

International Journal Of

Recent Scientific Research

ISSN: 0976-3031 Volume: 7(2) February -2016

SIGNIFICANCE OF HAEMOLYTIC *ESCHERICHIA COLI* AMONG CLINICAL ISOLATES

Jaryal, SC., Bareja, R and Grover, PS

THE OFFICIAL PUBLICATION OF INTERNATIONAL JOURNAL OF RECENT SCIENTIFIC RESEARCH (IJRSR) http://www.recentscientific.com/ recentscientific@gmail.com

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 7, Issue, 2, pp. 9093-9096, February, 2016 International Journal of Recent Scientific Research

RESEARCH ARTICLE

SIGNIFICANCE OF HAEMOLYTIC ESCHERICHIA COLI AMONG CLINICAL ISOLATES

Jaryal, SC¹., Bareja, R^{2*} and Grover, PS³

¹Department of Microbiology, Dr. R.P. Medical College, Tanda, Kangra, Himachal Pradesh, India – 176001 ²Department of Microbiology, S.R.M.S.Institite of Medical Sciences, Bhojipura, Bareilly, Uttar Pradesh, India – 243202

³Department of Microbiology, M.M.I.M.S.R, Mullana, Ambala, Haryana, India – 133207

ARTICLE INFO

Received 05th October, 2015

Received in revised form 08th

Accepted 10th January, 2016

Haemolytic Escherichia coli,

urinary tract infection,

antibiotic sensitivity

Article History:

November, 2015

February, 2016

Keywords:

Published online 28st

ABSTRACT

Background: *Escherichia coli* (*E. coli*) is the most common enteric organism causing extraintestinal infections in man, particularly of urinary tract infection.

Objective: To find out the incidence of haemolytic *E. coli* among different clinical samples and to study their antibiogram.

Methods: All the 23,007 specimens submitted in the department of Microbiology for culture and sensitivity testing were subjected to study. The samples were processed on MacConkey agar and blood agar by conventional methods. Haemolytic *E. coli* were identified on the basis of colony morphology and confirmed by their biochemical characters. These haemolytic strains were further subjected to antibiotic sensitivity by Kirby-Bauer disc diffusion technique.

Results: Out of 23,007 samples, 6,209 bacterial isolates were obtained. Of these, 2,001 were identified as *E. coli*. Amongst these, 205 strains were haemolytic. In urine, the most frequently processed sample, 46.85% of the isolates were *E. coli*. Out of these, 13.97% were haemolytic *E. coli*. The incidence of these strains were found to be 10.10%, 4.29%, 1.68%, and 1.36% from other samples viz vaginal/cervical discharge, faeces, pus and others respectively. A total of 85 (80.18%) haemolytic *E. coli* strains were isolated from females of age group 21 to 40 years. Marked resistance to ampicillin (84.39%), co-trimoxazole (76.09%) and nalidixic acid (53.65%) was observed among these strains.

Conclusion: Haemolytic *E. coli* showed a considerable degree of multiple drug resistance. These organisms are endowed with extra virulence factor, so there is need to have greater awareness to this effect and such cases should be treated more energetically.

Copyright © **Jaryal, SC., Bareja, R and Grover, PS., 2016**, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Since the discovery of *Escherichia coli* (*E. coli*), many workers have studied haemolytic activity of this organism and have reported that haemolytic strains are more virulent than non-haemolytic strain (Lovell and Rees, 1960; Grover *et al*, 2013). The haemolysin production is considered as one of the virulence factors of *E. coli* and it has been reported that presence of haemolysin is more common in *E. coli* isolated from extra intestinal infections than in those isolated from faeces (Cavalieri *et al*, 1948). Studies have shown an association between haemolytic *E. coli* and fulminant infections in man (Vanden *et al*, 1982; Akulwar *et al*, 1997; Goldwater and Bettelheim, 2000). Therefore, it was decided to

MATERIALS AND METHODS

The present study was conducted in the department of Microbiology in tertiary care hospital over a period of 14 months. During the study, a total of 23,007 samples were submitted in the department for culture and sensitivity. These comprised of urine (12,941), blood (2,968), pus (2,679), throat swabs (826), stool (469), vaginal / cervical swabs (411), sputum (294), CSF (188), aural swabs (56), nasal swabs (54), followed by others (2,121) that included various body fluids (Table 1). All the samples were processed on MacConkey agar

find out the incidence of haemolytic *E. coli* amongst *E. coli* isolated from various clinical samples and its antibiotic sensitivity pattern.

