

International Journal Of

Recent Scientific Research

ISSN: 0976-3031 Volume: 6(12) December -2015

STUDIES OF ELECTRIC PROPERTIES OF PZT CERAMICS MODIFIED BY SUBSTITUTION OF SM ION

Kanay Barik, Rajiv Kumar and Sanjay Kumar Sinha

THE OFFICIAL PUBLICATION OF INTERNATIONAL JOURNAL OF RECENT SCIENTIFIC RESEARCH (IJRSR) http://www.recentscientific.com/ recentscientific@gmail.com

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 6, Issue, 12, pp. 7759-7761, December, 2015 International Journal of Recent Scientific Research

RESEARCH ARTICLE

STUDIES OF ELECTRIC PROPERTIES OF PZT CERAMICS MODIFIED BY SUBSTITUTION OF SM ION

Kanay Barik^{1*}, Rajiv Kumar², Sanjay Kumar Sinha³

¹Kolhan University, India ²Jamshedpur Workers College, Jamshedpur 831012, India ³BIT Mesra, Patna, India

ARTICLE INFO

ABSTRACT

Article History:

Received 05thSeptember, 2015 Received in revised form 08th October, 2015 Accepted 10th November, 2015 Published online 28st December, 2015

Key words:

Perovskite, Diffraction, Conductivity, Dielectric, Tetragonal phase

The influence of Sm substitution on the structural and dielectric properties of $Pb_{1-x}Sm_x(Zr_{0.6}Ti_{0.4})_{1-x/4}O_3$ (PSZT) (x = 0.00, 0.04, 0.08 and 0.12) composition prepared from mixed oxide method at high temperature were synthesized. The formation of single – phase compounds were confirmed by X- ray diffraction studies which were found to be in tetragonal phase at room temperature. The variation of dielectric constant and tangent loss with temperature at selected frequencies exhibit their phase transition above room temperature. The Conduction process was found to be mixed type.

Copyright © Kanay Barik, Rajiv Kumar, Sanjay Kumar Sinha., 2015, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Lead zirconate titanate or PZT with general chemical composition Pb (Zr, Ti) O₃ is a well known ferroelectric ceramic. A considerable amount of works have been done on modified PZT ceramics prepared from high-temperature solidstate reaction technique [1]. The properties of PZT are very much sensitive to its compositional fluctuations near the morphotropic phase boundary (MPB), particle size, doping, calcinations and sintering temperature. PZT is used in a wide range of piezoelectric, pyroelectric and ferroelectric device application. It is well established that the electrical and electrochemical properties of the PZT strongly depends on the substitution of rare earth element lanthanum and exhibits tremendous applications in electronics and electro – optics. The physical properties and device parameters of PZT - based compounds are greatly influenced by chemical substitutions, synthesis process, and some other factors [2]. The literature survey on pure and modified PZT materials reveals that no systematic studies have been reported on physical properties and device parameters of Sm-substituted PZT (i.e., PSZT) with Zr/Ti ratio 60/40 .In view of the above, we have studied the effect of samarium substitution on structural, dielectric, and ac

conductivity properties of PZT (Zr/Ti: 60/40) ceramics, which is reported here.

Experimental Details

samples of PZT The Sm modified $Pb_{1-x}Sm_x(Zr_{0.6}Ti_{0.4})_{1-x/4}O_3$ (where x = 0.00, 0.04, 0.08, and 0.12) were prepared by a high- temperature solid-state reaction technique. 3% more PbO has been taken to compensate lead loss at high temperatures. These oxides were mixed thoroughly in a dry condition for 2h in air, and then, in methanol medium for 2h using agate mortar and pestle to get homogeneous mixture of the materials. Now, the well mixed oxides were calcined, first at 950°C, then at 1000°C for 10h [3]. Finally, the formation of desired compounds was confirmed by XRD patterns of calcined powders at 1100°C/10h. The homogeneous powder of the compounds were pressed into cylindrical pellets of 10 m diameter and 2-3 mm thickness under a uniaxial pressure of 4 \times 10⁶ N/m² using hydraulic press. Polyvinyl alcohol was used as a binder to reduce brittleness of the pellets. These pellets were sintered at an optimized temperature of 1200°C for about 10h in alumina crucibles in order to get maximum density. The X-ray diffraction data of the calcined powders were recorded using X-ray diffractometer (Rigaku Miniflex, Japan) with $\lambda = 1.5405$ °A in a wide range of Bragg's

