-open in U.So Npcl (A) ⊆V, A⊆V, V is nano g-open in U. Therefore A is nano g*p-closed set.
- **Example2.10.** Let U={a, b,c,d} with U/R={{a},{d},{b,c}} and X={a,c}.Then $\tau_R(X)=\{U,\emptyset,\{a\},\{b,c\},\{a,b,c\}\}$.Then in a space $(U,\tau_R(X))$, a subset {a} is a nano g*p-closed set but it is not a nano gp-closed set.
- **Theorem 2.11.** The union of two nano g*p-closed sets in (U, $\tau_R(X)$) is also a nano g*p-closed set in (U, $\tau_R(X)$).
- **Proof.** Let A and B be two nano g*p-closed sets in (U, $\tau_R(X)$).Let V be a nano g-open set in U, such that A \subseteq V and B \subseteq V. Then we have AUB \subseteq V. Since A and B are nano g*p-closed in (U, $\tau_R(X)$).This implies Npcl (A) \subseteq V and Npcl(B) \subseteq V.Now Npcl(A \cup B)=Npcl(A) \cup Npcl(B) \subseteq V. Thus we have Npcl (AUB) \subseteq V, whenever AUB \subseteq V, where V is nano g-open set in (U, $\tau_R(X)$).This implies AUB is a nano g*p-closed set in (U, $\tau_R(X)$).
- **Remark 2.12.** The intersection of two nano g^*p -closed sets in $(U, \tau_R(X))$ is also a nano g^*p -closed set $in(U, \tau_R(X))$ asseen from the following example.
- **Theorem 2.14.**Let A be a nano g^*p -closed subset of $(U, \tau_R(X))$.If $A \subseteq B \subseteq Npcl (A)$,then B is also a nano g^*p -closed subset of $(U, \tau_R(X))$.
- **Proof.** Let V be a nano g-open set of a nano g*p-closed subset of $\tau_R(X)$ such that $B \subseteq V$, as $A \subseteq B$, we have $A \subseteq V$. As A is nano g*p-closed set, Npcl (A) $\subseteq V$, Given $B \subseteq Npcl$

(A). we have Npcl(A) \subseteq Npcl(B) and Npcl(A) \subseteq V, we have Npcl(B) \subseteq V, whenever B \subseteq V and V is nano g-open .Hence B is also a nano g*p-closed subset of $\tau_R(X)$.

- *Theorem2.15.* If a subset A is a nano g*p-closed set if and only if Npcl (A)-A contains no nonempty, nano closed set.
- **Proof.** Necessity. Let F be nano generalized closed set in $(U,\tau_R(X))$, such that F \subseteq Npcl(A)-A. Then A \subseteq X-F.Since A is nano g*p-closed set and X-F is nano generalized open then Npcl (A) \subseteq X-F. That is F \subseteq X-Npcl (A).So F \subseteq [X-Npcl (A)] \cap [Npcl (A)-A].Therefore F=Ø.
- Sufficiency. Let us assume that Npcl (A)-A contains no non empty nano generalized closed set.Let $A \subseteq V$, V is nano generalized open. Suppose that Npcl (A) is not contained in V, Npcl (A) $\cap V^c$ is non empty, and nano generalized closed set of Npcl(A)-A which is a contradiction. Therefore Npcl (A) $\subseteq V$, and hence A is nano g*p-closed set.
- *Theorem2.16.* If A is both nano generalized open and nano g*p-closed set in X, then A is nano generalized closed set.
- *Proof.* Since A is nano generalized open and nano g*p-closed set inX, Npcl (A) ⊆V.But A⊆Npcl (A).Therefore A=Npcl(A).Since A is nano closed and Nint (A) =A, this implies Npcl (A) =A. Hence A is nano generalized closed set.

Nano Generalized Star Pre-open set

Definition 3.1. A subset A of a nano topological space $(U, \tau_R(X))$ is called nano generalized star pre-open set (briefly, nano g*p-open), if A^C is nano g*p-closed.

Theorem 3.2.

- 1. If A is nano open set in (U, $\tau_R(X)$), then it is nano g*popen
- 2. If A is nanog*- open set in (U, $\tau_R(X)$), then it is nano g*p-open
- 3. If A is nano gp- open set in(U, $\tau_{R}(X)$), then it is nano g*p-open

Proof. It follows from the Theorem 2.3, 2.7& ` 2.9.

