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In classification, the Receiver Operating Characteristics (ROC) curve analysis is one of the most 

familiar techniques and it will provide accuracy for the extent of correct classification of a test. The 

conventional way of expressing the true accuracy of test is by using its summary measure Area 

Under the Curve (AUC) and intrinsic measures Sensitivity and Specificity. Brier Score (B̅) is shown 

as another summary measure in the context of ROC Curve to make the probabilistic judgments as 

well as to identify the extent of classification. Further, the Functional relationship between the Brier 

Score and AUC of ROC Curve is provided using the parameters b (ratio of standard deviations of 

signal and noise) and α (priori probability).The influence of slope on ROC curve is highlighted to 

explain the behavior of Brier Curves and its relationship with AUC. To demonstrate the proposed 

methodology Simulation Study is conducted at different combinations of scale parameters of both 

populations. If parameters b and α are constants, B̅ values in relation to given AUC values if B̅ 

values monotonically decreases as AUC values increases, and these relationship curves have 

monotonically decreasing slopes. An illustrative example is also provided to explain the concepts.  
 
 

 

  
 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 
 

 
  

 
 

 

 

INTRODUCTION  
 

In several situations, physicians are required to express probabilistic judgments in numerical terms, and there is some evidence that 

such judgments have operational meaning to physicians [5]. Thus, it is very important to evaluate these judgments properly. The 

term “Classification” indicates the method of allocating a group of objects or individuals to one of the predefined status of health 

(with condition/without condition or healthy/diseased or alive/dead).  
 

In classification, the Receiver Operating Characteristics (ROC) curve analysis is one of the most familiar techniques and it will 

provide accuracy for the extent of correct classification of a test. The conventional ways expressing the true accuracy of test is by 

using its summary measure Area Under the Curve (AUC) and intrinsic measures Sensitivity and Specificity. Brier Score is shown as 

another summary measure in the context of ROC Curve to make the probabilistic judgments as well as to identify the extent of 

classification.  
 

The present work focuses on establishing a functional relationship between Brier Score and AUC of the ROC Curve using the 

parameters b and α. The influence of slope ROC Curve is highlighted to explain the behavior of Brier Curves and its relationship 

with AUC. The proposed work is supported by simulation studies with different combinations of scale parameters of both 

populations. 
 

Roc methodology 
 

Let x be the test score observed from two populations with (abnormal individuals) and without (normal individuals) condition 

respectively which follow Constant Shape Bi-Weibull distributions. The density functions of Constant Shape Bi-Weibull 

distributions are as follows, 
 

𝑓(𝑥|𝑛) =
𝛽

𝜎𝑛

𝑥𝛽−1𝑒
−[

𝑥𝛽

𝜎𝑛
]
 .                                                                                                                                                                                          (1) 

and                                                       
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𝑓(𝑥|𝑠) =
𝛽

𝜎𝑠

𝑥𝛽−1𝑒
−[

𝑥𝛽

𝜎𝑠
]
 .                                                                                                                                                                                            (2) 

 

Let S be a continuous biomarker. The probabilistic definitions of the measures of ROC Curve are as follows:            
 

Sensitivity(sn) = 𝑃(𝑆|𝑠) = ∫ 𝑓(𝑥|𝑠)𝑑𝑥

∞

𝑡

, 

 

1 − Specificity(sp) = 𝑃(𝑆|𝑛) = ∫ 𝑓(𝑥|𝑛)𝑑𝑥  .