^{*}Corresponding author: Bareja, R

Department of Microbiology, S.R.M.S.Institite of Medical Sciences, Bhojipura, Bareilly, Uttar Pradesh, India – 243202

and blood agar by conventional method (Collee et al, 1996). Haemolytic E. coli were identified on the basis of colony morphology and confirmed by their biochemical characters (Collee et al, 1996). Confirmed E. coli strains showing haemolysis on blood agar plates were also subjected to antibiotic sensitivity by Kirby-Bauer disk diffusion technique. Clinical and Laboratory Standard Institute (CLSI) reference strain, Escherichia coli ATCC (American Type Culture Collection) 25922, was also included as control strain (NCCLS, 2003).

RESULTS

Out of 23007 samples, 6209 bacterial isolates were obtained. Among these isolates, 2001 were identified as E. coli. From amongst these 2,001 E. coli strains, 205 (10.24%) were identified as haemolytic strains. The E. coli isolates from urine, vaginal / cervical swabs, stool, pus and other specimens were 1295, 99, 163, 297, and 147 respectively. The incidence of haemolytic E. coli among these samples was found to be 13.97%, 10.10%, 4.29%, 1.68%, and 1.36% respectively (Table 1).

Antibiotic sensitivity: Most of the bacteria were sensitive to cefoperazone (90.24%), netilmicin (83.91%), ciprofloxacin (74.15%), norfloxacin (71.71%) and gentamicin (72.20%). Five strains (2.44%) were resistant to all these drugs tested while 14 strains (6.83%) were found to be sensitive to all the drugs tested (Table 3).

Table 3 Susceptibility pattern of haemolytic Escherichia *coli* strains (n=205)

S. No.	Antibiotics	Resistant strains (%)	Sensitive strains (%)
1.	Ampicillin	173 (84.39)	32 (15.60)
2.	Cefoperazone	20 (9.75)	185 (90.24)
3.	Ciprofloxacin	53 (25.85)	152 (74.14)
4.	Co-trimoxazole	156 (76.09)	49 (23.90)
5.	Gentamicin	57 (27.80)	148 (72.19)
6.	Nalidixic acid	110 (53.65)	95 (46.34)
7.	Netilmicin	33 (16.09)	172 (83.90)
8.	Norfloxacin	58 (28.29)	147 (71.70)

DISCUSSION

The present study was aimed at finding out the incidence of haemolytic E. coli from amongst E. coli isolates from clinical samples.

Table 1 Source wise isolation of haemolytic Escherichia coli (E.coli)	Table 1 Source	wise isolation	n of haemolytic	Escherichia	coli (E.coli)
---	----------------	----------------	-----------------	-------------	---------------

S. No.	Source	Total samples	Total number of isolates	Number of E.coli	Number of haemolytic E.coli
1	Urine	12,941	2,764	1,295	181*
2	Blood	2,968	555	75	-
3	Pus	2,679	1,794	297	5
4	Throat swabs	826	172	21	-
5	Stool	469	346	163	7
6	Vaginal/cervical swabs	411	222	99	10
7	Sputum	294	90	20	-
8	CSF	188	4	2	-
9	Aural swabs	56	47	2	-
10	Nasal swabs	54	20	2	-
11	Others	2,121	195	25	2
	TOTAL	23,007	6,209	2,001	205

* x²=46.62, p=<.001

Table 2 Age and sex wise distribution of haemolytic strains of E. coli (n=205)

		Sex				Age in years						
S. No.	Source	Samples	Male Female		Up to 1	Up to 10 years 11-20 yrs.		0 yrs.	21-40yrs.*		>40yrs.	
		_			Male	Female	Male	Female	Male	Female	Male	Female
		No. (%)	No. (%)	No. (%)	No. (%)	No. (%)	No. (%)	No. (%)	No. (%)	No. (%)	No. (%)	No. (%)
1.	Urine	181 (88.29)	63 (34.80)	118 (65.19)	7 (11.11)	3 (2.54)	6 (9.52)	8 (6.77)	21 (33.33)	77 (65.25)	29 (46.03)	30 (25.42)
2.	Vaginal /Cervical Swab	10 (4.87)	-	10	-	-	-	-	-	8 (80.0)	-	2 (20.0)
3.	Stool	7 (3.41)	5 (71.42)	2 (28.57)	3 (60.0)	-	1 (20.0)	2 (100.0)	-	-	1 (20.0)	-
4.	Pus and Others	7 (3.41)	5 (71.42)	2 (28.57)	1 (20.0)	-	1 (20.0)	1 (50.0)	-	-	3 (60.0)	1(50.0)
	Total	205	73 (35.60)	132 (64.39)	11 (15.06)	3 (2.27)	8 (10.95)	11 (8.33)	21 (28.76)	85 (64.39)	33 (45.20)	33 (25.0)
N = number												

