

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 7, Issue, 12, pp. 14725-14728, December, 2016 International Journal of Recent Scientific Research

(1.1)

Research Article

ON SECOND HANKEL DETERMINANT FOR STARLIKE AND CONVEX FUNCTIONS

Amruta Patil¹., Khairnar, S. M² and Ahirrao B. R³

¹Department of Mathematics, AISSMS, Institute of Information Technology, Shivajinagar, Pune – 411 001 ²Department of Applied Sciences, MIT Academy of Engineering, Alandi – 412 105, Pune (M. S.), India ³Department of Mathematics, Z. B. Patil College, Dhule – 424002

ARTICLE INFO

ABSTRACT

Article History:

Received 05th September, 2016 Received in revised form 08th October, 2016 Accepted 10th November, 2016 Published online 28st December, 2016

Key Words:

Univalent functions, Starlike functions, Convex functions, Hankel Determinant. A denote the class of functions which are analytic, normalized and univalent in the open disc D = z : |z| < 1. The important subclasses of A are starlike and convex functions which are denoted by $S^*(\gamma)$ and $C(\gamma)$. This paper focuses on attaining sharp upper bounds for the functional $|a_2a_4 - a_3^2|$ for univalent functions.

Copyright © **Amruta Patil** *et al.*, **2016**, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Let A denote the class of normalized, analytic and univalent function of the form

 $f z = z + \sum_{k=2} a_k z^k \qquad \text{where } z \in D = |z| < 1$

The q^{tn} Hankel determinant for $q \ge 1$ and $n \ge 0$ is stated by Noonan and Thomas as

	a_n	a_{n+1}				a_{n+q+1}
$H_q(n) =$	a_{n+1}					:
	:	:				:
	:	:				:
	:	:				:
	a_{n+q-1}	(••	••	••	••	a_{n+2q-2}

This determinant also been considered by several authors. In particular, sharp bounds on $H_2(2)$ were obtained by the authors of articles [2], [3], [4], [8] for different classes.

In particular, q = 1, n = 1, $a_1 = 1$ and q = 2, n = 2 the Hankel determinant simplifies respectively to $H_2(1)$ and $H_2(2)$, both are second Hankel determinant. Here $H_2(1)$ also called as Fekete and Szego functional.

These are simplifies respectively as $H_2 = |a_3 - a_2|$, $H_2 = |a_2a_4 - a_3|$. In this paper we consider $H_2 = \begin{vmatrix} a_2 & a_3 \\ a_3 & a_4 \end{vmatrix}$ that is $H_2 = |a_2a_4 - a_3|$. We have to obtain upper bound for the functional $|a_2a_4 - a_3|$ for functions belonging to the following classes.

Definition (1.1)

A function $f(z) \in A$ is said to be starlike of complex order γ ($\gamma \in C/0$), that is $f \in S^*(\gamma)$ if it satisfies the inequality

$$Re \ 1 + \frac{1}{\gamma} \ \frac{zf(z)}{f(z)} - 1 \ > 0 \qquad (z \in D, \gamma \in \mathcal{C}/\ 0 \)$$
(1.2)

The choice of $\gamma = 1$ yields $Re \frac{zf(z)}{f(z)} > 0$, $z \in D$ the class of starlike functions S^* .

Definition (1.2)

A function $f(z) \in A$ is said to be convex of complex order γ ($\gamma \in C/0$), that is $f \in C(\gamma)$ if it satisfies the inequality

$$Re \ 1 + \frac{1}{\gamma} \frac{zf(z)}{f(z)} > 0 \qquad (z \in D, \gamma \in \mathcal{C}/0)$$

$$(1.3)$$

The choice of $\gamma = 1$ yields $Re \ 1 + \frac{2f(z)}{f(z)} > 0$, $z \in D$ the class of convex functions C.

Preliminary Results

Let M be the family of all functions p analytic in D for which Re p(z) > 0 and

$$p z = 1 + c_1 z + c_2 z^2 + \dots$$
(2.1)

For
$$z \in D$$
.

Lemma (2.1): [5] If $p \in M$ then $|c_k| \le 2$ for each $k \in N$.

Lemma (2.2): ([6], [7]) Let
$$p \in M$$
 then $2c_2 = c_1^2 + x(4 - c_1^2)$ (2.2)

And

 $4c_3 = c_1^3 + 2 4 - c_1^2 c_1 x - c_1 4 - c_1^2 x^2 + 2 4 - c_1^2 1 - |x|^2 z$

For some values of x, z such that, $|x| \le 1 \& |z| \le 1$. Theorem (2.1): [1] Let $f \in S^*$. Then $|a_2a_4 - a_3^2| \le 1$. The result obtained is sharp.