angles 2θ ($20^{\circ} \le 2\theta \le 80^{\circ}$) at a scanning rate of 3° /minute [4]. Using phase sensitive multimeter (PSM; Model 1735) the dielectric data of the materials were obtained in a wide range of frequency (10^2-10^6 Hz) and temperature (room temperature - 500° C) at a potential difference of 1V.

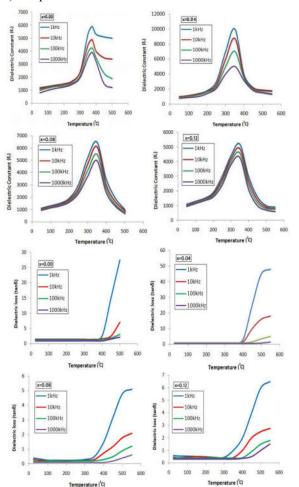
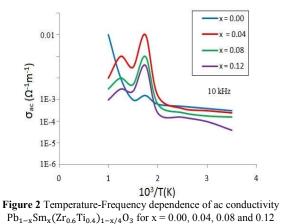



Figure 1 Temperature-frequency dependence of relative dielectric constant (ε_r) and tangent loss (tan δ) Pb_{1-x}Sm_x(Zr_{0.6}Ti_{0.4})_{1-x/4}O₃ for x = 0.00, 0.04, 0.08, and 0.12.

RESULTS AND DISCUSSION

Dielectric study

Dielectric property is the most important property of ceramic materials. The dielectric constant and dielectric loss were

calculated in a wide range of temperature (room temperature to 500° C) and frequencies $(10^3 - 10^6 \text{ Hz})$ from the data obtained by using the experimental systems containing 'Phase sensitive multimeter'. The variation of relative dielectric constant of PSZT (having Sm contents x = 0.00, 0.04, 0.08, and 0.12) with temperature at selected frequencies $(10^3 - 10^6 \text{ Hz})$ is shown in Figure 2. From the graphical variations we get that ε_r decreases on increasing frequency which indicates a normal behavior of the ferroelectric and/or dielectric materials. The higher values of ε_r at lower frequency are due to the simultaneous presence of all types of polarizations (space charge, dipolar, ionic, electronic, etc.) which is found to decrease with the increase in frequency. At high frequencies (>10¹² Hz) electronic polarization only exists in the materials. When temperature of PSZT samples is increased, ε_r first increases slowly and then rapidly up to a maximum value [5]. As at this Tc, phase transition takes place between ferroelectric-pyroelectric phases. At the higher temperature (\geq Tc), the space charge polarization originates due to mobility of ions and imperfections in materials and thus contributes to a sharp increase in ε_r . When the temperature of PSZT samples is increased above transition temperature, dielectric constant begins to decrease obeying Curie – Weiss law. The \mathcal{E}_{max} is found to increase with increase in Sm^{3+} content through x = 0.00 to 0.04 and then shows a sharp decrease. The temperature corresponding to \mathcal{E}_{max} is found to decrease with the increase in samarium concentration in PSZT.

The temperature – frequency dependence of dielectric loss $(\tan \delta)$ of PSZT ceramic samples is shown in fig. 1. It has been observed that the value of $\tan \delta$ is very low and nearly remains unchanged until a certain high temperature. If the temperature of the materials is further increased above this temperature, $\tan \delta$ exhibits a sharp increase. If the frequency of the PSZT materials is increased, the value of $\tan \delta$ decreases as expected.

