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The genetic architecture of plant growth and development of cereal crops are greatly affected by 
abiotic stress conditions such as drought, salinity, and low temperature. Plants respond to these 
environmental challenges through a number of molecular and physiological mechanisms that alter 
the signal transduction pathways and expression of different genes. These stress inducible genes are 
altered in order to sustain under adverse climatic factors. Several regulatory of molecular and 
metabolic pathways that activate or repress the stress tolerance genes with the help of transcription 
factors and cis-acting elements in the stress-responsive promoters function for the plant adaptation to 
environmental stresses. Here, we summarize recent studies highlighting the role of stress signaling 
molecules and specific members of transcription factors and genes expression in the adaptive 
responses to abiotic stresses. 
 
 
 
 
 
 

 
 

 
 

  
 
 

 

 
 

 
 

 
 
 
 
 
 
 

 

 
 

 
 

 

 
 

 
 

 
 
 

 
 

 
  
 

 
 

 

INTRODUCTION  
 

Abiotic stresses, such as drought, salinity, low and high 
temperature and floods, seriously hamper the yield of major 
cereal crops all over the world, especially in developing 
countries. It is estimated that average major crop yield loss is 
less than 50% worldwide (Bray et al. 2000). Furthermore, 
world food production needs to be doubled by the year 2050 to 
meet the ever-growing demands of the population (Tilman et 
al. 2002). For these reasons, understanding the mechanisms 
underlying plant abiotic stress responses and the generation of 
stress tolerant plants has received much attention in recent 
years. The tolerant plants can initiate a variety of changes at the 
molecular, cellular and physiological traits and signal 
transduction pathways, to survive under adverse climatic 
factors. All of these adaptive processes universally include 
changes in the expression of specific genes and transcription 
factors (Thomashow 1999; Shinozaki et al. 2003). However, 
the complexity of abiotic stress tolerance traits, conventional 

approaches are less effective at directly connecting tolerance 
traits to the determinant genes that play key roles in the stress 
response. Recent progress in advance genomics and high 
throughput sequence technologies, genes involved in many of 
the essential steps regulating the molecular mechanism and 
stress responsive genes have been identified and characterized. 
In particular, stress signaling molecules, transduction pathways 
and discovery of ABA receptors play a major role in 
understanding the transcriptional and post-transcriptional 
regulation of stress-responsive gene expressions. 
 

Factors involving in tolerance to abiotic stresses 
 

The rice crop responds to these environmental challenges 
through a number of defense mechanisms to maintain the 
optimal growth conditions and involves many changes at whole 
plant, tissue, cellular, physiological and molecular levels. The 
exposure of plants to a different combination of stress factors 
may trigger agonistic, antagonistic, or potentially unrelated 
responses. Such interaction between multiple biotic and/or 
abiotic stresses is coordinated by a complex signaling crosstalk 
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of phyto-hormones (Mundy et al. 2006). Phytohormones such 
as salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and 
abscisic acid (ABA) are major players that regulate the defense 
responses of plants against both biotic and abiotic stresses via 
synergistic and antagonistic actions, which are referred to as 
signaling crosstalk (Fujita et al. 2005) and modified the 
regulate pathways in terms of metabolic, physiological and 
molecular pathways in plant growth and its leading to serious 
yield losses in crops (Bray et al. 2000; Sakamoto et al. 2004). 
The increases in rice production can only be achieved by using 
both conventional breeding methods and modern technologies. 
Tolerance or susceptibility to these abiotic stresses is a very 
complex phenomenon, because of stress may occur at multiple 
stages of plant development and more than one stress 
simultaneously affects the plant. Therefore, the perception of 
abiotic stresses and signal transduction to switch on adaptive 
responses are critical steps in determining the survival and 
reproduction of plants exposed to adverse environments 
(Chinnusamy et al. 2004). The abiotic stress effects depend on 
the various stages in crop growth such as, seed germination, 
seedling establishment, genotypic capacity of species, 
vegetative or post-emergence growth, flowering or 
reproduction, and grain filling period (Mittler et al. 2004). 
Improvement of stress tolerance crops is largely dependent on 
exploiting genetic variation in landrace and wild germplasm 
and this has been achieved in the past through traditional plant 
breeding methods (Langridge and Fleury 2011). 
 

Developments of tolerant/resistant crops, requires broader inter 
disciplinary approaches as involving an understanding 
molecular mechanisms, signaling process and the effect of 
QTLs/gene in stress regulation pathways (Fig. 1). Collins et al. 
(2008) reported in the alteration of gene expression pathways 
with switch off/on transcription factors and physiological 
adjustment, which determining yield in a particular target 
population of environments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Recent functional and comparative genomic studies show 
considerable overlap of plant responses to osmotic stresses 
such as drought, and salinity (Chen et al. 2002; Kreps et al. 
2002; Buchanan et al. 2005). The drought, salinity, high 
temperature stresses leads to changes in metabolic toxicity, 
membrane disorganization, generation of reactive oxygen 
species (ROS), inhibition of photosynthesis and altered nutrient 
acquisition (Hasegawa et al. 2000). The molecular level, 
abiotic stress tolerance can be achieved through gene 
transformation by changing the accumulation of 
osmoprotectants, production of chaperones, superoxide radical 
scavenging mechanisms (Zhu 2002; Valliyodan and Nguyen 
2006). A promising strategy to deal with adverse scenario is to 
take advantage of the flexibility that biodiversity (genes, 
species, ecosystems) offers and increase the ability of crop 
plants to adapt to abiotic stresses. Henceforth, this paper aims 
to consolidate the molecular mechanism and their regulation of 
transcription factors and genes to know the stress tolerance in 
the genotypes and their feasibility in developing cultivars 
suitable for the abiotic stress condition by utilizing of MAS and 
genomic technologies. 
 