Theorem (2.1): [1] Let $f \in C$. Then $|a_2a_4 - a_3^2| \le \frac{1}{8}$.

The result obtained is sharp.

Main Results

Theorem (3.1): Let $f \in S^*(\gamma)$. Then $|a_2a_4 - a_3^2| \le \frac{8^2}{(3-\gamma)^2}$

The result obtained is sharp.

Proof: $f \in S^*(\gamma)$ then $\exists p \in M$ such that $zf = \gamma f z p(z)$

for some $z \in D$. Equating the coefficients in (3.1) yields

$$a_{2} = \frac{\gamma c_{1}}{2 - \gamma}$$

$$a_{3} = \frac{\gamma c_{2}}{3 - \gamma} + \frac{\gamma^{2} c_{1}^{2}}{2 - \gamma (3 - \gamma)}$$

$$a_{4} = \frac{\gamma c_{3}}{4 - \gamma} + \frac{\gamma^{2} c_{1} c_{2} (5 - 2\gamma)}{2 - \gamma (3 - \gamma)} + \frac{\gamma^{2} c_{1}^{3}}{2 - \gamma (3 - \gamma) (4 - \gamma)}$$
(3.2)

From (3.2), it is easily established that,

$$|a_2a_4 - a_3^2| = \frac{c_1c_3}{2 - (4 -)} - \frac{^2c_2^2}{(3 -)^2} - \frac{^3c_1^2 c_1^2 4 + 2 - ^2 + c_2(4^2 - 23 + 31)}{2 - ^2 3 - ^2(4 -)}$$

Substituting for c_2 and c_3 from (2.1) and (2.2) and since $|c_1| \le 2$ by lemma (2.1), $c_1 = c$ and assume without restriction $c \in 0, 2$. We obtain,

$$|a_{2}a_{4} - a_{3}^{2}| = \frac{c^{4} + 2c^{2} 4 - c^{2} x - c^{2} 4 - c^{2} x^{2} + 2c 4 - c^{2} 1 - |x|^{2} z}{4 2 - (4 -)} - \frac{2 c^{2} + x 4 - c^{2}}{2 3 - 2} - \frac{3c^{4}(4 + 2 - 2)}{2 3 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - c^{2} 4 - 2}{2 2 - 2 3 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - c^{2} 4 - 2}{2 2 - 2 3 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 2 - 2 3 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 2 - 2 3 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 2 - 2 3 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 2 - 2 3 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 2 - 2 3 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 2 - 2 3 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 2 - 2 3 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 2 - 2 3 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 2 - 2 3 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 2 - 2 3 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 2 - 2 3 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 2 - 2 2 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 - 2 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 - 2 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 - 2} - \frac{3c^{2} c^{4} + c^{2} x 4 - 2}{2 - 2} - \frac{3c^{2} c^{4} + c^{2} + 2}{2 - 2} - \frac{3c^{2} c^{4} + c^{2} + 2}{2 - 2} - \frac{3c^{2} c^{4} + c^{2} + 2}{2 - 2} - \frac{3c^{2} c^{4} + c^{2} + 2}{2 - 2} - \frac{3c^{2} c^{4} + c^{2} + 2}{2 - 2} - \frac{3c^{2} c^{4} + c^{2} + 2}{2 - 2} - \frac{3c^{2} c^{4} + c^{2} + 2}{2 - 2} - \frac{3c^{2} c^{4} + 2}{2 - 2} - \frac{3c^{2} c^{4} + c^{2} + 2}{2 - 2} - \frac{3c^{2} c^{4} + 2}{2 - 2} - \frac{3c^{2} c^{4} + 2}{2 - 2} - \frac{3c^{2} c^{4} + c^{2} + 2}{2 - 2} - \frac{3c^{2} c^{4} + 2}{2 - 2} - \frac{3c$$

Using triangle inequality,

(2.3)

(3.1)

$$|a_{2}a_{4} - a_{3}^{2}| = \frac{c^{4} + 2c^{2} 4 - c^{2} + 2c 4 - c^{2} + c 4 - c^{2} (c - 2)^{2}}{4 2 - (4 -)} + \frac{2(c^{4} + 4 - c^{2} 2 + 2c^{2} 4 - c^{2})}{2(3 -)^{2}} + \frac{3c^{4}(4 + 2 - 2)}{2 - 2 3 - 2(4 -)} + \frac{\gamma^{3}c^{2} c^{4} + c^{2} 4 - c^{2} + 2c^{2} 4 - 2}{2 2 - 2 3 - 2(4 -)}$$

$$|a_{2}a_{4} - a_{3}^{2}| = F()$$

$$(3.4)$$

With p = |x| 1. Furthermore,

$$F \rho = \frac{\gamma c^2 4 - c^2 + c 4 - c^2 (c - 2)\rho}{2 2 - \gamma (4 - \gamma)} + \frac{\gamma^2 (4 - c^2 2\rho + c^2(4 - c^2))}{(3 - \gamma)} + \frac{\gamma^3 c^2 (c^2(4 - c^2)(4\gamma^2 - 23 + 31))}{2 2 - 2 3 - 2 (4 - \gamma)}$$

and with elementary calculus, we can show that $F \rho > 0$ for $\rho > 0$, implying that F is an increasing function and thus the upper bound for (3.4) correspond to $\rho = 1$ and c = 0 gives,

 $|a_2a_4 - a_3^2| = \frac{8^2}{(3-)^2}$. This completes the proof.