∞

𝑡

 

 

In this context, the (1-Specificity) and Sensitivity can be defined using equations (1) and (2) and are given in equations (3) and (4) 

respectively, 
 

𝑃(𝑆|𝑛) = 𝑥(𝑡) = 𝑒
−[

𝑡𝛽

𝜎𝑛
]
 .                                                                                                                                                                                         (3) 

 

and                                                                  

 𝑃(𝑆|𝑠) = 𝑦(𝑡) = 𝑒
−[

𝑡𝛽

𝜎𝑠
]
.                                                                                                                                                                                            (4) 

 

The ROC Curve is defined as a function of (1-Specificity) with scale parameters of distributions and is given as,      
                           

𝑅𝑂𝐶(𝑡) = 𝑦(𝑡) = 𝑥(𝑡)𝑏 ,                                                                                                                                                                                            (5) 
 

where   𝑡 = −[𝜎𝑛𝑙𝑜𝑔𝑥(𝑡)]
1

𝛽  is the threshold and  𝑏 =
𝜎𝑛

𝜎𝑠
 

 

The accuracy of a diagnostic test can be explained using the Area Under the Curve (AUC) of an ROC Curve.AUC describes the 

ability of the test to discriminate between abnormal and normal populations. A natural measure of the performance of the classifier 

producing the curve is AUC. This will range from 0.5 for a random classifier to 1 for a perfect classifier. The AUC is defined as, 
 

𝐴𝑈𝐶 = ∫ 𝑥(𝑡)𝑏𝑑𝑥(𝑡)

1

0

.                                                                                                                                                                                                (6) 

The closed form of AUC is as follows              

𝐴𝑈𝐶 =
1

1 + 𝑏
.                                                                                                                                                                                                               (7) 

 

Slope of the ROC Curve 
 

The slope of an ROC Curve can be defined in three ways [1]: first, as the tangent at a particular point on the ROC Curve 

corresponding to a test value x, (That is tangent(x)); Second, the slope between origin 0 (That is point (0,0)) and the point on the 

ROC Curve corresponding to the a test value (That is slope(0-x)); and Third, the slope between two points on the ROC Curve 

corresponding to the test values x and y (That is slope(x-y)).  
 

First, the tangent at a point x on the ROC Curve, That is, tangent(x) corresponds to the likelihood ratio (LR) for a single test value 

corresponding to that point on the ROC Curve for a continuous test, That is, LR(x).Here, the LR is defined as the ratio between the 

probability of a defined test result given the presence of condition and the probability of the same result given the absence of 

condition [8]. If a test generates results on a continuous scale, then a likelihood ratio can theoretically be defined for each test value 

x as 

 

L(x) =
Probability density function of continuous test in variable x as f(x|s) in the presence of condition

Probability density function of continuous test in variable x as f(x|n) in the absence of condition
 

 

That is              𝐿(𝑥) =
𝑓(𝑥|𝑠)

𝑓(𝑥|𝑛)
.                                                                                                                                                                               (8) 

 

 

Now, using equations (1) and (2), the slope of ROC Curve which is called as likelihood ratio can be defined as follows 
 

 
𝑓(𝑥|𝑠)

𝑓(𝑥|𝑛)
=

𝑑𝑃(𝑆|𝑠)

𝑑𝑃(𝑆|𝑛)
= 𝑏𝑒𝑥𝑝 ([

𝑡𝛽

𝜎𝑛
] − [

𝑡𝛽

𝜎𝑠
]) .                                                                                                                          (9)  

 

The inverse slope of ROC Curve is defined as   
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𝑓(𝑥|𝑛)

𝑓(𝑥|𝑠)
=

𝑑𝑃(𝑆|𝑛)

𝑑𝑃(𝑆|𝑠)
=

1

𝑏
𝑒𝑥𝑝 ([

𝑡𝛽

𝜎𝑠
] − [

𝑡𝛽

𝜎𝑛
]) .                                                                                                       (10) 

 

Brier Score 
 

It is a well known evaluation measure for probabilistic classifiers and is proposed by Brier in 1950. In literature, procedures for 

calibrating classifiers have been proposed in different contexts such as Weather Prediction Tasks [2], Game Theory [3].  
 

Further, Brier Score was considered in the context of signal Detection Theory by assuming that the calibration in the observers 

probability estimate is perfect and provided the theoretical relationship between Brier Score and Area Under the Binormal ROC 

Curve [4]. So Functional relationship between Brier Score and Area Under the ROC Curve was discussed in the Context of Skewed 

Distributions [9].  
 