Regulation of ABA signaling pathways 
 

The phytohormone Abscisic acid (ABA) plays a significant 
role in physiological processes such as seed dormancy, 
development of seeds, stomatal closure, synthesis of storage 
proteins and lipids, leaf senescence and also defense against 
pathogens. Also it plays an important role in integrating various 
stress signals and controlling downstream stress responses 
(Chinnusamy et al. 2004) in the process of signal transduction. 
Plants are perceiving and adapting to dangerous climatic 
factors as drought, cold/high temperature, salinity and flooding. 
These are controlled by abscisic acid (ABA) (Mahajan and 
Tuteja 2005) and also regulation of ABA responsive genes 
through the transcription factors. The expression of stress 
responsive genes can be followed by two approaches as ABA 
dependent or ABA independent pathway (Xiong et al. 2002). 
The “direct” pathway involves cis-acting ABA-responsive 
elements (ABREs), which are directly activated by binding 
with transcription factors such as basic domain leucine zipper 
(bZIP)-type DNA binding proteins (Kobayashi et al. 2004). 
Alternatively, the “indirect” ABA-dependent transcription 
pathway involves other cis-acting elements, such as MYC and 
MYB. The transcription factors regulate almost every aspect of 
the plant life cycle by regulating the expression of specific 
genes, including the stress responsive genes. These 
transcription factors have been shown to play a variety of roles 
in many essential plant life processes (Abe et al. 2005; Alonso 
et al. 2009). Importantly, the molecular and physiological traits 
of a number of genes and transcription factors have been 
investigated in different crops and transgenic model plants. The 
present review describes recent progress towards understanding 
of molecular mechanism, signal recognition and transduction 
via ABA pathways and stress-responsive gene expression by 
different transcription factors (TFs) and their corresponding cis 
-acting elements associated with the abiotic stresses in plant. 
 

Stress signaling 
 

In response to environmental adversities, plants have developed 
several strategies to cope with these challenges either by 

 
 

Fig. 1 Integration of molecular biology, physiology and phenotypic 
approaches to development of abiotic stress tolerance crops with assist of 

insilico tools 
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adaptation mechanisms, which help them to survive the adverse 
conditions, or specific growth habits to avoid stress conditions. 
Stress tolerant plants have evolved certain adaptive 
mechanisms, displayed by different degrees of tolerance, which 
are largely determined by their genetic plasticity. This 
differential stress tolerance could be due to difference in terms 
of perception of stress, signal transduction and appropriate 
gene expression patterns, or presence of novel metabolic 
pathways restricted to tolerant plants (Bartels and Sunkar 
2005). Plants can perceive environmental stresses and elicit 
appropriate responses with altered metabolism, growth and 
development. The regulatory circuits include stress sensors, 
signaling pathways comprising network of protein-protein 
interactions, transcription factors (TFs) and finally proteins or 
metabolites which impart stress tolerance to plants. The 
products of stress inducible genes can be classified into two 
groups; (i) those that function directly in protecting against 
stresses also termed as functional or downstream genes, and (ii) 
those that regulate gene expression and signal transduction in 
response to stress termed as regulatory or upstream genes 
(Shinozaki et al. 2003).  
 

Integrated circuits of most complicated plant’s stress responses 
involve various pathways in a compartmentalized fashion 
including the interaction of signaling molecules/additional 
cofactors to coordinate a specified response to a given stimulus 
(Dombrowski 2003). As the signals, in form of ligands or 
elicitors, transduce through the cellular membrane, 
electrochemical gradient across over it has a great impact. The 
sensitivity of the electrical membrane potential to different 
external stimuli suggests that ion exchange could serve for the 
membrane perceived signals.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thus a hyper polarization-activated influx of Ca2+ into the host 
cell could provide a pathway for the elevation of cytosolic free 
Ca2+ concentrations that mediate the induction of several 
biochemical pathways that are a part of plant’s defense 
response (Rodrigues et al. 2009). Sensor molecules can catch 
the stress signal coming first and regulate the mesh of different 
interconnecting pathways via initiation and/or suppression of a 
cascade of intercellular signal transportation and to induce 
specific set of genes by the production of active nuclear TFs 
(Fig. 2). Ca2+ ions also act as secondary messengers as Ca2+ ion 
concentration is geared up in the cytoplasm when the cell 
senses stress. 
 

The principal molecular machine in plant’s two-component 
signaling system is a membrane bound receptor (with kinase 
activity of histidine) that has an extracellular domain which can 
act as a ligand binding site (or protein-protein interactions), a 
transmembrane domain and an intracellular kinase domain. 
When the extracellular sensor domain perceives a signal, the 
cytoplasmic histidine residue is autophosphorylated and the 
phosphoryl moiety is then passed to an aspartate receiver in a 
response regulator, which may constitute a part of the sensor 
protein or a separate protein. The sensors may couple with a 
downstream mitogen-activated protein kinase (MAPK) cascade 
or directly phosphorylate specific targets to initiate cellular 
responses. Upon receiving a signal from membrane receptors, 
cells often utilize multiple phosphoprotein cascades to 
transduce and amplify the information. Phosphorylation and 
dephosphorylation of active proteins are perhaps the most 
common intracellular signaling modes. They regulate a wide 
range of cellular processes such as enzyme activation, 
assembly of macromolecules, protein localization and 
degradation. Secondary signals (i.e., phytohormones and 
second messengers, inositol phosphates and reactive oxygen 
species or ROS) can initiate another cascade of signaling 
events, which can differ from the primary signaling in spatio-
temporal manner (Xiong and Zhu 2002). 
 

There are various networks of signal transduction. Oxidative 
and osmotic stress signaling uses MAPK modules, involves the 
generation of ROS scavenging enzymes and antioxidant 
compounds as well as osmolytes. Ca2+ dependent signaling 
leads to activation of  the late embryogenesis abundant (LEA)-
type genes, such as the dehydration responsive elements (DRE) 
and cold responsive sensitive transcription factors (CRT) class 
of genes, involves the production of stress-responsive proteins. 
Salt overlay sensitive (SOS) signaling with the help of Ca2+ 
ions regulates ion homeostasis and involves the SOS pathway 
specific to ionic stress (Xiong et al. 2002). Due to high and low 
temperature, water scarcity, prolonged under water condition 
and high salty environments forcibly produce reactive oxygen 
species (ROS), one type of secondary messenger, such as 
hydrogen peroxide (H2O2), hydroxyl radicals (OH-), singlet 
oxygen (O-), superoxide (O2

-) etc .that may cause extensive 
damages in the plant cell. Some enzymes, osmolytes and some 
other macromolecules can also function as ROS scavengers 
(Xiong et al. 2002) to protect the plants. Signaling in this 
condition is done by a phosphoprotein modulated cascade using 
MAPK which is activated by receptors (tyrosine kinases, G-
protein coupled receptors, histidine kinases etc.). The core 
MAPK cascades consist of 3 kinases that are activated 
sequentially by an upstream kinase. The MAP kinase 

 
 

Fig. 2 Sequential steps involved in signaling cascade for stress (both 
abiotic and biotic) tolerance/resistance in crop plants 
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kinasekinase (MAPKKK), upon activation, phosphorylates a 
MAP kinase kinase (MAPKK) on serine and threonine 
residues. This dual-specificity MAPKK in turn phosphorylates 
a MAP kinase (MAPK) on conserved tyrosine and threonine 
residues. 

