
International Journal Of
Recent Scientific

Research
ISSN: 0976-3031

Volume: 7(4) April -2016

CH Sudhakar

FREQUENT SUBGRAPH EXTRACTION BASED ON MAP REDUCE

THE OFFICIAL PUBLICATION OFINTERNATIONAL JOURNAL OF RECENT SCIENTIFIC RESEARCH (IJRSR)http://www.recentscientific.com/ recentscientific@gmail.com

International Journal Of
Recent Scientific

Research
ISSN: 0976-3031

Volume: 7(4) April -2016

CH Sudhakar

FREQUENT SUBGRAPH EXTRACTION BASED ON MAP REDUCE

THE OFFICIAL PUBLICATION OFINTERNATIONAL JOURNAL OF RECENT SCIENTIFIC RESEARCH (IJRSR)http://www.recentscientific.com/ recentscientific@gmail.com

International Journal Of
Recent Scientific

Research
ISSN: 0976-3031

Volume: 7(4) April -2016

CH Sudhakar

FREQUENT SUBGRAPH EXTRACTION BASED ON MAP REDUCE

THE OFFICIAL PUBLICATION OFINTERNATIONAL JOURNAL OF RECENT SCIENTIFIC RESEARCH (IJRSR)http://www.recentscientific.com/ recentscientific@gmail.com

*Corresponding author: Ch Sudhakar
Departement Vignan Institute of Information Technology, Visakhapatnam

ISSN: 0976-3031

Research Article

FREQUENT SUBGRAPH EXTRACTION BASED ON MAP REDUCE

CH SudhakarDepartement Vignan Institute of Information Technology, Visakhapatnam
ARTICLE INFO ABSTRACT

Frequent sub graph extraction from a large number of small graphs is a primitive operation for many
data mining applications. To extract frequent subgraphs, existing techniques need to enumerate a
large number of subgraphs which is super linear with the cardinality of the dataset. Given the rapid
growing volume of graph data, it is difficult to perform the frequent subgraph extraction on a
centralized machine efficiently. So, there is a need to investigate how to efficiently perform this
extraction over very large datasets using MapReduce. Parallelizing existing techniques directly
using MapReduce does not yield good performance as it is difficult to balance the workload among
the compute nodes. This framework adopts the MRFSE strategy to iteratively extract frequent
subgraphs, i.e., all frequent size-(i+1) subgraphs are generated based on frequent size-i subgraphs at
the ith iteration using a single MapReduce job. To efficiently extract frequent subgraphs, preparation
and mining phase are used which includes isomorphism testing to eliminate duplicate patterns.
Frequent subgraphs extraction can be done efficiently and efficiently by using a distributed
environment named Hadoop MapReduce framework.

INTRODUCTION
Graph mining is a process of finding new, unknown,
interesting, useful and understandable patterns from a large
volume of data. One important aspect in graph mining is
concerned with the discovery of frequent subgraphs extraction
from a large volume of data. Frequent subgraphs extraction
helps in wide range of applications like identifying the
relationship between chemical compounds and building graph
indexes. Frequent subgraph extraction is used in various other
disciplines like social networks, bioinformatics and semantic
web etc.

MapReduce is a programming model introduced by Google in
2004 which performs distributed computing on large volumes
of data in parallel mode on large number of clusters of
commodity hardware. MapReduce solves the issues like data
distribution and load balancing, fault tolerance, parallelization
and makes the user concentrate on problem solving rather than
worrying about these internal issues. MapReduce provides data
distribution and load balancing by splitting entire volume of
data into equal sized blocks. Replication of data is also
provided in MapReduce to avoid loss of data. MapReduce
distributes these equal sized blocks to all the nodes and makes
the users free from focusing on load balancing and data
distribution. MapReduce re-performs crashed tasks and
provides fault tolerance. In MapReduce framework, throughput

is increased by assigning uncompleted tasks of slower nodes to
the idle nodes.

Hadoop is an open source implementation of Google
MapReduce architecture provided by Apache Software
Foundation. This architecture uses Hadoop Distributed File
System (HDFS) for efficiently processing huge volumes of data
parallel on large clusters of commodity hardware in a reliable
manner. So, all the sequential algorithms need to be redesigned
into parallel computing algorithms to execute efficiently on
Hadoop MapReduce framework.

LITERATURE SURVEY

Frequent subgraph mining task is to discover all subset of
graphs which occur repeatedly. gSpan, Mofa, FFSM, Gston are
some of the most extensively used algorithms for frequent
subgraph extraction. The algorithms use a multiple-pass
generation-and-test method to generate the candidate (k+l)
subgraph from the frequent k-subgraphs. As we mentioned
earlier, the sequential algorithms performance is inefficient,
especially when the data sets volume grows towards a terabyte
or petabytes of data. Therefore, parallel algorithms were
proposed. However, parallel mining algorithms reveals new
problems that did not exist in sequential computing, such as
workload balancing, data partitioning and distribution, jobs
assignment, and parameters passing between nodes. Thus,
significant time and effort are required to solve these problems.