Now consider a set of M signal detection tasks with αM signal events and (1-α) M non-signal events (0≤α≤1) and αM, (1-α)M and α 

denote a priori probability of signal events. 
 

Let   yi = 0 if the event is non-signal  

            yi = 1 if the event is signal.  
 

Let   𝑝𝑖  denote the observers (or subject’s) probability estimate that the 𝑖𝑡ℎ event will be the signal one, where the subscript i 

indicates the individual event [6] and the Brier Score (𝐵̅) can be defined as [7] using the expression   
 

 
 

where  𝑝𝑖  is a function of 𝑥𝑖 and is defined using Bayes theorem as follows,  
 

𝑝𝑖 = 𝑝(𝑥𝑖) = 𝑃𝑟(𝑆|𝑥𝑖) =
𝛼𝑓(𝑥𝑖|𝑠)

𝛼𝑓(𝑥𝑖|𝑠) + (1 − 𝛼)𝑓(𝑥𝑖|𝑛)
 .                                                                                                                                  (12) 

 
 

Now, we consider the expected value of (𝑦𝑖 − 𝑝𝑖)2 in the equation (11), when the calibration in the observers probability estimate is 

perfect. In this case, 𝑝𝑖  in the equation (11) is obtained by equation (12) from the Bayes theorem. Therefore, expected value of 

(𝑦𝑖 − 𝑝𝑖)2is given as 
  

𝐸[(𝑦𝑖 − 𝑝𝑖)2] = ∫(1 − 𝑝(𝑥))
2

𝛼𝑓(𝑥|𝑠)𝑑𝑥 + ∫ 𝑝(𝑥)2(1 − 𝛼)𝑓(𝑥|𝑛)𝑑𝑥

∞

−∞

∞

−∞

 

 

On simplification, we get, 
 

𝐸[(𝑦𝑖 − 𝑝𝑖)2] = ∫
𝛼(1 − 𝛼)𝑓(𝑥|𝑛)𝑓(𝑥|𝑠)

(1 − 𝛼)𝑓(𝑥|𝑛) + 𝛼𝑓(𝑥|𝑠)
𝑑𝑥

∞

−∞

. 

 

Further, we assume that the convergence in probability of  𝐵̅ given by the law of large numbers as M tends to infinity is the Brier 

score. Make the assumption that the calibration in the observer’s probability estimate is perfect. That is, Expected Brier Score is 

equal to 𝐵̅.   
 

Therefore, [4] considered the Brier Score in the context of Signal Detection Theory by assuming the calibration in the observers 

probability estimate is perfect and provided the theoretical relationship between Brier Score and AUC. Therefore, Brier Score can 

be defined in the context of ROC Curve analysis as, 

𝐵̅ = ∫
𝛼(1 − 𝛼)𝑓(𝑥|𝑠)

(1 − 𝛼) + 𝛼
𝑓(𝑥|𝑠)
𝑓(𝑥|𝑛)

𝑑𝑥

∞

−∞

.       (with slope of the ROC Curve)                                                                                                            (13) 

or                      

𝐵̅

= ∫
𝛼(1 − 𝛼)𝑓(𝑥|𝑛)

𝛼 + (1 − 𝛼)
𝑓(𝑥|𝑛)
𝑓(𝑥|𝑠)

𝑑𝑥 

∞

−∞

.   (with inverse slope of the ROC Curve)                                                                                                (14) 

 

Functional Relationship between AUC and Brier Score 
 

Now we can describe 𝐵̅ and AUC as the function of b and α as 
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𝐵̅ = ∫
𝛼(1 − 𝛼) 

(1 − 𝛼) + 𝛼
𝑑𝑃(𝑥|𝑠)
𝑑𝑃(𝑥|𝑛)