 

The activated MAPK can then either migrate to the nucleus to 
activate the transcription factor directly, or activate additional 
signal components to regulate gene expression, cytoskeleton
associated proteins or enzyme activities, or target certain signal 
proteins for degradation (Xiong et al. 2002
activates several protein kinases including mitogen
kinases, which may mediate osmotic homeostasis and/or 
detoxification responses. Abscisic acid biosynthesis is 
regulated by osmotic stress at multiple steps. Both ABA 
dependent and -independent stress signaling first modify 
constitutively expressed transcription factors, leading to the 
expression of early response transcriptional activators, whi
then activate downstream stress tolerance effector genes (
2001). On the other hand, calcium-dependent protein kinases 
(CDPKs) are implicated as important sensors of Ca
plants in response to such stresses. CDPKs are serine/threonine 
protein kinases with a C-terminal calmodulin
up to 4 EF-hand motifs that can directly bind Ca
et al. 2009). Salt stress-induced Ca2+ signals are perceived by 
SOS3 which activates the SOS2 kinase. The SOS3
kinase complex regulates cellular Na+ levels by stimulating Na
transport out of the cytoplasm (e.g. by increasing the 
expression and activity of SOS1) and conceivably by restricting 
Na+ entry into the cytosol. An additional target of the SOS2 
kinase, NHX (vacuolar Na+/H+ exchanger), also contributes to 
Na+ ion homeostasis by transporting Na+ from the cytoplasm 
into the vacuole (Chinnusamy et al. 2004). 
 

Transcription factors in abiotic stresses 
 

Transcriptional regulation, also known as transcriptome 
reprogramming/ gene switches, is essential for plant adaptation 
to abiotic stresses. The transcription factors are proteins with a 
DNA domain, which are involved in recognizing a short 
(usually 4-8bp) DNA sequences of cis-acting elements present 
in the promoter of a target gene and it can induce (activators) or 
repress (repressors) the activity of the RNA polymerase, thus 
regulating gene expression against presence or absence of 
stress condition (Liao et al. 2008). Based on the structure of the 
DNA-binding domain, transcription factors are classified into 
50 to 60 different families, and in plants, 5% to 7% of all the 
protein-encoding genes are transcription factors. The regulation 
of transcription factor is a potential area for coordination of 
regulated genes relevant to abiotic stress tolerance in different 
crops. 
 

An abiotic stress response as plant’s regulatory mechanism and 
signal transduction pathways turns out to be very complex 
phenomenon. Generally stress tolerance seems to be controlled 
mostly at transcriptional levels and it’s depending on TFs 
activity of DNA binding domain and a protein
interaction domain which mediates, directly or indirectly, the 
activation or repression of transcription (Brivanlou and Darnell 
2002). Approximately 2000 plant TFs were 
in plants and classified into families and subfamilies according 
to the similarity of binding domain, their gene structure, their 
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Transcription factors (TFs) are master regulators that control 
structural and regulator genes. A single TF can control the 
expression of many target genes through specific binding of the 
TF to the cis-acting element in the promoters of respective 
target genes. The regulation of TFs activity modified by 
phosphorylation, ubiquitination and sumoylation, which play a 
critical role in the fine-tuned regulation of the relevant genes 
under abiotic stresses (Nakashima 
several transcription factors have been characterized and 
functionally validated in many transcription factors as 
dehydration-responsive element
binding factor (CBF), MYB, basic
AP2/ERF, NAC, WRKY and C2H2 zinc (ZFP252, ZFP245, 
ZFP179 and DST) finger families play a critical role in the 
abiotic stress response (Bartels and Sunkar 2005; Hu 
2006) and it activates the cascades of genes that act together 
enhancing tolerance towards multiple stresses. Most of these 
transcription factors (TFs) regulate their target gene expression 
through binding to the linked 
the stress-related genes. Several major regulons that are activ
in response to abiotic stress have been identified in various 
crops. Dehydration-responsive element binding protein 1 
(DREB1)/C-repeat binding factor (CBF) and DREB2 regulons 
function in ABA-independent gene expression, whereas the 
ABA-responsive element 
(AREB)/ABRE binding factor (ABF) regulon functions in 
ABA-dependent gene expression (Fig.3). In addition to these 
major pathways, other regulons, including the NAC and 
MYB/MYC regulons, are involved in abiotic stress
gene expression. Recent studies demonstrated that DREB1/ 
CBF, DREB2, AREB/ABF, and NAC regulons have important 
roles in response to abiotic stresses in cereal crops.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. A schematic representation of major transcript
networks of cis-acting elements and transcription factors involved in 

abiotic stress-responsive gene expression. Abiotic stress signaling 
perception and their transduction and transcriptional regulation of stress

responsive genes fallowed by the Interaction between in response to 
abiotic stresses are indicated by lines with arrows. Interaction between the 
transcription factor families (shown by green color) and the corresponding 
cis-acting elements (shown by red color) in the promoter regio

inducible genes (shown by italics
that modification of the TFs through the 

ubiquitination
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function and other structural features (Abdelaty 2003). Among 
these identified TFs, only a few transcription factors has been 
functionally characterized and validated in model plants. 

Transcription factors (TFs) are master regulators that control 
structural and regulator genes. A single TF can control the 
expression of many target genes through specific binding of the 

acting element in the promoters of respective 
target genes. The regulation of TFs activity modified by 
phosphorylation, ubiquitination and sumoylation, which play a 
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Nakashima et al. 2012) (Fig.3). Recently 
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functionally validated in many transcription factors as 
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acting elements and transcription factors involved in 
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perception and their transduction and transcriptional regulation of stress-
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Regulation of transcription domains 
 

The essence of transcriptional activation of target gene 
expressions involves interaction between the trans-sequence 
with specific DNA-binding transcription factors and cis 
promoter regulatory sequences. The binding of regulatory 
elements play a key role in modulating plant stress responses 
and result in increasing tolerance to various environmental 
stresses. The regulation of transcription factors as specific 
domains are involved in the activation or repression of 
transcription. Several different types of activation domains 
have been identified in known transcription factors and they do 
not appear to posses any consensus sequences. Instead, they 
have been classified as acidic, glutamine-rich, proline-rich, 
serine- and threonine-rich domains on the basis of their amino 
acid composition (Pater et al. 1996). 
 