(%) = Percentage $*x^2 = <3.86, p = .05$

Of 181 haemolytic E. coli strains from urine, 118 (65.19%) were from female patients and 63 (34.80%) were from male patients. Among stool, pus and other specimens 71.42% (5) were from male and 28.57% (2) were from female patients (Table 2). From urine and vaginal / cervical swab specimens, 65.25% and 80% of haemolytic E. coli strains were obtained from females in the age group of 21-40 years whereas among stool samples, 60% (3) strains were found to be haemolytic under 10 years of the age from male patients (Table 2).

Out of total 2,001 E. coli isolates, 10.24% were haemolytic, whereas Martinez et al (1999) reported 27.3% to be haemolytic amongst 207 isolates of E. coli. The incidence of haemolytic E. coli from stool and extra intestinal sources was found to be 4.29% and 10.77% respectively whereas others reported an incidence of haemolytic E. coli up to 60% from extra intestinal sources and 7% from faeces (Cavalieri et al, 1948).

In the present study, urine is the most frequently processed sample for culture and sensitivity. Of 1295 urinary E. coli isolates, 181 (13.97%) were haemolytic which is found to be statistically significant (p< .001). The incidence reported by other workers varies from 29% to 80% (Banerjee, 1963; Bhalla qnd Aggarwal, 1989). But it appeared to approximate (11.11%) with the study done by Fule *et al* (1990). Kaur *et al* (1991) found 21.8% haemolytic strains from 152 urinary isolates. Vaisanen-Rhen *et al* (1984) found 60%, 27% and 17% strains that produced haemolysin in pyelonephritis, cystitis and asymptomatic bacteriuria cases respectively. Whereas Johnson (1997) found 49%, 40%, and 20% haemolytic *E. coli* in these conditions respectively.

As for as sex ratio is concerned, in the present study, 35.61% and 64.39% strains were haemolytic from male and female patients respectively (Table 2). Other workers observed no appreciable differences in male and female ratio (Geachie, 1966; Kumar and Khan, 1968). In the present study, though the incidence of haemolytic *E.coli* in females is high as compared to males but is statistically insignificant (p=.50). However, the highest incidence (51.7%) of these strains was in a age group of 21 to 40 years which is also statistically significant (p=.05). Out of these, 80.18% were from female patients. This indicates the incidence of haemolytic *E.coli* is more in the age group who are sexually more active and thereby more prone to urinary tract and genital tract infections.

The antibiogram pattern of the haemolytic *E.coli* isolated in the present study shows multiple drug resistance patterns. Antibiotic sensitivity testing revealed 53.75% strains to be multidrug resistant. Only 6.83% strains were sensitive to all the eight agents tested. About 13% strains were resistant to single drug and 23.43% strains were resistant to two drugs. On the whole, drugs that had shown good *in vitro* efficacy were cefoperazone (90.24%), netilmicin (83.90%) ciprofloxacin (74.14%), gentamicin (72.19%) and norfloxacin (71.70%).

In the present study, the drugs to which haemolytic *E.coli* had shown resistance were ampicillin (84.39%), co-trimoxazole (76.09%) and nalidixic acid (53.65%). It has been reported that as high as 52% of normal domiciliary population carry drug resistant *E.coli* in their bowel due to the indiscriminate use of antibiotics / chemotherapeutic agents, and not only due to R-plasmids (Dutta, 1969; Moorhouse, 1969). The resistance could be possibly due to the indiscriminate use of these drugs which play a major role in determining the resistance pattern of *E.coli* in bowel of patients and hence of urinary pathogens.

CONCLUSION

This study shows higher incidence of haemolytic *E.coli* from urine samples, particularly from females of sexually active age. At the same time these strains show considerable degree of multiple drug resistance. This organism being endowed with extra virulence tools, so there is need to have a greater awareness to this effect and such cases be treated more energetically.