𝑑𝑃(𝑆|𝑠)

∞

−∞

   .    (with slope of the ROC Curve)                                                                                              (15) 

or                         

𝐵̅

= ∫
𝛼(1 − 𝛼)

𝛼 + (1 − 𝛼)
𝑑𝑃(𝑥|𝑛)
𝑑𝑃(𝑥|𝑠)

∞

−∞

𝑑𝑃(𝑆|𝑛)  .  (with inverse slope of the ROC Curve)                                                                                   (16) 

 

Therefore, the Brier Score can be defined as the function of likelihood ratio under a Bayesian set up. Now on substituting equation 

(10) in equation (16), the expression for 𝐵̅ as a function of b and α in the context of ROC Curve is follows, 

 

𝐵̅ =  ∫
𝛼(1 − 𝛼)

𝛼 + (1 − 𝛼) [
1
𝑏

𝑒𝑥𝑝 {[
𝑡𝛽

𝜎𝑠
] − [

𝑡𝛽

𝜎𝑛
]}]

1

0

𝑑𝑡 .                                                                                                                                                 (17) 

 

Now by substituting the threshold ‘t’ value in the above equation (17) and on further simplification, the Brier Score (𝐵̅) expression 

which is a function of b and α reduces to 

 

𝐵̅ = ∫
𝛼(1 − 𝛼)

𝛼 + (1 − 𝛼) [
1
𝑏

𝑒𝑥𝑝 {[
−[𝜎𝑛𝑙𝑜𝑔𝑥(𝑡)]

1
𝛽

𝜎𝑠
]

𝛽

− [
−[𝜎𝑛𝑙𝑜𝑔𝑥(𝑡)]

1
𝛽

𝜎𝑛
]

𝛽

}]

1

0

𝑑𝑥(𝑡) . 

             

 

Therefore   

                       

𝐵̅ = ∫
𝛼(1 − 𝛼)

𝛼 + (1 − 𝛼) [
1
𝑏

𝑒𝑥𝑝 {(1 − 𝑏) [[𝑙𝑜𝑔𝑥(𝑡)]
1
𝛽]

𝛽

}]

1

0

𝑑𝑥(𝑡) .                                                                                                                        (18) 

 

 

Therefore, the theoretical relationship between 𝐵̅ and AUC of ROC Curve can be described by equation (18) and equation (7) using 

the two parameters b and α. The above expression (18) does not have a closed form and has to be evaluated using numerical 

integration methods. 
 

Simulation Study 
 

Simulation study is conducted to demonstrate how the proposed methodology works in a simulated environment for explaining the 

behavior of ROC Curve in terms of Brier Score. b, which is the ratio of scale parameters of Constant Shape Bi-Weibull distributions 

is considered between the range 0 and 1 with an increment of 0.1, since as b varies between zero and one. The ROC Curve 

possesses different shapes. Further Table 1 depicts the average Brier Scores by varying b values between zero and one with fixed 

values α={0.1 to 0.99} with an increment of 0.1.  

 

 

 

 

 

 

 

 

 

 

 
 

From above Table 1, when b>1, the ROC Curve lies below the chance line which indicates less accuracy and possibly the test 

scores of both populations are completely overlapped.  
  

Further, the α priori probability is partitioned into two sets, one set between 0.1 and 0.5 the other 0.6 and 0.99. This is established to 

show that how the Brier Score behaves with increment and decrement pattern as b changes. This means that the Brier Score values 

Table 1 Average Brier Score for different values of b with fixed α 
 

b AUC α=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99 

0.1 0.9090 0.0118 0.0232 0.0339 0.0438 0.0525 0.0592 0.0629 0.0611 0.0475 0.0080 

0.2 0.8333 0.0224 0.0433 0.0620 0.0781 0.0906 0.0982 0.0987 0.885 0.0606 0.0083 
0.3 0.7692 0.0320 0.0607 0.0856 0.1057 0.1197 0.1260 0.1221 0.1043 0.0669 0.0084 