Mechanism of regulation of transcription factors belong to 
many different families. However, there are certain families 
that include a relatively large number of members that have 
been implicated in environmental stress responses. These 
include the DREB1/CBF family of cis-acting element, 
DRE/CRT transcription factors (Lata and Prasad 2011) as well 
as other DREB2, belonging to the ERF/AP2 family 
(Yamaguchi and Shinozaki 2005), Class I homeodomain-
leucine zipper proteins (Elhiti and Stasolla 2009), WRKY 
family transcription factors (Rushton et al. 2012; Chen et al. 
2012), NAC family (Nakashima et al. 2012). bZip family (Choi 
et al. 2000), MYC family (Abe et al. 2003), MYB family 
(Yanhui et al. 2006), ZFP family (Mukhopadhyay et al. 2004) 
have been well characterized under abiotic stress conditions. 
Although there are some other multiple transcription factors, 
including ICE (inducer of CBF expression), CBFs/DREBs, 
AREB/ABF/ABI/bZip, MYC/ MYB and NACs, have been 
well characterized (Chinnusamy et al. 2004) under salt and 
drought stress. Interestingly, the families mentioned here are all 
plant-specific (Riechmann et al. 2000) suggesting that they 
may have evolved to help plants deal with the stress tolerance. 
However, members of transcription factor families that are 
found outside of plants have also been implicated in control of 
stress-inducible gene expression. 
 

Stress-inducible genes for abiotic stress 
 

The complex plant response to abiotic stress involves many 
genes that are induced by cold as well as induced by both 
drought and salinity (Shinozaki and Yamaguchi-Shinozaki 
2000), probably because many cold-inducible genes encode 
different types of proteins to protect the plant cell that follow 
specific signal transduction in the response to abiotic stresses. 
Generally the stress inducible gene products are classified into 
three major groups.  

 

1. Gene encoding products of heat stress proteins (HSPs) or 
chaperones, LEA proteins, osmo-protectants, anti freeze 
proteins, detoxification enzymes and free-radical 
scavengers directly protect plant cells against stresses 
(Bray et al. 2000). 

2. Encoding products are involved in signaling cascades and 
in controlling transcriptional regulation and network 
pathways as MAPK,CDPK (Ludwig et al. 2004) and SOS 
kinase (Zhu 2001), phospholipases (Frank et al. 2000) 
and transcriptional factors (Choi et al. 2000). 

3. Involved in water uptake and transport of aquaporins and 
ion transporters (Blumwald 2000). 

 

The stress-inducible gene products are involved in the 
generation of regulatory molecules as ethylene (ET), jasmonic 
acid (JA) and salicylic acid (SA) that play a major role in 
response to biotic stress. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 List of abiotic stress tolerance gene/transcription 
factors studied in various crops 

 

Type of abiotic 
stress 

tolerance 
Crop 

Genes/ 
transcription factor 

References 

Drought, Cold 
and Salinity 

 

Rice 
 

OsCDPK7 Sajjo et al. 2000 
OsDREB1B Ito et al. 2006 

OsCOIN Liu et al. 2007 
OsDREB1F Wang et al. 2008 

OsiSAP8 Kanneganti and Gupta 2008 
OsDREB1F Wang et al. 2008 

OsABF2 Hossain et al. 2010 
OsDREB1 Fukao et al. 2011 

Wheat WDREB2 Egawa et al. 2006 
A. thaliana ABF4 Choi et al. 2000 

Maize ZmbZIP17 Jia et al. 2009c 

Drought and 
Salinity 

 

Rice 

OsCDPK7 Saijo et al. 2000 
Osmotin Barthakur et al. 2001 

OsDREB2A Dubouzet et al. 2003 
OsRacB Luo et al. 2006 
OsAB15 Zou et al. 2008 

OsbZIP23 Xiang et al. 2008 
ONAC045 Zheng et al. 2009 

OsDHODH1 Liu WY et al. 2009 
OsNAC6/SNAC2 Lu et al. 2009 

OsAREB1 Jin et al. 2010 
OsLEA3 Fukao et al. 2011 
OSRIP18 Jiang et al. 2012 
OsCam3 Phean-O-Pas et al. 2005 
OsRIP18 Jiang et al. 2011 
OsHsfA7 Liu et al. 2013 

Wheat PSP 1015 Hollung et al. 1994 
A. thaliana RD26 Fujita et al. 2004 
Tobacco AhDREB1 Shen et al. 2003b 

Salinity 

Rice 
 

Mn-SOD Tanaka et al. 1999 
OsA1/ OsA2 Zhang et al.1999 

OsGS2 Hoshida et al. 2000 
Mt1D Li et al. 2004 

OsNHX1 Fukuda et al. 2004 
OsHKT1 Kader et al. 2006 
OsBZ8 Kakali et al. 2006 

OsMAPK33 Lee et al. 2011 
OsWRKY45-2 Tao et al. 2009 

Wheat TVP1 Brini et al. 2005 
Wheat AeNHX1 Qiao et al. 2007 

Tobacco CaZF Jain et al. 2009 

Drought 

Rice 

OsSRT1 Huang et al. 2007 
OsDREB1G Chen et al. 2008 

Rab16D Zou et al. 2008 
RD22 Hou et al. 2009 

Os AP59 /Os AP37 Oh et al. 2009 
OsNAC10 Jeong et al. 2010 

Dro1 Uga et al.2011 
Oshrf1 Zhang et al. 2011 

OsGRF8 Shunwu et al. 2014 

Maize 
 

ZmPLC1 Wang et al. 2008 
TsVP Li et al. 2006 
betA Quan et al. 2004 

ZmNF-YB2 Nelson et al. 2007 

Wheat 
 

TaLTP1 Pellegrineschi et al. 2004 
DREB1A Jang et al. 2004 

mtlD Abebe et al. 2003 
A. thaliana PDH Mani et al. 2002 
Sorghum SbDREB2 Bihani et al. 2011 
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Abscisic acid (ABA) is the most studied stress-responsive 
hormone for its pivotal roles in the regulationof abiotic stress 
responses to drought, osmotic and cold stress (Vlot et al. 2009; 
Peleg and Blumwald 2011). Overall, the stress signal 
transduction requires exact coordination of all the signaling 
molecules, including protein modifiers (methylation, 
ubiquitination, glycosylation, etc.), adaptors and scaffolds 
(Xiong et al. 2002) and many genes which may cross talk with 
each other. Finally ,the stress tolerance response can lead to 
either growth inhibition or cell death, which depends on what 
kind of genes are up- or down regulated in response to the 
stress(es). 
 