Available Online at http://www.recentscientific.com
International Journal of

Recent Scientific

ResearchInternational Journal of Recent Scientific Research
Vol. 7, Issue, 4, pp. 10210-10213, April, 2016

Copyright © Ch Sudhakar., 2016, this is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is
properly cited.

Article History:

Received 05th January, 2016
Received in revised form 08th

February, 2016
Accepted 10th March, 2016
Published online 28st

April, 2016

Keywords:

Map Reduce, Frequent sub graph,
Feature extraction.

Ch Sudhakar., Frequent Subgraph Extraction Based on Map Reduce

10211 | P a g e

MapReduce is a framework that takes care of these internal
issues. Because of these benefits of the MapReduce model,
MRFSE algorithm using Hadoop MapReduce model is
implemented. Most of the real-life application data sets can be
denoted by direct or un-direct graphs. Numerous new class of
applications such as Social networks, computer networks,
Cyber-security, mobile call networks, Protein-Protein
regulation networks, the World Wide Web can be represented
by a graph and it can be handled in parallel. For example, in
Cyber-security, a network traffic dataset can be modelled as a
graph where vertices represent IP addresses and edges are
typed by classes of network traffic.

Problem Definition

Let, G ={G1,G2,...,Gn} be a graph database, where each Gi є G,
where i ={1….n} represents a labelled, undirected and
connected graph. The size of graph is the number of edges it
has. Now, t(g)= { Gi : g is a subset of Gi belongs to G; where
i={1…..n} is the support-set of the graph g. Thus, t(g) contains
all the graphs in G that has a subgraph isomorphic to g. The
cardinality of the support-set is called the support of g. g is
called frequent if support ≥ minimum support, where minimum
support is minimum support threshold given as input. The set
of frequent subgraphs are represented by F. Based on the size
of a frequent subgraph, we can partition F into a several
disjoint sets, Fi such that each of the Fi contains frequent
subgraphs of size i only.

The generation of frequent subgraphs is not possible using a
single MapReduce job. This can be made possible by using
iterative MapReduce. Here mapper and reducer functions are
executed in an iterative manner. Iterative MapReduce is
defined as a multi staged execution of map and reduce phases
in a cyclic manner, i.e. the output of the stage i reducer is given
as an input to the stage i+1 mapper. An external condition is
used to decide when to terminate the job.

Issues in the Existing System

The existing algorithms execute sequentially to find all
frequent subgraphs. Therefore, the waiting and the scheduling
are pure overheads to the mining task. So, some distributed
environment like Hadoop MapReduce can be used to solve this
problem. The algorithms that previously existed requires one
iterative MapReduce phase to find all frequent subgraphs. All
the edges which are having support less than minimum support
are used in the iterative MapReduce, but could not generate
subgraphs as the graph does not meets the threshold value.

Also the number of isomorphism checking’s increases and the
amount of data generated in the map phase grows exponentially
with the length of the transactions in the dataset. Therefore, its
performance is inefficient. So, if infrequent edges are
eliminated in the first stage, then the amount of data generated
in the map and reduces phase’s decreases. So, MRFSE
framework with two maps and reduces phases is proposed. This
can be done by adding one more map and reduce phase to
generate frequent edges. These edges are used in iterative map
and reduce phases to generate candidate subgraphs. Dynamic
partition of data generated after execution is one of the issue in
Hadoop MapReduce framework.

Job Tracker: Job Tracker executes the Map Reduce job by
assigning tasks to the Task Tracker.

Task Tracker: It executes the tasks assigned by Job Tracker.
During execution, the Task Tracker frequently communicates
with the Job Tracker. Otherwise, Job Tracker thinks that Task
Tracker node has crashed and assigns the task to another Task
Tracker node.

Algorithms in MRFSE

Generation Phase

Mapper_Generation

Input: (key, value) pair where key is offset and value is list of
all graphs in that partition

Output: (key, value) pair where key is min-dfs code and value
is a graph object

Mapper_generation(Long key, Text value)
Begin

Generate level_one_occurence list(value)
Generate level_one_map(value)
P=get size_one_edges()
forall Pi in P
Begin

key_to_reducer = min-dfs(Pi)
value_to_reduce r= object(pi)

emit(key_to_reducer, value_to_reducer)
End

End

Reducer_Generation

Input: (key, value) pair where key is min-dfs code and value is
a graph object.

Output: (key, value) pair where key is min-dfs code and value
is a graph object

Reducer_generation(Long key, Text value)
Begin

forall Pi in P
Begin

if length(Pi.OL) > minimum support
Begin

key=min-dfs (Pi)
value=object(Pi)
emit(key, value)

End

Figure 2.0 Replication of data in NameNode and DataNode

International Journal of Recent Scientific Research Vol. 7, Issue, 4, pp. 10210-10213, April, 2016

10212 | P a g e

End
End

After this generation phase, all frequent edges are generated.
These edges are given as input to mapper of Verification
phase.

Verification Phase

Mapper_verification

Input: (key, value) pair where key is min-dfs code and value is
a graph object.

