

International Journal Of

Recent Scientific Research

ISSN: 0976-3031 Volume: 7(5) May -2016

ENERGY ESTIMATION: A CASE STUDY OF UNIVERSITY

Lakshminarayana G and Jayatheertha HJ

THE OFFICIAL PUBLICATION OF INTERNATIONAL JOURNAL OF RECENT SCIENTIFIC RESEARCH (IJRSR) http://www.recentscientific.com/ recentscientific@gmail.com

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 7, Issue, 5, pp. 11258-11260, May, 2016 International Journal of Recent Scientific Recearch

Research Article

ENERGY ESTIMATION: A CASE STUDY OF UNIVERSITY

Lakshminarayana G* and Jayatheertha HJ

EEE Department, GITAM University, Hyderabad Campus Telangana State, India

ARTICLE INFO

ABSTRACT

Article History:

Received 05th February, 2016 Received in revised form 21st March, 2016 Accepted 06th April, 2016 Published online 28th May, 2016

Keywords:

Building energy estimation; list of energy conservation measures; identification of low cost improvements

Preliminary Energy estimation analysis is made to assess Gandhi Institute of Technology and Management University to identify not only simple and low cost improvements but also a list of energy conservation measures or energy conservation opportunities to orient the future detailed energy audit.

Copyright © Lakshminarayana G and Jayatheertha HJ., 2016, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Energy audits initially became popular in response to the energy crisis of 1973 and later years. Interest in energy audits has recently increased as a result of growing understanding of human impact upon global warming and climate change. Energy audits are also popular due to financial incentives for homeowners Generally, four levels of analysis can be outlined: [1]

- Level 0 Benchmarking: This first analysis consists in a preliminary Whole Building Energy Use (WBEU) analysis based on the analysis of the historic utility use and costs and the comparison of the performances of the buildings to those of similar buildings [2]
- Level I Walk-through audit: Preliminary analysis made to assess building energy efficiency to identify not only simple and low- cost improvements but also a list of energy conservation measures (ECMs, or energy conservation opportunities, ECOs) to orient the future detailed audit.[3]
- Level II Detailed/General energy audit: Based on the results of the pre-audit, this type of energy audit consists in energy use survey in order to provide a comprehensive analysis of the studied installation, a more detailed analysis of the facility, a breakdown of the energy use and a first quantitative evaluation of the ECOs/ECMs

selected to correct the defects or improve the existing installation.[4]

• Level III – Investment-Grade audit: Detailed Analysis of Capital-Intensive Modifications focusing on potential costly ECOs requiring rigorous engineering study.

The present case study is done on Level I – Walk-through audit

Energy Estimation

Table I First floor with energy estimation

ROOM	No. of	Light	No. of	Fan	Total
NO.	Lights	Wattage	Fans	Wattage	wattage
J201	10	10*95	10	10*80	1750
J202	10	10*95	10	10*80	1750
J203	10	10*95	10	10*80	1750
J204	24	24*36	10	10*80	1664
J205	10	10*95	10	10*80	1750
J206	10	10*95	10	10*80	1750
J211	27	27*24	0	0	648
J212	7	7*95	8	8*80	1305
J217	1	1*95	2	2*80	255
J218	2	2*95	2	2*90	370
J219	2	2*95	2	2*90	370
J220	2	2*95	2	2*90	370
J221	2	2*95	2	2*90	370
J221T	3	3*43	0	0	129
J222T	6	6*36	0	0	216
J					
Director	15	15*(95+36+36)	3	3*80	2745
Corridor	39	39*43	3	3*80	1917
				TOTAL	19109

EEE Department, GITAM University, Hyderabad Campus Telangana state, India

First floor energy estimation given in Table 1

Floor energy estimation

Table II Third floor with energy estimation

ROOM NO.	No. of	Light	No. of	Fan	Total	
KUUM NU.	Lights	Wattage	Fans	Wattage	wattage	
J401	7	7*95=665	10	10*80=800	1465	
J402	9	9*95=855	10	10*80=800	1665	
J403	9	9*95=855	10	10*80=800	1665	
J404	9	9*95=855	10	10*80=800	1665	
J405	9	9*95=855	10	10*80=800	1665	
J406	9	9*95=855	10	10*80=800	1665	
J411	13	13*95=1235	10	10*80=800	2035	
J412	5	5*95=475	5	5*80=400	875	
J413	5	5*95=475	4	4*80=320	795	
J415	1	1*43=43	1	1*80=80	123	
J416	1	1*43=43	1	1*80=80	123	
J417	6	6*95=570	12	12*80=960	1530	
J417T	6	6*36=216	0	0	216	
J418T	18	18*36=648	0	0	648	
J419	2	2*43=86	1	1*80=80	166	
J420	2	2*43=86	1	1*80=80	166	
J421A	12	12*95=1140	8	8*80=640	1780	
J421B	12	12*95=1140	8	8*80=640	1780	
J422A	12	12*95=1140	8	8*80=640	1780	
J422B	12	12*95=1140	8	8*80=640	1780	
CORRIDOR	53	53*43=2279	0	0	2279	
				TOTAL	25866	

Floor energy estimation

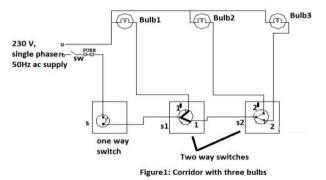
Table III Fourth floor with energy estimation

