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In this paper, the behavior and the properties of the generalized potential kernel (GPK) of the 
integral equations (IEs), in the axisymmetric contact and mixed problems, in the theory of elasticity 
are considered. Moreover, the behavior of the first and second structure of the GPK is discussed. 
Many special and new cases, from the kernel, are established.  In addition, the behavior of the 
kernel of the first and second   fundamental equations of an infinite elastic plate weakened by a 
curvilinear hole, in two-dimensional problems, in the theory of elasticity, is considered. The 
curvilinear hole is conformally mapped  outside  (inside)  a  unit  circle,  using  a  complex  rational  
conformal mapping. Finally, the first and second structure properties of the complex kernel are 
proved. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

  

 
 
 

 
 

 
 

 
 

 
 

 
 
 

 
 

 
 
 
 
 
 
 
 

 
 

 
 

 
 

 

 
 

 
 

 

INTRODUCTION  
 

The theory of application of IEs, with its different kinds and 
kernels, is an important subject within applied sciences.  The 
IEs are used as mathematical models for many varied physical 
situations.  In addition, the rapid development of computer  
engineering  has aroused the considerable interest of 
researchers for the development of universal numerical 
methods for the solution of applied problems. Many different 
methods can be used to solve the IEs analytically, such as 
Fourier transformation method; orthogonal polynomials 
method; degenerate kernel method; potential theory method; 
Cauchy method and Krein’s method. More information for the 
above methods and other analytic    methods with its 
applications can be found in [1-9]. 
 

At the same time, the sense of numerical methods takes an 
important place in solving the IEs for different kernels. More 
information, for the importance of using the numerical methods 
in mathematical physics and applied sciences, contain in [10-
17]. 
 

In other view, the first and second fundamental problems of an 
isotropic homogeneous performed plate, have been discussed. 
The elastic plate weakened by a curvilinear hole. Some authors 
used Laurent's theorem to express the solution in a series form, 

see [18-21]. Others used complex variables method of Cauchy 
integrals to express the solution in the form of two complexes 
potential functions, Gaursat functions, by using many rational 
mappings, see [22-25]. In this case, the first and second 
fundamental problems tend to integro differential equations, in 
the complex plane with Cauchy kernel. It is worth mentioning 
that Exadaktylos et al. [19, 20] considered rational mapping 
functions with complex constants that conformally mapped the 
holes inside a unit circle, using Laurent's method.  In  other  
side,  Abdou  and  Asseri  [24,  25]  considered  more  general  
rational mapping functions with complex constants that 
conformally maps the holes outside a unit circle, using Cauchy 
singular method. 
 

In section two, the GPK in the axisymmetric contact and 
mixed problems in the theory of elasticity is considered in a 
general form of Weber-Sonien integral formula.  Many special 
cases when the kernel takes: logarithmic form, Carleman 
function, elliptic kernel and potential function are considered. 
In addition, the physical meaning of each kernel, in the contact 
problems is discussed. Moreover, many new cases are 
established. Finally, we present the GPK in the form of Cauchy 
problem for the first partial derivatives and nonhomogeneous 
(homogeneous) wave equation for the second partial 
derivatives. 
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In section three, we consider the first and second fundamental 
problems in the theory of elasticity, in two-dimensional 
problem. For this, we consider an infinite elastic plate 
weakened by a curvilinear hole. Then, after using a rational 
mapping function, the curvilinear hole is conformally mapped 
outside (inside) the unit circle. Such problem leads to an 
integro differential equation (IDE) with singular kernel. Then, 
the behavior of such kernel with its first and second structure is 
discussed. Moreover, the corresponding kernel of FIE, in the 
same complex plane, with its structure, is discussed. 
 

The generalized potential kernel: 
 

Let us suppose that a concentrated force 

is applied at a certain point in space. Then, the 

displacement at an arbitrary point can be expressed 

in a compact form as the product of a certain matrix

called the Kelvin ــ Somigliana matrix, and the vector is 
 

                                                (2.1) 
 

The expressions of the matrix elements of are (see [3]), 
 

       (2.2) 
where  and  are called Lame's constants. 
 

Now, let us suppose for a certain closed Liapunov surface S1in 

space that the forces are given, and then the integral

called a vector function satisfying Lame's 
equations in the entire space except the surface S. In analogy 
with the harmonic potential, this function named “the 
generalized elastic potential function". Further, we assume that 

the density function and the vector function may 
be determined directly at points on the surface and their 
limiting values are identical and equal to the proper values. 
Consequently, the elastic potential function of a single layer is 
a vector function that is continuous everywhere in space. The 

potential V (p) tends to zero as r-1, or term  

tends to infinity and 
Now, we mention certain properties of the potential V (p): 
 

 
 

Referring to the regularity of the IE (2.3), one can interchange 
the order of differentiation and integration at all points in the 
space, with the exception of S. 

3- By concerning the points lying in close proximity of the 
surface S, so that the normal direction V can be uniquely 
determined at each of these points, a stress vector is generated 
by the single layer potential and the above-mentioned 
directions of the normal. Hence, we have: 
 

 
 

q is a point on the surface S such that the normal passes 
through the point p. 
 