Output: (key, value) pair where key is min-dfs code and value
is a graph object.

Mapper_verification(Long key, Text value)
Begin

P = reconstruct_graphs(value)
reconstruct_all_datastructures(value)
P=candidate_generation(p)
forall Pi in P
Begin
if pass_isomorphism(Pi) = true
Begin

if length(Pi.OL) > 0
Begin

key_to_reducer = min-dfs(Pi)
value_to_reducer=object(Pi)
emit((key_to_reducer,

value_to_reducer)
End

End
End

End

Reducer_verification

Input: (key, value) pair where key is min-dfs code and value is
a graph object.

Output: (key, value) pair where key is min-dfs code and value
is a support count.

Reducer_verification(Text key, Intwritable value)
Begin

support= 0
forall Pi in P
Begin

support= support + length(Pi.OL)
End
if support >= minimum support
forall Pi in P
Begin

Write (min-dfs(Pi), support) to HDFS
End

End

RESULTS
A real dataset containing a large number of graphs is taken as a
data source from a dataset repository and is processed taking
threshold (minimum support count) values as input.
The frequent subgraph extraction algorithm has been tested in
Map Reduce environment (Pseudo Distributed Mode) taking

another input as threshold value. For each threshold value, the
number of subgraphs obtained and running time to generate
frequent subgraphs in the MapReduce environment are noted.
It is observed that in Map Reduce (Pseudo Distributed Mode)
environment, with the increase in threshold value, the running
decreases. Also the running time varies with the change in
number of reducers. The experimental results are shown in the
following figure.

CONCLUSION
As a parallel programming model, MapReduce is one of the
most important techniques for mining large volumes of data on
large number of clusters. MRFSE is an algorithm which uses
iterative MapReduce to generate frequent subgraphs. It extracts
the frequent subgraphs that are present with in a graph
database. A subgraph is said to be frequent if its count is
greater than minimum support. MRFSE uses two MapReduce

Fig 1 Relationship between support and running time

Fig 2 A Graph showing Relationship between elapsed time and support

Ch Sudhakar., Frequent Subgraph Extraction Based on Map Reduce

10213 | P a g e

functions. One MapReduce is used to identify frequent edges
and another is used to generate candidate subgraphs in an
iterative manner. The elapsed time for different support value is
recorded. The number of subgraphs for a particular support
value is also recorded. The entire algorithm is executed in a
single cluster. For good and effective results, we can
implement this algorithm on a group of clusters. The execution
time decreases with the increase in the number of clusters.

Future Work: As Frequent Subgraph Mining has a major
amount of research attention, many frequent subgraph mining
algorithms have been proposed in the past decades. However,
the enlarging data in applications makes frequent subgraph
mining of very large volume of data is a challenging task. Here
the iterative frequent subgraph extraction algorithm based on
MapReduce, takes advantage of MapReduce’s parallel
computation capability to make the algorithm accelerated. And
as the number of nodes involved in the computation can be
dynamically changed, it makes the method with high
scalability. Frequent Subgraph Extraction based on MapReduce
implemented in Hadoop fully distributed mode will give better
efficient results than in pseudo distributed mode for large data
sets. Embeddings means list of all edges that are adjacent to a
subgraph. Embeddings can be used to perform isomorphism
testing to eliminate duplicate subgraphs. It may reduce the time
taken for isomorphism testing.

References
1. J. Han. Data Mining: Concepts and Techniques.

Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2005.

2. A. Inokuchi, T. Washio, and H. Motoda. An apriori-
based algorithm for mining frequent substructures
from graph data. In PKDD, pages 13–23, 2000.

3. M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In ICDM, pages 313–320, 2001.

4. X.Yan and J.Han. gspan: Graph-based substructure
pattern mining. In ICDM, pages 721–724, 2002.

5. J.Cheng, Y.Ke, and W. Ng. Efficient query processing
on graph databases. ACM Trans. Database Syst.,
34(1), 2009.

6. J. Dean and S. Ghemawat, “Mapreduce: Simplified
data processing on large clusters,” Commun. ACM,
vol. 51, pp. 107–113, 2008.

7. F. Afrati, D. Fotakis, and J. Ullman, “Enumerating
subgraph instances using map-reduce,” in Proc. IEEE
29th Int. Conf. Data Eng., Apr. 2013, pp. 62–73.

8. Agrawal R., & Shafer, J.C. (1996). Parallel mining of
association rules. Knowledge and Data Engineering,
IEEE Transactions on, 8(6), 962-969.

9. R.Agrawal and R.Srikant, “Fast algorithms for mining
association rules in large databases,” in Proc. 20th Int.
Conf. Very Large Data Bases, 1994, pp. 487–499.

10. J.Huan, W.Wang, J.Prins, and J.Yang. Spin: mining
maximal frequent subgraphs from graph databases. In
KDD, pages 581–586, 2004.

How to cite this article:

CH Sudhakar.2016, Frequent Subgraph Extraction Based on Map Reduce. Int J Recent Sci Res. 7(4), pp. 10210-10213.

	1.pdf
	4872.pdf
	2.pdf