Stress-inducible genes have been used to improve the drought, 
salinity and cold/high temperature stress tolerance of plants by 
genetic engineering technologies. It is important to analyze the 
functions of stress-inducible genes, not only to understand the 
molecular mechanisms of stress tolerance and their responses 
in higher plants, but also to improve the stress tolerance of 
crops by gene manipulation. In the last few decades, several 
genes have been identified and functionally validated in 
different crops that showed tolerance to abiotic stress responses 
(Table 1). With the advancement of new and powerful tools 
such as genomics and proteomics, particularly the high-
throughput microarray platform, RNA-Seq, and increasing 
number of completed genome sequences of major cereal crops, 
enormous strides have been made to identify genes that are up- 
or down regulated by abiotic stresses (Fig.1). This allows the 
simultaneous monitoring of expression profiles for many genes 
and facilitates the determination of a large spectrum of stress 
responsive genes, which can greatly broaden and deepen our 
understanding on the stress response in a comprehensive way. 
Many studies have reported changes in the expression of 
individual genes when the plant frequently responds to abiotic 
and biotic stresses, showing their diverse functions under 
abiotic stress conditions. Example of such genes are the MAP 
kinase (Agrawal et al. 2003), DREB genes (Dubouzet et al. 
2003), Rab16D (Hou et al. 2009), Calcium-dependent protein 
kinase (Saijo et al. 2000), OSRIP18 (Shu et al. 2011), OsERF3 
(Wan et al. 2011), and OsHsfA7 (Liu et al. 2013), OsiSAP8 

(Kanneganti and Gupta 2008), OsGRF8 (Shunwu et al. 2014) 
and signaling (kinases) (Saijo et al. 2000), membrane integrity 
(LEA protein) (Xu et al. 1996). The promoters of stress 
responsive genes typically have cis-regulatory elements such as 
DRE/CRT, ABRE, and MYCRS/MYBRS and are regulated by 
various upstream transcriptional factors. 
 

Cis-acting elements 
 

Abiotic stress tolerance genes expression can be modulated at 
different levels in the regulation pathways. Among the types of 
regulation, transcriptional regulation is important regulatory 
machinery in higher plants. The expression of abiotic stress 
tolerance genes depend on the initiation and efficiency of the 
interaction between the cis -acting elements on their promoters 
and their interaction with TFs. These DNA-protein interactions 
are critical for the regulation of expression of the stress 
responsive genes (Mitsuda et al. 2009). Several types of cis 
acting elements are involved in abiotic stress responses and 
their binding with specific transcription factor families (Table 
2). 
 

Types of transcription factors 
 

Basic leucine zipper (bZIP) transcription factors  
 

Basic leucine zipper (bZIP) transcription is one of the largest 
transcription factor families in plants. These transcription 
factors have been shown to play a variety of roles in many 
essential plant life processes (Xiang et al. 2008; Alonso et al. 
2009) and it is characterized by the presence of a basic region, 
responsible for DNA-binding of a leucine zipper, involved in 
protein homo- and heterodimerization (Jakoby et al. 2002). 
Many bZIP TFs have been linked to the ABA dependent 
signaling pathway in several plant species, such as rice, 
Arabidopsis, and maize (Choi et al. 2000). 
 

In the dicotyledonous model plant (Arabidopsis thaliana), 75 
bZIP transcription factor genes have been designated 
(AtbZIP1-AtbZIP75) and classified into ten groups according 
to the sequence similarity of their basic region (Jakoby et al. 
2002). In monocotyledonous model plant (Oryza sativa), 89 
bZIP transcription factors and classified into 11 groups 
according to their DNA-binding specificity and the amino acid 
sequences in their basic and hinge regions (Nijhawan et al. 
2008). To date, several bZIP transcription factors of  have been 
functionally characterized, including those shown to be 
responsive to ABA-dependent stress signal transduction, and 
have thus been designated as ABA-responsive element binding 
proteins (AREBs), also known as ABRE binding factors 
(ABFs) in abiotic stresses.  
 

WRKY transcription factors  
  

The WRKY family of TF is one of the largest and oldest 
families of transcriptional regulators in the plant kingdom 
(Rushton et al. 2010). The WRKY TFs are characterized by a 
DNA-binding domain with highly conserved 60 amino acid 
long WRKY domains, comprising highly conserved 
WRKYGQK at N-terminus and a novel metal chelating zinc 
finger signature at C-terminus. 
 

The WRKY TF families were first identified and reported from 
sweet potato and gradually increasing numbers of WRKY TFs 
have been identified in various plants. Rice WRKY family 

 

Cold 

Rice 
 

MYBS3 Jang et al. 2003 
OsDREB1A, Dubouzet et al. 2003 

OsCtb1 Saito et al. 2001 
OscodA Sakamoto et al.1998 
HOS10 Chen et al. 2008 

OsMYB3R-2 Ma et al. 2009 
Osmyb4 Park et al. 2010 

Wheat 
 

Tacr7 Gana et al. 1997 
ScRPS7 Berberich et al. 2000 
CHT9 Yet et al. 2000 
Wlt10 Motomura et al. 2013 

Wdhn13 Motomura et al. 2013 
Wcor14 Motomura et al. 2013 

A. thaliana GmWRKY21 Zhou et al. 2008 
Tomato AtCBF2 Hseih et al. 2002 

Drought and Cold 

Wheat 
 

TaDREB1 Shen et al. 2003 
Wlip19 Kobayashi et al. 2008 

Rice HvCBF4 Oh et al. 2007 
Cotton GhNAC2 Meng et al. 2009 

Sorghum SbDREB2 Bihani et al. 2011 

Salinity and Cold 
Rice GS2 Hoshida et al. 2000 

Wheat TaSnRK Zhang et al. 2010 

Drought and Heat 
Rice 

 
OsDREB2 B Matsukura et al. 2010 

OsXET9 Jiali Dong et al. 2011 

 



 International Journal of Recent Scientific Research Vol. 7, Issue, 8, pp. 12754-12771, August, 2016 
 

 

12760 | P a g e  

consists (109 members), Arabidopsis (74 members), Wheat (43 
members) and Barley (45 memebers) WRKY domains 
(Mangelsen et al. 2008; Niu et al. 2012). In rice WRKY TF 
families is divided into three groups based on the number of 
WRKY domains (two domains in Group I and one in Groups II 
and III), the second group is divided in five subgroups, IIa, IIb, 
IIc, IId and IIe (Rushton et al. 2010). The WRKY domain has 
been crystallized (Tao et al. 2009) and the proposed structures 
consist the cis-element where it should bind and the highly 
conserved W-box (TTGACC/T). Because of the conserved cis 
elements, the specificity of different TFs must be obtained by 
the neighboring areas of the W-box (Ciolkowski et al. 
2008).WRKY TFs have been described in having a role in the 
regulation of biotic and/or abiotic stress responses, 
germination, senescence, and developmental processes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