Ac Conductivity

The dielectric materials are normally non - conducting in nature possessing no free charge carriers. When a solid polycrystalline dielectric material is kept under the action of an external electric field, electrical conduction takes place due to ordered motion of weakly bound charged particles [6]. In the complex impedance spectroscopy technique, the ac conductivity of dielectric material is calculated from the conducting relation $\sigma_{ac} = \omega \epsilon_o \epsilon_r \tan \delta$, where ω is the angular frequency and ε_0 the permittivity of free space [7]. The temperature - frequency dependence of ac conductivity of $Pb_{1-x}Sm_x(Zr_{0.6}Ti_{0.4})_{1-x/4}O_3$ with x = 0.00, 0.04, 0.08, and 0.12 is shown in figure 4. The value of ac conductivity is almost found to increase with increase in temperature. A sharp maximum in σ_{ac} at T_c (observed by dielectric analysis) indicates a marked dispersion which may be due to the increase in polarizability. If the temperature is further increased above T_c, the conductivity data appears to fall on a straight line exhibiting a typical behavior of the dc component of the conductivity [8]. The linear variation of σ_{ac} over a wide range of temperature supports the existence of thermally activated transport properties in the materials following the Arrhenius equation:

$$\sigma_{ac} = \sigma_0 \exp(-\frac{E_a}{K_B T}),$$

Where σ_o is the pre-exponential factor, K_B the Boltzmann constant and E_a the activation energy.

CONCLUSIONS

The dielectric constant, tangent loss, and transition temperature of PSZT as a function of temperature at selected frequencies has exhibited that maximum or peak are strongly dependent on Sm content. When the temperature of PSZT samples is increased above transition temperature, dielectric constant begins to decrease obeying Curie – Weiss law. The $\boldsymbol{\xi}_{max}$ is found to increase with increase in Sm^{3+} content through x = 0.00 to 0.04 and then shows a sharp decrease. The temperature corresponding to \mathcal{E}_{max} is found to decrease with the increase in samarium concentration in PSZT. The value of electrical conductivity (ac) of PSZT depends not only on singly ionized ion in low temperature (ferroelectric phase) region but also due to doubly ionized ion in the high-temperature region. The value of Tc is found to be nearly insensitive to the change in frequency which indicates the non - relaxer behavior of PSZT materials.

How to cite this article:

References

- 1. Rajiv Kumar, Ph. D Thesis, Ranchi University (1994)
- D.K Mahato, R.K. Choudhary, S.C.Srivastava, J. Appl. Sci., 6 (2006)716.
- 3. Rajini, Khazanchi, S.Sharma, T.C. Goel, J. Electrocera., 14 (2005)
- Soma Dutta, R.N.P Choudhary and P.K Sinha, Ferroelectric phase transition in Bi – doped PLZT ceramics, *Mat. Sci. and Engg.* B98 (2003) 74.
- Soma Dutta, R.N.P Choudhary and P.K Sinha, Ferroelectric phase transition in Bi – doped PLZT ceramics, *Mat. Sci. and Engg.* B98 (2004) 215.
- 6. R. Ranjan, R. Kumar and R.N.P Choudhary, Research Letters in Physics, Vol. 2009, Art.382579
- 7. Kwan chi Kao, Dielectric phenomena in solids, Elsevier academic Press, Amsterdam (2004)
- G. Deng, G. Li, A. Ding, Q. Yin, Appl. Phys. Lett.,87 (2005) 192905

Kanay Barik, Rajiv Kumar, Sanjay Kumar Sinha., Studies of Electric Properties of Pzt Ceramics Modified By Substitution of Sm Ion. International Journal of Recent Scientific Research Vol. 6, Issue, 12, pp. 7759-7761, December, 2015
