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ARTICLE INFO ABSTRACT

denote the class of functions which are analytic, normalized and univalent in the open disc= : | | < 1 . The important subclasses of are starlike and convex functions which are
denoted by ∗( ) and ( ). This paper focuses on attaining sharp upper bounds for the functional| − | for univalent functions.

INTRODUCTION
Let A denote the class of normalized, analytic and univalent function of the form= + ∑∞ where ∈ = : | | < 1 (1.1)

The Hankel determinant for ≥ 1 and ≥ 0 is stated by Noonan and Thomas as

( ) =
. .. . . .				∶ 		∶ . . . . . .. . . . :. . . . :: : 		. .: : 		. .. . . . . . . . :. . . . :. . . .

This determinant also been considered by several authors. In particular, sharp bounds on (2) were obtained by the authors of
articles [2], [3], [4], [8] for different classes.

In particular, = 1, = 1, = 1	and = 2, = 2 the Hankel determinant simplifies respectively to (1) and (2), both are
second Hankel determinant. Here (1) also called as Fekete and Szego functional.

These are simplifies respectively as 1 = | − |,			 2 = | − |.
In this paper we consider 2 = that is 2 = | − | . We have to obtain upper bound for the functional	| − |	 for functions belonging to the following classes.

Definition (1.1)

A function ( ) ∈ is said to be starlike of complex order 		( Ȼ/ 0 	), that is ∈ ∗( ) if it satisfies the inequality
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1 + ′( )( ) − 1 > 0																															( ∈ , Ȼ/ 0 ) (1.2)

The choice of = 1 yields 	 ′( )( ) > 0, the class of starlike functions ∗.

Definition (1.2)

A function ( ) ∈ is said to be convex of complex order 		( Ȼ/ 0 	), that is ∈ ( ) if it satisfies the inequality1 + ′′( )
′( ) > 0																															( ∈ , Ȼ/ 0 ) (1.3)

The choice of = 1 yields 	 1 + ′′( )
′( ) > 0, the class of convex functions	 .

Preliminary Results

Let be the family of all functions analytic in for which ( ) > 0 and= 1+ + + …….. (2.1)

For ∈ .
Lemma (2.1): [5] If ∈ then | | ≤ 2 for each ∈ .

Lemma (2.2): ([6], [7]) Let ∈ then 2 = + (4 − ) (2.2)

And4 = + 2 4 − − 4 − + 2 4 − 1 − | | (2.3)

For some values of , such that, | | ≤ 1	&	| | ≤ 1.
Theorem (2.1): [1] Let ∈ ∗. Then | − | ≤ 1.
The result obtained is sharp.

Theorem (2.1): [1] Let ∈ . Then | − | ≤ .
The result obtained is sharp.

Main Results

Theorem (3.1): Let ∈ ∗( ). Then | − | ≤ γ( γ)
The result obtained is sharp.

Proof: ∈ ∗( ) then ∃	 ∈ 	such that ′ = ( ) (3.1)

for some ∈ . Equating the coefficients in (3.1) yields= 2 −= 3 − + 2 − (3 − )= + ( )( ) + ( ) (3.2)

From (3.2), it is easily established that,

| − | = γc c2 − γ (4 − γ) − γ c(3 − γ) − γ c c 4 + 2γ − γ + c (4γ − 23γ + 31)2 − γ 3 − γ (4 − γ)
Substituting for and from (2.1) and (2.2) and since | | ≤ 2 by lemma (2.1), = and assume without restriction	 ∈ 0,2 .
We obtain,

| − | = γ c + 2c 4 − c x − c 4 − c x + 2c 4 − c 1 − |x| z4 2 − γ (4 − γ) − γ c + x 4 − c2 3 − γ− γ c (4 + 2γ − γ )2 − γ 3 − γ (4 − γ) − γ c c + c x 4 − c 4γ − 23γ + 312 2 − γ 3 − γ (4 − γ)
Using triangle inequality,
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| − | ≤ γ c + 2c 4 − c ρ + 2c 4 − c + c 4 − c (c − 2)ρ4 2 − γ (4 − γ) + γ (c + 4 − c ρ + 2c 4 − c ρ)2(3 − γ)+ γ c (4 + 2γ − γ )2 − γ 3 − γ (4 − γ) + c + c 4 − c ρ 4γ − 23γ + 312 2 − γ 3 − γ (4 − γ)	| − | = F(ρ) (3.4)

With = | | ≤ 1. Furthermore,

′ = 4 − + 4 − ( − 2)2 2 − (4 − ) + ( 4 − + (4 − )(3 − ) + ( (4 − )(4 − 23γ + 31)2 2 − γ 3 − γ (4 − γ)
and with elementary calculus , we can show that ′ > 0 for > 0, implying that is an increasing function and thus the upper
bound for (3.4) correspond to = 1 and = 0 gives,| − | ≤ γ( γ) . This completes the proof.

For	 = 0, | − | ≤ 0	which is ≤ 1, the result sharp obtained by Aini Janteng [1].

Theorem (3.2): Let ∈ ( ). Then | − | ≤ γ

The result is obtained sharp.

Proof: ∈ ( ) then ∃	 ∈ such that

′ + ′′ = ′ ( ) (3.5)

for some ∈ . Equating the coefficients in (3.5) yields= 2= ( + )6= ( )
(3.6)

From (3.6), it is easily established that,| − | = c γ (2c + c γ + γc c 2 + γ )48 − γ (c + 2c c + c )36
Substituting for and from (2.1) and (2.2) and since | | ≤ 2 by lemma (2.1), = and assume without restriction	 ∈ 0,2 .
We obtain,| − | = γ c c + 2 4 − c cx − c 4 − c x + 2 4 − c 1 − |x| z96 + γ c (3γ − 4)144 + γ c + x(4 − c )144+ γ c 3c 2 + γ − 8 (c + x 4 − c )288
Using triangle inequality,| − | ≤ γ ρ ( )ρ + γ ( γ ) + γ ρ ρ + γ γ ( ρ)
(3.7)| − | = F ρ with = | | ≤ 1
Furthermore ′ = ( ) + ( ) + ( )
And with elementary calculus, we can show that ′ > 0 for > 0, implying that is an increasing function and thus the upper
bound for (3.6) correspond to = 1 and = 0 gives,| − | ≤ γ9
For	 = 1, | − | ≤ 	which is ≤ ,  the result sharp obtained by Aini Janteng [1].
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