WRKY transcription factors play major task in regulating the 
transcriptional reprogramming associated with multiple plant 
processes as WRKY TFs have been shown to play multiple 
roles in various developmental and physiological processes, 
such as ABA signaling (Rushton et al. 2012), lignifications and 
xylem development (Guillaumie et al. 2010), leaf senescence 
(Besseau et al. 2012), root development (Zhou et al. 2008), 
seed germination (Rushton et al. 2012), and hormone signaling 
(Zhou et al. 2008). Moreover, WRKYs are also shown to be 
involved in regulation of other abiotic stresses, such as low 
phosphatestress (Chen et al. 2009), heat and salinity stress 
(Jiang and Deyholos 2009; Li et al. 2011), and osmotic stress 
(Liu et al. 2011). 
 

AREB or ABF family transcription factor 
 

Interaction between the ABA-responsive TFs and the target 
genes is linked by different cis -acting elements, among which 
ABA-responsive element (ABRE) with the core sequence of 
PyACGTGGC initially was identified on the promoter region 
of wheat EM gene (Marcotte et al. 1989). The proteins binding 
to ABRE element are a group of basic domain/leucine zipper 
(bZIP) TFs, particularly ABRE binding protein 
(AREB)/ABRE-binding factor (ABF), which have been 
demonstrated to play in vivo roles in ABA and stress responses 
(Choi et al. 2000; Fujita et al. 2005; Nakashima et al. 2009). 

The ABFs contain a highly conserved bZIP domain composed 
of a basic region responsible for DNA binding and three heptad 
leucine repeats for TF dimerization at the C-terminus. Apart 
from the bZIP domain, the ABFs contain four highly conserved 
regions at the N or C-terminus, C1, C2, C3, and C4, containing 
several serine (S) and threonine (T) residues that have been 
suggested as the phosphorylation sites of different kinases 
(Kim 2006; Huang et al. 2010). 
 

The ABRE element is always flanked by a distal or proximal 
coupling element (CE), such as CE3 and CE1 in barley, 
forming an abscisic acid response complex (ABRC), which 
might be necessary and sufficient to confer ABA response or 
trigger ABA-mediated gene expression against abiotic stresses 
(Kim 2006).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The conserved regions of different types ABF/AREBs family 
members have been also reported and fallowed displayed 
different expression patterns in various crops, such as, rice, 
barley, wheat, tomato, trifoliate orange, and potato (Hobo et al. 
1999; Choi et al. 2000; Johnson et al. 2002; Kobayashi et al. 
2008; Huang et al. 2010; Garcia et al. 2012). 
 

AP2/ERF family 
 

The AP2/ERF (APETALA2/ethylene response factor) family 
of transcription factors is characterized by the presence of the 
highly conserved AP2 DNA-binding domain and it was 
initially characterized as plant specific transcription factor 
(Dietz et al. 2010). Several AP2/ERF TFs have been isolated 
from various plants such as rice (Dubouzet et al. 2003), 
Arabidopsis (Sakuma et al. 2002), tobacco (Wu et al. 2007), 
wheat (Agarwal et al. 2006), and poplar (Dietz et al. 2010). 
Based on the sequence similarity of the DNA binding domains, 
AP2/ERF family is divided into five subfamilies: AP2, RAV, 
ERF, DREB, and ‘‘others’’ (Sakuma et al. 2002). The 
members of the DREB, ERF and other subgroups contain a 
single AP2/ERF domain, such as ZmDBFs, NtERFs, 
AtDREBs, AtCBFs, LePtis, AtEBP and AtERFs (Riechmann et 
al. 2000; Sakuma et al. 2002). However, the RAV subfamily 
(RAV: for Related to ABI3/VP1) includes genes that two 
different conserved cis elements DNA-binding domains, 

Table 2 List of major transcription factor (TF) families and their interactions with cis acting elements involved in  
abiotic stress response 

 

Abiotic stress response TF Families Cis-acting elements Reference 

Dehydration, Salinity, Cold and Low temperature stress MYB MYBR 
Abe et al. 2003; Agarwal et al. 2006; Lippold et al. 2009, Yanhui 

et al. 2006 

Drought, Salinity, Cold and Low temperature stress DREB DRE 
Yamaguchi-Shinozaki and Shinozaki 1994; Gilmour et al. 1998; 

Dubouzet et al. 2003; Song et al. 2005; Lata and Prasad 2011 

Salinity, Osmotic stress, Wounding, Drought, Anoxia 
and Cold 

ERF GCC box Dietz et al. 2010; Zhu et al. 2010 

Drought, Low phosphate stress, Heat and Salt stress WRKY G-box Yamasaki et al. 2005; Guillaumie et al. 2010 

Heat, Drought and Salinity HsF HSE 
Ogawa et al. 2007; Yoshida et al. 2008; Schmidt et al. 2012; Li et 

al. 2013 
Cold, Drought and Salinity AP2/ERF DRE/CRT Gilmour et al. 1998; Haake et al. 2002; Magome et al. 2004 

Drought and cold AREB or ABF ABRE Seki et al. 2002; Niu et al. 2002; Kim 2006; Fujita et al. 2013 
Drought, Salt and Heat CBF CRT Sakuma et al. 2006 
Drought and Salinity NAC NACRS Hu et al. 2006; Mao et al. 2012 
Drought and Salinity DST DBS Huang et al. 2009 

Cold bHLH ICEr1 Chinnusamy et al. 2003 
Cold bHLH E-box Chinnusamy et al. 2003; Feng et al. 2012; Peng et al. 2013 

Drought NAC NACR Tran et al. 2004 
Drought ZFHD rps1 site Tran et al. 2004 
Drought bZIP ABRE Choi et al. 2000; Uno et al. 2000 
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AP2/ERF and B3. B3 DNA binding domain is conserved in 
VP1/ABI3 (Kagaya et al. 1999). 
 