- **Remark 3.3.**For subset A of a nano topological space $(U, \tau_R(X))$,
 - 1. U-Ng*pint(A)=Ng*pcl(U-A)
 - 2. U-Ng*pcl(A)=Ng* pint(U-A)
- **Theorem 3.4.** A subset $A \subseteq U$ is nano g*p-open if and only if $F \subseteq Npint (A)$ whenever F is nano g-closed set and $F \subseteq A$.
- **Proof.** Let A be nano g*p-open set and suppose $F \subseteq A$, where F is nano g-closed. Then U-A is nano g*p-closed set contained in the nano g-open set U-F. Hence Npcl (U-A) \subseteq U-F and U-Npint (A) \subseteq U-F. Thus $F \subseteq$ Npint (A).

Conversely, if F is nano g-closed set with $F \subseteq Npint$ (A)and $F \subseteq A$. Then U-Npint (A) \subseteq U-F. Thus Npcl (U-A) \subseteq U-F. Hence U-A is nano g*p-closed set and A is nano g*p-open set.

- **Theorem3.5.** If Npint (A) $\subseteq B \subseteq A$ and if A is nano g^*p -open, then B is nano g^*p -open.
- **Proof.** Let Npint (A) $\subseteq B \subseteq A$, then $A^C \subseteq B^C \subseteq Npcl (A^C)$, where A^C is nano g*p-closed and hence B^C is also nano g*p-closed by theorem 2.14. Therefore B is nano g*p-open.
- *Remark 3.6.* If A and B are nano g*p-open subset of a nano topological space, then AUB is also nano g*p-open in U, as seen from the following example.
- *Example 3.7.* In example 2.13, the sets $\{a\}$ and $\{a, b\}$ are nano g^*p -open sets .Then $\{a\} \cup \{a, b\} = \{a, b\}$ is also nano g^*p -open sets.

Nano generalized Star pre-Interior and Nano generalized Star pre- Closure

Definition 4.1. Let U be a nano topological space and let $x \in U$. A subset N of U is said to be Ng*p-neighbourhood of x if there exists an Ng*p-open set G such that $x \in G \subseteq N$.

Definition 4.2

- I. Ng*p-int (A) =U {B: B is nano g*p-open set and $B \subset A$ }
- II. Ng*p-cl (A) = \cap {B: B is nano g*p closedset and A \subset B}

Theorem 4.3 If A be a subset of U. Then Ng*p-int (A) = U {B: B is nano g*p-open set and $B \subset A$ }

Proof. Let A be a subset of U. $x \in Ng^*p$ -int (A) $\Leftrightarrow x$ is a Ng*p-interior point of A. $\Leftrightarrow A$ is a Ng*p-neighbourhood of point x. \Leftrightarrow There exists Ng*p-open set B such that $x \in B \subset A$ $\Leftrightarrow x \in U\{B: B \text{ is } Ng^*p\text{-open set and } B \subset A\}$ Hence, Ng*p-int (A) =U {B: B is nano g*p-open set and B \subset A}

Theorem 4.4.Let A and B be subsets of U.Then

- 1. Ng*p-int (U) =U and Ng*p-int (\emptyset)= \emptyset
- 2. Ng*p-int (A) \subset A
- If Bis any Ng*p- open sets contained in A, then B⊂Ng*p-int (A)
- 4. If $A \subset B$, then Ng*p-int (A) \subset Ng*p-int (B)
- 5. Ng*p-int (Ng*p-int (A)) = Ng*p-int (A).

Proof.

 Since U andØ are Ng*p-open sets, by Theorem 4.3 Ng*p-int (U) =∪ {B: B is Ng*p-open and G⊂U} =∪ ∪ {A: A is a Ng*p-open set} =∪ Since,Ø is the only Ng*p-open set contained inØ,Ng*p

Since, \emptyset is the only Ng*p-open set contained in \emptyset , Ng*p int (\emptyset) = \emptyset

 ii) Let x∈Ng*p-int (A) =>x is a Ng*p-interior point of A. =>A is a Ng*p neighbourhood of x. =>x∈A