 
By supposing the general IE 
 

 
in which the upper sign corresponds to the external problem 

and internal problem , respectively. The parameter 

defines the kind of the IE. The constant may be complex and 
possesses different physical meanings.   


The structure kernel of the general axisymmetric contact 
problem


When the modules of elasticity in the contact problems changes 
in the layer surface according to the power law 

 are the stress and 

strain rate intensities, respectively. While K0 and are the 
constants depending on the physical properties of the elastic 
material, where K0  is called the modulus of the elasticity 
material and  is called Poisson ratio. In this case, we have, see 
Abdou [26]    

 
The above formula represents FIE of the second kind with 
generalized in polar coordinate. To represent the GPK in the 
form of Weber- Sonien integral formula, we use the following 
three formulas, see Bateman and Ergelyi [27], 

 
 

Hence,   FIE of Eq. (3.2) yields 
 
 

 
 

 

With general kernel 
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Here,  is the gamma function, is called the 

Pochammer symbol, is the Bessel function and 

is the Gauss hypergeometric function. The 
GPK of Eq. (3.4) called Weber- Sonien integral formula. 
 
3.1- Special cases and discussion: Many special cases can 
derive from the GPK of (3.4) 

1. Logarithmic kernel: Let in (3.4), , to have 

 
Many problems in the continuum mechanics, and in the 
axisymmetric contact problems in the theory of elasticity, lead 
to integral equation of the second kind with logarithmic kernel, 
see Aleksandrov, Covalence [28]. In addition, many problems 
in semi symmetric contact problem and mathematical physics 
lead to FIE of the first kind with logarithmic kernel. The 
solution of such problems, using orthogonal polynomial 
method and potential theory method in [29] and [30] 
respectively, obtained in the form of spectral relationships, i.e  
in the linear combination form of eigenvalues and 
eigenfunctions of the problem. Carleman kernel, see Figs. (1-
2): Let in Eq. (3.4) the harmonic order  to have 
 

 
The importance of Carleman kernel comes from the work of 
Arutiunion [31], which has shown that the first approximation 
of the nonlinear theory of plasticity leads to FIE with Carleman 
kernel. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
The importance of the elliptic kernel comes from the work of 
Covalence [2], who developed the FIE of the first kind for the 
mechanics mixed problem of continuous media and obtained an 
approximate solution of it. 
 
 
 
 
 
 
 
 
 
 
 

 
(4) Potential kernel: Let, in Eq. (3.4), v=0.5, we have the 
potential kernel    

 
The potential kernel of the integral equation is investigated 
from the semi- symmetric Hertz problem of two different 
materials in three dimensions, see Abdou [32,33]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 
(Fig.1 Contains the shape of Carleman kernel for m =0.5 and different 

values of V.) From the previous figures of Carleman function, we deduced 
that as V increases the cracks in the elastic material increase. 

 
(Fig.2 Contains the shape of elliptic kernel.) 

 

 

 
 

(Fig.3 Contains the shape of potential kernel for different values of m.) 
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The above Figures (3) contain two ships of the potential kernel 
for different harmonic m, we see that as the harmonic m 
increases the cracks increases. 
   

(5) General cases: From the GPK of Eq. (3.4) we consider the 
following: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The structure of the kernel 
 

Theorem1:  The structure of the kernel (3.4) represents Cauchy 
problem for the first derivatives order and wave equation for 
the derivatives of second order. 
 

Proof: Differentiate the kernel of Eq. (3.4) with respect to r 
and respectively, then after using the properties of Bessel 
function, we get 




 

The formula (3.5) represents Cauchy problem in the 
nonhomogeneous case. 
 

The second derivatives lead us to the following 
 

The above formula represents a nonhomogeneous wave 
equation. So we can decide that the second derivative of the 
GPK of Eq. (3.4) represents a nonhomogeneous wave equation 
except at m=±0.5 we have a homogeneous wave equation.  
 

The resolvent kernel of Eq. (3.4, takes the following form: 
 

 
The structure kernel of an infinite elastic plate weakened by a 
curvilinear hole 
 

It is known that, see Muskhelishvili [4], the first and second 
fundamental problems, in the plane theory of elasticity, are 
equivalent to finding two analytic functions  z and1zof 

one complex argument  These 
analytic potential functions, Gaursat functions, must satisfy the 
boundary conditions 
 

 
Where, k = -1 and f (t) is a given function of stress for the first 

fundamental problems. While is a given 
function of the displacement for the second fundamental 
problems;,  are called the Lame's constants and t denotes the 
affix of a point on the boundary.  The two complex potential 

functions  in this case, take the forms 

 
Where X, Y are the components of the resultant vector of all 
external forces acting on the boundary and are complex 

constants. The two complex functions  and are single 
valued analytic functions within the region outside the unit 
circle and 0. For the FFP we have X = Y = 0  and 
. 
 