0.4 0.7142 0.0406 0.0761 0.1057 0.1284 0.1426 0.1468 0.1385 0.1145 0.0705 0.0084 

0.5 0.6667 0.0484 0.0897 0.1231 0.1473 0.1611 0.1629 0.1506 0.1216 0.0728 0.0085 
0.6 0.6250 0.0554 0.1018 0.1381 0.1634 0.1764 0.1758 0.1599 0.1269 0.0745 0.0085 

0.7 0.5882 0.0619 0.1125 0.1512 0.1771 0.1891 0.1862 0.1672 0.1309 0.0757 0.0085 

0.8 0.5555 0.0677 0.1222 0.1628 0.1888 0.1997 0.1948 0.1731 0.1341 0.0766 0.0085 
0.9 0.5263 0.0731 0.1308 0.1729 0.1991 0.2088 0.2019 0.178 0.1366 0.0774 0.0085 

1 0.5000 0.078 0.1386 0.182 0.208 0.2166 0.208 0.182 0.1386 0.078 0.0085 
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are found to be increasing as a priori probability α increases from 0.1 to 0.5 and then Brier Score is found to be decreasing as α 

increases from 0.6 to 0.99.  
 

Thus, a priori probability α should posses a lesser value to explain the extent of correct classification. It is noticed that at α=0.5 with 

b=1, the Brier Score is found to 0.2166 and its corresponding AUC is 0.5.  
 

Similarly, when at α=0.5 with b=0.1, the Brier Score is found to 0.0525 and its corresponding AUC is 0.909091, this reflects the 

meaning that the Brier Score is found to be similar to AUC of ROC Curve, where AUC approaches to one then  𝐵̅ approaches zero 

and vice versa. Not only at α=0.5, but also at all values, the Brier Score and AUC values are observed to be inversely related to each 

other. 
 

Further, the graphical plots are made in two ways, first to the effect of b on the behavior of Brier Scores at α={0.1 to 0.5} and 

α={0.6 to 0.99}. The first case is figured displayed in Figures (1) and (2) and the later one in Figures (3) and (4) respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

From Figures (1) and (2), it is visualized that as b increases from 0.1 to 1, Brier Curve moves towards the top right corner of the 

plot and if α increases from 0.1 to 0.5 then the curve approaches the top left corner of the plot. This is because of the influence of 

slope on HROC Curve, when the ratio b increases, the slope of HROC Curve will decrease.  
 

Therefore, the decreased values of slope will influence the Brier Score to attain a larger value, since the expression for Brier Score 

involve the slope in its denominator.  
 

Further Figures (3) and (4) show the one to one functional and relationship between 𝐵̅ and AUC using the parameters b and α. As it 

is shown in the methodology that the entire behavior of ROC Curve depends on the ratio b. As b varies between zero and one the 

ROC curve gets different shapes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 1 Effect of b in Brier Curves at fixed value of α={0.1 to 0.5} Fig. 2 Effect of b in Brier Curves at fixed value of  α={0.6 to 0.99} 
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Fig.3 Relationship between Brier Score and AUC  as b varies with 

fixed value of α={0.1 to 0.5} 

Fig.4 Relationship between Brier Score and AUC as b varies with fixed 

value of α={0.5 to 0.99} 
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From Figures (3) and (4), it is clearly seen that as AUC increases, the Brier Curve decreases with less accuracy at different values of 

α. Which means that as b varies between zero and one the AUC increases with decreasing values of Brier Score. As it is shown that 

when b decreases, the corresponding slope increases there by this increased slope will in turn gives rise to decreased values for the 

Brier Score, since slope lies in the denominator of the expression for Brier Score. 
 

From Figure 3, it can be seen that when α=0.1, the Brier Curve is seen to be lower than the other values of α. Higher the value of α 

then the curve placed above  all other values of α. Figure 4, it is seen that when α=0.6 the corresponding Brier Curve is found to be 

above all other values of α and as higher the value of α=0.99, the corresponding Brier Curve is below other curves. 
 