Declarations

Funding: None Conflict of interest: None declared Ethical approval: Not required

References

- Akulwar SL, Kurhade AM, Saoji AM. Haemolytic Escherichia coli in etiopathogenesis of pyelonephritis in rats - an experimental study. Indian J Pathol Microbiol 1997; 40: 47-49.
- Banerjee NG. Urinary tract infection The commonest organism and its sensitivity to the antimicrobial drugs. Indian J Med Sci 1963; 17: 819-24.
- Bhalla P, Aggarwal P. Urinary Escherichia coli prevalent serotypes, antimicrobial susceptibility and virulence factors. Indian J Med Microbiol 1989; 7: 88-90.
- Cavalieri SJ, Bohach GA, Snyder IS. Escherichia coli alphahaemolysin: characteristics and probable role in pathogenicity. Microbiol. Rev 1948; 48: 326-43.
- Collee JG, Duguid JP, Fraser AG, Marmion BP, Simmons A. Laboratory strategy in the diagnosis of infective syndromes. In Mackie and McCartney Practical Medical Microbiology, 14th ed. Collee JG, Fraser AG, Marmion BP, Simmons A (eds) Edinburg: Churchill Livingstone; 1996: 53-94.
- Dutta N. Drug resistance and R-factors in bowl bacteria of London patients before and after admission to the hospital. Brit Med J 1969; 2: 407.
- Fule RP, Menon S, Saoji AM. Antibiotic resistance, haemagglutination type and haemolysin production in relation to serogroups of uropathogenic Escherichia coli. Ind J Med Res 1990; 91: 270-72.
- Geachie JMC. Haemolysis by urinary Escherichia coli. Amer J Clin Path 1966; 45: 222-24.
- Goldwater PN, Bettelheim KA. Escherichia coli 'O' group serology of a haemolytic uraemic syndrome (HUS) epidemic. Scand J Infect Dis 2000; 32(4): 385-94.
- Goldwater PN, Bettelheim KA. Escherichia coli 'O' group serology of a haemolytic uraemic syndrome (HUS) epidemic. Scand J Infect Dis 2000; 32(4): 385-94.
- Grover PS, Bareja R, Jaryal SC, Narang VK. Characterization of haemolytic Eschirichia coli. Int J Sci Res Pub 2013; 3(2): 1-6.
- Johnson JR. Urinary tract infection, in M. Sussman (Ed.), Escherichia coli: Mechanism of virulence. Cambridge: Cambridge University Press; 1997: 459-549.
- Kaur P, Jayasheela M, Chakraborty A, Saxena SN. Characteristics of Escherichia coli isolates from cases of significant bacteriuria. Ind J Med Microbiol 1991; 107-13.
- Kumar R, Khan AM. Incidence of haemolytic Escherichia coli infections in man. Indian J Pathol Bacteriol 1968; II; 230-38.
- Lovell R, Rees TA. A filterable haemolysin from Escherichia coli. Nature 1960; 188: 755-56.
- Martinez- Martinez L, Fernondez F, Perea EJ. Relationship between haemolysis production and resistance to flouroquinalones among clinical isolates of Escherichia coli. J Antimicrob Chemother 1999; 43(2): 277-79.
- Martinez- Martinez L, Fernondez F, Perea EJ. Relationship between haemolysis production and resistance to flouroquinalones among clinical isolates of Escherichia coli. J Antimicrob Chemother 1999; 43(2): 277-79.

- Moorhouse EC. Transferable drug resistance in enterobacteria isolated from urban infants. Brit med J 1969 May 17; 2(5654): 405-407.
- National Committee for Clinical Laboratory Standards, 2003. Performance Standards for Antimicrobial Disk Susceptibility Tests, 8th Edition. Approved Standard M2-A8. National Committee for Clinical Laboratory Standards, Wayne, Pa.
- Vaisanen-Rhan V, Elo J, Vaisanen E, Siitonen A, Orskov I, Orskov F, *et al.* P-fimbriated clones among uropathogenic Echerichia coli strains. Infect Immun 1984; 43(1): 149-55.
- Vanden BJF, Postoma P, Koopman P, de Graaff J, Mac Laren DM, Van Brenk DG, Guinee PAM. Virulence of urinary and faecal Escherichia coli in relation to serotype, haemolysis and haemagglutination. J Hyg 1982; 88: 567-77.

How to cite this article:

Jaryal, SC., Bareja, R and Grover, PS.2016, Significance of Haemolytic Escherichia Coli Among Clinical Isolates. *Int J Recent Sci Res.* 7(2), pp. 9093-9096.