The AP2/ERF transcription factors have several members in 
many plant species of monocots and dicots playing important 
roles in plant development and in the responses of plants to 
biotic and abiotic stresses. The ERF subfamily subfamilies 
contains proteins that can bind to cis-acting elements regulating 
many pathogenesis-related (PR) protein responses to biotic 
stresses (Woo et al. 2010) and regulation of stress tolerance 
proteins involved in response to various abiotic stresses, such 
as high salinity, osmotic stress, injuries, drought, anoxia, and 
cold (Xu et al. 2007; Zhang et al. 2009; Zhu et al. 2010; Zhang 
and Huang 2010; Park et al. 2011), and the enhancement of 
stress tolerance when over expressed (Xu et al. 2007; Zhang 
and Huang 2010). While, the RAV subfamily proteins are 
likely to be involved in some biological processes as they 
coordinate the brassinosteroid biosynthetic and signaling 
pathways, indicating a putative function evolved in higher 
plants. The ERF abundance and activity are also regulated by 
other factors, such as the post-transcriptional modification and 
protein-protein interaction (Licausi et al. 2013). The ERFs 
functions in stress tolerance by regulating the stress-responsive 
genes through interacting with the cis - elements. 
 

DREB1 
 

DREB proteins interact with the DRE/CRT cis-element usually 
present in the promoter of genes, involved in cold, drought, and 
high salinity responses. Transcription factors belonging to the 
DREB subfamily have been extensively studied in several 
plants, such as Arabidopsis, rice, wheat, tomato, and barley 
(Agarwal et al. 2006; Yamaguchi-Shinozaki and Shinozaki 
2006; Dietz et al. 2010;). Based on studies in Arabidopsis, this 
subfamily was further divided in two subclasses, DREB1/CBF 
and DREB2, according to their transcriptional response to 
abiotic stress conditions (Agarwal et al. 2006; Yamaguchi-
Shinozaki and Shinozaki 2006).  
 

The initially identified DREB1/CBF genes, DREB1A, 
DREB1B, and DREB1C were rapidly and transiently induced 
by cold, but not by drought or high salt stress, suggesting that 
in Arabidopsis they may be involved in cold stress responses. 
Contrastingly, DREB2 genes, DREB2A and DREB2B, were 
induced by drought and high salt, but not by cold, indicating a 
putative function in the tolerance to drought and high salt stress 
(Agarwal et al. 2006; Nakashima et al. 2009). The 
identification of new members of the DREB1/CBF subclass, 
DREB1D and DREB1F, which respond to drought and salt 
stress, respectively, may suggest a crosstalk between 
DREB1/CBF and DREB2 pathways in response to those 
abiotic stresses (Sakuma et al. 2002; Nakashima et al. 2009;). 
Most of the DREBs are involved in ABA independent stress 
responses; however, some studies have reported DREBs that 
are responsive to ABA (Yamaguchi-Shinozaki and Shinozaki 
2006). Genetic and molecular approaches have been used in 
combination to characterize a series of DREB family regulatory 
genes involved in many different pathways, including genes 
related to cold, drought, high salinity, heavy metals, and 
abscisic acid (ABA) (Peng et al. 2013). 
 
 
 
 

MYB family 
 

MYB transcription factors are characterized by the presence of 
MYB repeats (R) involved in DNA-binding and protein-protein 
interactions. In plants, MYB proteins can be classified into 
three subfamilies, R-MYB, R2R3-MYB, and R1R2R3-MYB 
(MYB3R) depending on the presence of one, two, or three 
tandems MYB repeats contains 50 to 53 amino acids of each 
subfamily (Feller et al. 2011). 
 

Several members of this family were identified in rice, 
Arabidopsis, maize, and soybean, and shown to be involved in 
a wide variety of cell processes and tolerance to abiotic stresses 
as cell cycle and cell morphogenesis (Feller et al. 2011;), 
freezing tolerance (Agarwal et al. 2006), stomata movements in 
drought (Jung et al. 2008), ABA and auxin signals (Seo et al. 
2009), transcriptional activation of cuticular wax biosynthesis 
in drought resistance (Seo et al. 2011). The number of MYB 
TF subfamilies varies in different crops such as Arabidopsis 
(126), Rice (109), and Poplar (192) and recently identified in 
soybean (252) (Wilkins et al. 2009; Du et al. 2012). Liao et al. 
(2008) reported, in soybean MYB TFs as GmMYB76, 
GmMYB92, and GmMYB177 are induced by several abiotic 
stress conditions and over expression of these TFs improves 
tolerance to salt and freezing in Arabidopsis. In rice, few 
studies reported that MYB TFs regulate a variety of target 
genes and it plays an important role in the regulation of various 
physiological and molecular processes under abiotic stresses. 
The above findings suggest the role of much MYB 
transcription factors in regulating the diversity of target genes 
and thus play a part in the regulation of various physiological 
and molecular processes under the abiotic stresses. 
 

NAC  
 

Plants hold several families of plant-specific transcription 
factors, among NACs constitute one of the largest gene 
families that are ubiquitously distributed in wide range of plant 
species. The NAC TFs derived from three genes that were 
initially discovered to contain a particular domain (the NAC 
domain): NAM (for no apical meristem), ATAF1 and 2, and 
CUC2 (for cup-shaped cotyledon) (Souer et al. 1996; Aida et 
al. 1997). 
 

The number of NAC domains in a plant genome varies greatly 
among plant spices as 151 NAC family members in rice, 117 in 
Arabidopsis, 101 in Soybean, 152 in tobacco, 101 in Soybean, 
79 in grape, 26 in citrus and recently 40 NAC family members 
in tomato have been identified in various crops (Ooka et al. 
2003; Rushton et al. 2008; Fang et al. 2008; Hu et al. 2010; 
Nuruzzaman et al. 2012; Huang et al. 2013) 
 

Many NAC transcription factors have been shown to be 
involved in plant responses to drought and salinity stress and 
also involved in diverse aspects of plant growth and 
development, such as floral morphogenesis (Sablowski and 
Meyerowitz 1998), seed germination (Park et al. 2011), 
embryo and shoot apical meristem development (Hao et al. 
2011), secondary wall formation (Zhong et al. 2011), hormonal 
signaling (Yang et al. 2011). Moreover, enormous research and 
public databases have shown that NACs play critical roles in 
responses to abiotic stresses in plants (Pinheiro et al. 2009). So 
far, a number of abiotic stress-responsive NAC genes have 
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been identified and functionally characterized, such as SNAC1, 
SNAC2, OsNAC9, and OsNAC10 of rice (Hu et al. 2008; 
Redillas et al. 2012), TaNAC2, TaNAC4 , TaNAC8, TaNAC69 
of wheat (Xia et al. 2010;Mao et al. 2012), SlNAC1 of tomato 
(Huang et al. 2013), ANAC019, ANAC055 and ANAC072 of 
Arabidopsis (Tran et al. 2004), and BnNAC of Brassica 
(Hegedus et al. 2003). These NAC genes are considered as 
stress-responsive ones because of their up-regulation by 
various abiotic stresses or the competence of conferring 
enhanced stress tolerance when over expressed in the 
transgenic plants (Mao et al. 2012). 
 