From these experiments, it is observed that the Brie Score attains a maximum value at α=0.5 and α=0.6 and it increase till α=0.4 and 

then decreasing pattern after α=0.6. 
 

Illustration 
 

The Lung Cancer data was extracted from North Central Cancer Treatment Group [NCCTG] [10]. This data set contains 228 

patients and censored subjects are 47 and died cases are 132. The Comparison of four parameters namely, Time, Sex, Karnofsky 

performance score rated by physician and Karnofsky performance score as rated by patient are considered for diagnosis using the 

Statistical methods AUC and Brier Score. Statistical prediction tools are same, but there is considerable disagreement about how 

they should be evaluated. These tools have been proposed for the status in patients with clinically localized prostate Lung cancer 

who are candidates for a radical prostatectomy. We evaluated four variables for status in Lung cancer patients. 
 

Results and limitations: Traditional statistical methods (that is, ROC plots and Brier scores) could clearly determine which one of 

the variable tools should be preferred. The independent validation cohort consisting of 228 patients treated surgically for clinically 

localized Lung cancer at North Central Cancer Treatment Group. 
 

Table 2 shows the characteristics of the study cohort (N=228). The patients’ characteristics are   

 

 

 

 

 

 

Here larger values of the test result variables indicate the stronger evidence for a positive actual state. Here positive is censored and 

Negative is dead. 
 

Table 3 shows statistics for each variable. The Karnofsky performance score as rated by patient had the highest area under the curve 

(AUC): 0.630 versus 0.625 for sex and 0.623 for Time, and 0.606 for Karnofsky performance score rated by physician. The Sex had 

Brier Score 0.225 and it  had better Brier score than the Time (0.106), Karnofsky performance score as rated by patient(0.121), 

Karnofsky performance score rated by physician  (0.078). No calibration plot could be provided for sex because it only provides 

binary results.  

 

 

 

 

 

 

 
 

 

It is observed that when predicting status, surgeons should prefer the Karnofsky performance score as rated by patient over the 

Time, the Sex and the, Karnofsky performance score rated by physician because this variable provided the highest net benefit and 

more accuracy. In contrast to traditional statistical methods, decision curve analysis gave an unambiguous result applicable to both 

continuous and binary models, providing an insight into clinical utility. 
 

CONCLUSION 
 

The present work is carried out to establish a functional relationship between Brier Score and the Area under the ROC Curve .The 

entire relation depends on the ration b. As b attains smaller and larger values, the AUC and Brier Scores attain different set of 

values with smaller and larger values. If b>1, then the corresponding ROC Curve lies below the chance line explaining less 

accuracy and possibility that both populations are overlapped. The varying values of AUC and Brier Score not only depend on b but 

also on a priori probability α. From the results obtained, it is observed that as the parameter α is varied, a one to one relationship 

between Brier Score and AUC and the Brier Scores are observed and is used to explain the accuracy of the test. Therefore, the Brier 

Table 2 Case Processing Summary 
Status Valid N (list wise) 

Positive 47 

Negative 132 

Missing 49 

 

Table 3 Evaluation of the prediction models using AUC and Brier Score 
 

Variable AUC Brier Score 

Time 0.623 0.106 

Sex 0.625 0.225 

Karnofsky performance score rated by physician 0.606 0.121 
Karnofsky performance score as rated by patient 0.630 0.078 

AUC=Area Under the Curve 
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Score is used to assess the performance of a test as similar to AUC in binary classification. The functional relationship is established 

by the constant shape Bi-Weibull distribution. Here, the definition of Brier score does not require the assumption of underlying 

distribution. Therefore, this can be applied to any other parametric ROC model. However, it should be noted that the relationship 

between Brier Score and AUC derived is valid only under the assumption that the calibration in the observer’s probability estimate 

is strong. 
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