In the absence of body forces, Muskhelishvili [4] considered 
the stress components in the plane theory of elasticity in the 

form  

Using the conformal mapping function , such 

that  does not vanish or become infinite, we deduce that 
the formula (4.2) leads us to an IDE in the complex plane, as 
the following: 

 
Here, the kernel of the IDE (4.3) takes the form 
 

 
 

We write the formula (4.3) in the form of FIE, in the complex 
plane as: 
 

 
 

The kernel of the FIE, in this case, is given in the form 
 

 
 

From the above, we deduce that Eq. (4.3) which represents the 
first and second fundamental problems takes the form of an 
IDE with singular kernel L ( , ζ). In addition, its equivalent 
formula (4.5) represents FIE with singular kernel K( , ζ) 
given by (4.6). The structure resolvent of the first and second 
partial derivatives of the kernel (4.4), respectively is given in 
the following forms: 
 
 

 

 
(Fig.4 contains the shape of potential kernel for different values of m,.) 
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In addition, the first and second structure resolvent of Fredholm 
kernel of Eq. (4.6), are 
 

 
 

Some Applications: The first and second structure of (4.4) 
and (4.6) 
 

In this section, the complex potential functions for an infinite 
elastic plate weakened by a curvilinear hole, using some 
different conformal mapping functions, are determined. The 
first and second structure the kernels of IDE and FIE, in each 
case, are computed.  
 

Application1: Consider the conformal mapping with complex 
coefficients 

 
From the rational mapping, we can discuss the following   
 

1. The rational mapping has (l+1) corners.  
2. The shapes of the holes depending on the values of  q’s, n's 

and m's.  
3. Entering none zero values of the complex constants m and 

d never gives symmetric graphs. While, entering zero 
values for all imaginary parts of both m and d, we get  
symmetric shapes around the x-axis. On the other hand, 
entering zero values for all real parts of both m and d, we 
get symmetric shape around the y-axis.  

4.  The complex constant m = m1 + im2 works on circling the 
shape from the symmetry situation and the circling angle. 
Positive values of  means that the circling will be in the 
positive direction i.e. in the anti-clockwise direction and 
for negative values the circling will be in the negative 
direction i.e. in clockwise direction.  

 

The physical interest of the mapping (4.11) comes from its 
special cases and its different shapes of holes, see Figs. (5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Write the conformal mapping in the form: 
 

 
 

The two complex potential functions, Gaursat functions, take 
the form 
 

 
In (4.13), we assumed   

 
The free function F()with its derivatives must satisfy the 
Holder condition. 
 

Here, the behavior kernel of IDE of Eq. (4.4) and the behavior 
kernel of FIE of Eq.  (4.6) using the conformal mapping (4.11) 
are shown in Figs. (6) and (7), respectively.  In addition, we 
consider in Fig. (8), the first structure of the partial derivatives 
of (4.7) of IDE. In Fig. (9), we compute the first structure of 
the first partial derivatives of (4.9) of FIE.  Moreover, the 
second structure of the second partial derivatives of (4.8) and 
(4.10) are computed, respectively in Figs. (10) and (11). The 
above results is computed for the values 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        

      
 
(Fig.5: Contains different shapes of the conformal mapping of Eq.(4.11))  
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Application2:  For the conformal mapping  

 
The kernels of Eq.  (4.4) and of Eq. (4.6) with the aid of 
conformal mapping (4.15) are computed, respectively in Figs. 
(12) - (13). Also, the first structure of Eqs. (4.7), (4.9) is 
considered, respectively in Figs. (14) - (15). Moreover, the 
second structures of (4.8), (4.10) are computed, respectively in 
Figs. (16) - (17).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CONCLUSION 
 

From the previous work, we can establish the following: 
 

In the semi symmetric or in the axisymmetric contact and 
mixed problems, in the theory of elasticity and mathematical 
physics problems, when the modules of elasticity changes 

according to the power law 
we have an integral equation with a kernel in the form of  
generalized potential function. This kernel takes the form of 
Weber- Sonien integral formula 
 

 
In general, we can write the above kernel in the Legendre 
polynomial form to have. 
 

 
Many special cases can be derived from the generalized kernel: 
 

a-Logarithmic kernel  b- Carleman kernel 

 c- Elliptic kernel: , d- Potential 
kernel  (1/ 2).  In addition, different degree of harmonic 
oscillator for positive and negative values of m can be derived 
and discussed. 
 

The structure of the generalized kernel represents Cauchy 
problem for the first order of  derivatives. Also, it represents a 
nonhomogeneous wave equation for the second order of 

derivatives under the condition  and homogeneous 

wave equation if . 
 

In the plane theory of elasticity, the first and second 
fundamental problems or the first and second boundary value 
problems, for an infinite plate weakened by a curvilinear hole, 
after using suitable conformal mapping, leads to an IDE of the 
second kind with Cauchy kernel. In addition, the same problem 
leads to FIE with discontinuous kernel. The structure resolvent 
of the first and second order of partial derivatives, for the IDE 
and FIE is hold and computed. 
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