Heat stress transcription factor (HsFs) 
 

The elevation of temperature causes a heat-shock response, 
accompanied by the transcriptional reprogramming of a myriad 
of heat stress-responsive genes. Extensive analysis of the 
promoter regions of these heat stress-responsive genes revealed 
the existence of an important motif called heat shock elements 
(HSE) containing the palindromic consensus sequence, 
(AGAAnnTTCT), a highly conserved element among the genes 
of different systems. Transcription factors binding to the HSE 
are so-called heat stress transcription factor (HsFs), which are 
known to function in the terminal position of the signal 
transduction cascade mediating the responses of heat 
responsive genes (Von Koskull-Doring et al. 2007). 
 

Recent studies of functional genomics analysis has 
demonstrated that some of the HsFs act as the master regulators 
of heat stress-responsive gene expression and play critical roles 
in the basal or acquired thermo tolerance (Yoshida et al. 2008; 
Liu et al. 2009; Li et al. 2013) and the interaction between 
Hsfs, such as HsfA1 with HsfA2, and HsfA5 with HsfA4, 
function in synergy for transcriptional regulation of the target 
genes (Baniwal et al. 2007). Generally the HsFs are not 
specifically induced by heat shock, butalso activated by other 
abiotic stresses, such as high salinity and drought. In addition, 
over expression of the HsF genes has been found to confer 
enhanced tolerance to heat stress and other abiotic stresses 
(Ogawa et al.2007; Schmidt et al. 2012; Li et al. 2013), 
suggesting that the targets of the HsFs may exhibit protective 
roles in a wide range of physiological processes. 
 

Basic/Helix-Loop-Helix (bHLHs) 
 

The basic/helix-loop-helix (bHLH) domain-contains 
approximately 60 amino acids with two functionally distinct 
regions, the N-terminal basic region and the HLH region. The 
basic region, nearly 15 amino acids, functions as a DNA-
binding motif and determines the specificity of the DNA–
protein interactions. The HLH region, adjacent to the basic one, 
contains two amphipathic α-helices connected by a loop region 
of variable length. The amphipathic α-helices of two bHLH 
proteins can interact with each other, suggesting that they are 
implicated in the formation of homo- or heterodimers (Li et al. 
2006). 
 

The bHLH TFs are extensively distributed in eukaryotes but 
found in lesser extent in plants. They play a transcriptional 
regulatory role in the network pathways. The bHLH TFs are 
genes existing as large families in plant genomes. Li et al. 
(2006) and Benedito et al. (2008) reported that 167 bHLH 
genes exist in Arabidopsis and 162 bHLH genes exist in rice 
genomes, respectively. The plant bHLH proteins have been 

functionally characterized during the past decade suggesting 
their diverse roles in the transcriptional regulation of various 
biological processes, such as development (Tominaga-Wada et 
al. 2012), secondary metabolite synthesis (Xie et al. 2012), 
photo induced signal transduction (Huq and Quail 2002), and 
hormone signaling (Nakata et al. 2013). Several other bHLH 
genes involved in drought tolerance, salt tolerance and heavy 
metal detoxification and cold response have also been 
identified in different plants, including Arabidopsis (Lingam et 
al. 2011; Sivitz et al. 2012), Rice (Jiang and Deyholos 2009; 
Seo et al. 2011), Apple (Feng et al. 2012), Banana (Huang et 
al. 2013) and Trifoliate orange (Peng et al. 2013). All these 
findings suggest that the plant bHLH TFs play critical roles in 
the regulation of responses to various abiotic stresses. 
 

Zinc fingers 
 

The zinc-finger proteins play a major role in many cellular 
pathways and are present in all eukaryotic organisms. Zn finger 
TFs have been implicated in distinct pathways, such as nutrient 
homeostasis and root development (Devaiah et al. 2007), 
flower development (Wu et al. 2008), and light and hormonal 
signaling (Feurtado et al. 2011). The C2H2-type Zn finger TFs 
are one of the most abundant Zn finger TFs and have been 
described to be involved in the response of different plants to 
abiotic stress conditions (Sakamoto et al. 2004; Mittler et al. 
2006). These TFs, also referred to as TFIIIA-type finger, are 
characterized by two cystein and two histidine residues that 
bind to a zinc ion to form a structure that binds to the major 
groove of DNA (Pavletich and Pabo 1991). The first of such 
TFs identified in plants was the petunia ZPT2-1, a zinc- finger 
protein TFIIIA type (Takatsuji et al. 1992). In rice, despite the 
high number of genes encoding C2H2-type Zn finger TFs 
(Agarwal et al. 2006), only a few have been functionally 
characterized: Zinc Finger Proteins 182 (ZFP182), ZFP245, 
ZFP252 in drought and salt tolerance (Huang et al. 2009). The 
over expression of the first three of these TFs in rice plants 
yielded similar phenotypes: increased tolerance to abiotic stress 
conditions (Huang et al. 2009) 
 

CONCLUSIONS AND FUTURE PERSPECTIVES 
 

Many physiological traits and stress inducible genes that are 
regulated by abiotic stresses have been reported in different 
crops. The regulation of gene expression and modification of 
the biochemical and physiological components, have revealed 
the presence of multiple signal transduction pathways, between 
the perceptions and signal transduction process of major abiotic 
stresses. The regulation of gene expressions occurs by ABA 
and it plays an important role following two mechanisms: ABA 
dependent and ABA independent.  
 

Molecular analyses of these transcription factors and stress 
inducible genes provide a better understanding of the signal 
transduction cascades during drought, salt and cold stresses. 
The development of transgenic plants that modify the 
expression of these genes and transcription factors will give 
more information about the function of their gene products. 
Recently, many abiotic stress tolerance genes and transcription 
factors have been identified in different crops and when 
transferred into major cereal crops, have showed high level of 
tolerance to abiotic stresses, but the association of 
physiological and molecular mechanism still needs to be 
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understood in signal networking pathways. In conclusion, 
combination of powerful molecular tools, advance genomic 
technologies as transcriptome and proteome analyses, 
comparative sequence analysis, cis-motif and GO annotations 
and functional studies will give more insight into the molecular 
mechanisms and helps to identify regulation of stress 
responsive TF genes in abiotic stresses signaling in plants. 
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