- Thus, $x \in Ng^*p$ -int (A) $\subset A$.
- Let B be any Ng*p-open set such that B⊂ A. Let X∈B, then, B is a Ng*p-open set contained x in A is a Ng*pinterior point of A. That is B is a Ng*p-int (A).Hence B⊂Ng*p-int (A).
- Let A and B be subsets of U such that A⊂ B.Let x∈Ng*p-int (A).Then x is a Ng*p-interior point of A and so A is Ng*p neighbourhood of x. This implies that x∈Ng*p-int (B).Thus we have shown that X∈Ng*p-int (B).Hence, Ng*p-int (A)⊂Ng*p-int(B).
- 5. Let A be any subset of U. Thenby definition of Ng*pinterior, Ng*p-int (A) = $\cap \{A \subset F \in Ng*p \ c(U)\}\$ if $A \subset F \in Ng*pc$ (U),then Ng*p-int (A) $\subset F$.Since F is a Ng*p closed set containing Ng*p-int (A).By (iii), Ng*p-int (Ng*p-int (A)) $\subset F$.Hence Ng*p-int (Ng*p-int (A)) $\subset \cap \{A \subset F \in Ng*pc(U)\}\$ =Ng*pcl(A).That is, Ng*p-int (Ng*p-int (A)) =Ng*p-int (A).
- **Theorem 4.5.** If a subset A of a space U is Ng*p-open then Ng*p-int (A) =A
- **Proof.** Let A be a Ng*p-open subset of U.We know that Ng*pint (A) \subset A.Also A is Ng*p-open set contained in A. From theorem4.4 (iii),A \subset Ng*p-int (A).Hence, Ng*p-int (A) =A.
- **Theorem 4.6.** If A and B are subsets of U, then Ng*p-int (A) \cup Ng*p-int (B) \subset Ng*p-int (A \cup B).
- **Proof.** We know that $A \subset A \cup B$ and $B \subset A \cup B$ and we have by Theorem 4.4(iv),Ng*p-int (A) \subset Ng*p-int (A \cup B)and Ng*p-int (B) \subset Ng*p-int (A \cup B).This implies that Ng*pint (A) \cup Ng*P-int (B) \subset Ng*p-int (A \cup B).
- **Theorem 4.7.** If A and B are subsets of space U, Then Ng*p-int $(A \cap B) = (Ng*p-int (A) \cap Ng*p-int (B)$
- **Proof.** We know that $A \cap B \subset A$ and $A \cap B \subset B$.We have, by Theorem4.4(iv), Ng*p-int $(A \cap B) \subset Ng*p$ -int (A) and Ng*P-int $(A \cap B) \subset Ng*p$ -int(B).This implies that Ng*pint $(A \cap B) \subset Ng*p$ -int $(A) \cap Ng*p$ -int(B) \rightarrow (1).

Again, Let $x \in Ng^*p$ -int (A) $\cap Ng^*p$ -int (B).Then $x \in Ng^*p$ -int (A) and $x \in Ng^*p$ -int (B). Hence, x is a Ng*p-interior point of each sets A and B is Ng*p-neighbourhood of x, So that their intersection A \cap B is also Ng*p-neighbourhood of xhence $x \in Ng^*p$ - int (A \cap B).Therefore Ng*p-int (A) $\cap Ng^*p$ -int (B) $\subset Ng^*p$ -int (A \cap B) \rightarrow (2).

From (1) & (2),wegetNg*p-int $(A \cap B) = Ng*p-int$ (A) $\cap Ng*p-int$ (B).

References

1. Bhuvaneshwari. K & Mythili Gnanapriya. K, Nano Generalized closed sets, *International Journal of Scientific and Research Publications*, Vol4, Issue 5, 1-3, (2014).

- 2. Bhuvaneshwari. K & Ezhilarasi. K, On Nano semigeneralized and Nano generalized semi-closed sets, IJMCAR, Vol 4, Issue 3, 117-124, (2014).
- 3. Bhuvaneshwari. K & Thanga Nachiyar. R, On Nano generalized α -closed sets, (communicated).
- 4. Bhuvaneshwari. K and Mythili Gnanapriya. K, On Nano generalized pre-sets and Nano pre generalized closed sets in Nano topological spaces, *International Journal of Innovative Research in science ,Engineering and Technology*, Volume.3, Issue10,16825-29(2014).
- 5. Lellis Thivagar. M and Carmel Richard, On Nano forms of weakly open sets, *International Journal of Mathematical and Statistics Invention*, Vol 1, Issue 1, August 31-37, (2012).

- 6. Levine. N, Generalized closed sets in topology, Rend. Cire. Math. Palermo, 19(2), 89-96, (1963).
- 7. Rajendran. V, Sathishmohan. P and Indirani. K, On Nano Generalized Star Closed Sets in Nano Topological Spaces, *International Journal of Applied Research*, Vol.1, Issue 9, 04-07, (2015).
- 8. Rajendran. V. Anand. B and Sharmila Banu. S, On Nano Generalized Star Closed Sets in Nano Topological Spaces, International Journal of Applied Research, Vol.1, Issue 9, 142-144, (2015).
- 9. Sulochana Devi. P & Bhuvaneshwari. K, On Nano regular generalized and Nano generalized regular closed sets, IJETT, Vol 13, Issue 8, 386-390, (2014).
- 10. M.K.R.S. Veerakumar, between closed sets and gclosed sets Mem. Fac. Sci. Kochin University (Math), 21, 1-19, (2000).

How to cite this article:

Rajendran V., Sathishmohan P and Suresh N.2016, On Nano Generalized Star Pre-Closed Sets In Nano Topological Spaces. *Int J Recent Sci Res.* 7(1), pp. 8066-8070.