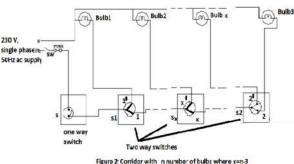
ROOM NO.	No. of	lo. of Light		Fan	Total	
ROOM NO.	Lights	Wattage	Fans	Wattage	wattage	
J501	9	9*95=855	10	10*80=800	1655	
J502	9	9*95=855	10	10*80=800	1655	
J503	9	9*95=855	10	10*80=800	1655	
J504	9	9*95=855	10	10*80=800	1655	
J505	9	9*95=855	10	10*80=800	1655	
J506	8	8*95=760	10	10*80=800	1560	
J517T	10	10*36=360	0	0	360	
A4	1	1*43=43	1	1*80	123	
A18	1	1*43=43	1	1*80	123	
J512	11	11*95=1045	10	10*80=800	1845	
J520A	10	10*95=950	10	10*80=800	1750	
J520B	11	11*95=1045	12	12*80=960	2005	
J521A	10	10*95=950	10	10*80=800	1750	
J513	1	1*43=43	0	0	43	
J516	16	16*43=688	10	10*80=800	1488	
J521B	12	12*95=1140	10	10*80=800	1940	
J522	12	12*43=516	4	4*80=320	836	
J516T	6	6*36=216	0	0	216	
A5	1	1*95=95	1	1*80	175	
CORRIDOR	31	31*43=1333	0	0	1333	
				TOTAL	23822	

Floor energy estimation

Energy Conservation Measure At Corridors

As shown in Figure 1 and Table V it can be seen that only one bulb glows when the main switch S is on. Similarly we can use the modified circuit in figure1 to accommodate say 36 tube lights and 33 two way switches in between S1 and S2 so that only one tube glows at a given instant of time as given in figure 2. Layout diagram for the first circuit in fig.1 is given in fig 3.


Total corridor tube light wattage =1917+2279+1333 +1677=7206 watts


Total corridor wattage with energy conservation=43*4=172 watts

Power saved= 7206-172=7034 watts Ratio of energy saved=97.6%

Table IV Fifth floor with energy estimation

ROOM NO.	No. of	Light	No. of	Fan Watta	Total
1001	Lights	Wattage	Fans	Wattage	wattage
J601	9	9*95=855	10	10*80=800	1655
J602	9	9*95=855	10	10*80=800	1655
J603	9	9*95=855	10	10*80=800	1655
J604	9	9*95=855	10	10*80=800	1655
J605	9	9*95=855	10	10*80=800	1655
J606	9	9*95=855	10	10*80=800	1655
J612	5	5*95=475	12	12*80=960	1435
J613	1	1*43=43	0	0	43
J614	1	1*43=43	1	1*80=80	123
J615	1	1*43=43	1	1*80=80	123
J616	15	15*43=645	12	12*80=960	1605
J616T	6	6*36=216	0	0	316
J617T	10	10*36=360	0	0	360
J618	1	1*43=43	1	1*80=80	123
J619	1	1*43=43	0	0	43
J620A	7	7*95=665	8	8*80=640	1285
J620B	8	8*95=760	8	8*80=640	1400
J621A	10	10*95=950	10	10*80=800	1750
J621B	8	8*95=760	8	8*80=640	1400
J622A	10	10*95=950	10	10*80=800	1750
J622B	8	8*95=760	8	8*80=640	1400
CORRIDOR	39	39*43=1677	0	0	1677
				TOTAL	24763

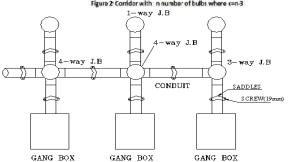


Figure 3: Layout diagram for circuit1

(1 - WAY)

(1-WAY)

(1-WAY)

Table V. switching results of corridor with three bulbs

S	S1	S2	Bulb1	Bulb2	Bulb3
off	1/1'	2/2'	Not glows	Not glows	Not glows
on	1'	2/2'	glows	Not glows	Not glows
on	1	2'	Not glows	glows	Not
on	1	2	Not glows	Not glows	Glows

Observations of Energy Conservation

Switch off lights and fans if they are not in use. During winter and rainy seasons as we have good temperature fans need not turn on and during summer doors of class rooms can be opened in order to get good illumination from sun. Number of lights fixed in corridor is more as we need not require those many lights because we stay in college only from morning to evening so the number of lights can be reduced. The same thing we observed in staffrooms.

Illumination levels and improvements

In each class there are 18 tube lights placed in front, middle and on either sides of the classroom but there are no tube lights at backside where the illumination at last benches is low compared with the front and middle benches. The illumination for a reading room is 250lux. On our observation we found the illumination level is equal to practical value at first benches and less at middle benches but at last benches it was quite less.

On either sides of the classroom the total number of tube lights are 12 in one class and in other classroom the number of tube lights are 8 but we observed the illumination at first bench in both classes is same. So we can place the 4 tube lights at backside to get better illumination rather than at front.

CONCLUSION

Energy estimation is done for GITAM University Hyderabad campus. A list of energy conservation measures is identified.

Acknowledgment

The authors are grateful to the kind authority of management and staff of Hyderabad campus for their valuable support.

References

- 1. www.keralaenergy.gov.in/pdf/EMC%20Energy%20A udit%20Draft%20Manual.pdf
- 2. https://beeindia.gov.in/sites/default/files/1Ch3.pdf
- www.serviciilocale.md/public/files/Energy_Managemen t_Handbook.pdf
- 4. www.bsr.org/reports/bsr-energy-managementhandbook.pdf.

How to cite this article:

Lakshminarayana G and Jayatheertha HJ.2016, Energy Estimation: A Case Study of University. *Int J Recent Sci Res.* 7(5), pp. 11258-11260.