For $\gamma = 0$, $|a_2a_4 - a_3^2| = 0$ which is 1, the result sharp obtained by Aini Janteng [1].

Theorem (3.2): Let
$$f = C(\gamma)$$
. Then $|a_2a_4 - a_3^2| = \frac{2}{9}$

The result is obtained sharp.

Proof: f C(y) then p M such that

$$\gamma f z + z f z = \gamma f z p(z)$$

for some z = D. Equating the coefficients in (3.5) yields

$$a_{2} = \frac{c_{1}\gamma}{2}$$

$$a_{3} = \frac{\gamma(c_{1}^{2} + c_{2})}{6}$$

$$a_{4} = \frac{\gamma(2c_{3}+2c_{1}c_{2}\gamma + c_{1}-c_{1}^{2} + c_{2}-\gamma^{2})}{24}$$
(3.6)

From (3.6), it is easily established that,

$$|a_2a_4 - a_3^2| = \frac{c_1^2(2c_3 + c_1^3 + c_1c_2 + c_1^2)}{48} - \frac{2(c_1^4 + 2c_1c_2 + c_2^2)}{36}$$

Substituting for c_2 and c_3 from (2.1) and (2.2) and since $|c_1| = 2$ by lemma (2.1), $c_1 = c$ and assume without restriction c = 0, 2. We obtain,

$$|a_{2}a_{4} - a_{3}^{2}| = \frac{{}^{2}c \ c^{3} + 2 \ 4 - c^{2} \ cx - c \ 4 - c^{2} \ x^{2} + 2 \ 4 - c^{2} \ 1 - |x|^{2} \ z}{96} + \frac{{}^{2}c^{4}(3 \ ^{2} - 4)}{144} + \frac{{}^{2}c^{2} + x(4 - c^{2})^{2}}{144} + \frac{{}^{2}c^{2} + x(4 - c^{2})^{2}}{144}$$

Using triangle inequality,

2

$$\begin{aligned} |a_2a_4 - a_3^2| & \frac{2c^4 + 2c^2 + c^2 + 2c + 4 - c^2 + c + 4 - c^2 + (c - 2)^2}{96} + \frac{2c^4(3 - 2 - 4)}{144} + \frac{2c^$$

And with elementary calculus, we can show that $F \rho > 0$ for $\rho > 0$, implying that F is an increasing function and thus the upper bound for (3.6) correspond to $\rho = 1$ and c = 0 gives,

$$|a_2a_4 - a_3^2| = \frac{1}{9}$$

For $\gamma = 1$, $|a_2a_4 - a_3^2| = \frac{1}{9}$ which is $=\frac{1}{8}$, the result sharp obtained by Aini Janteng [1].

(3.5)

References

- 1. A. Janteng, S.A. Halim and M.Darus, "Hankel Determinant for starlike and convex functions", *Int Journal of Math. Analysis*, vol. 1, no. 13, pp. 619-625, 2007.
- 2. A. Janteng, S.A. Halim and M. Darus, "Estimate on the second Hankel functional for functions whose derivative has a positive real part", *Journal of Quality Measurement and Analysis*, 4(1), pp.189-195,2008.
- 3. G. Shanmugam, B. Adolf Stephen and K. G. Subramanian, "Second Hankel Determinant for certain classes of Analytic functions", Bonfring *Int. Journal of Data Mining*, vol. 2, no. 2, pp.57-60,
- 4. K. O. Babalola and T.O. Opoola, "On the coefficients of certain analytic and univalent functions, Advances in Inequalities for Series, Nova Science Publishers, pp. 5-17, 2008.
- 5. P. L. Duren, "Univalent functions", Springer Verlag, New York Inc., 1983.
- 6. R. J. Libera and E. J. Zlotkiewicz, "Coefficient bounds for inverse of a function with derivative in P", Proc. Amer. Math. Soc. 87 (2), pp. 251-257, 1983.
- 7. R. J. Libera and E. J. Zlotkiewicz, "Early coefficient of the inverse of a regular convex function", Proc. Amer. Math. Soc. 85(2) pp. 225-230, 1982.
- 8. T. Hayami and S. Owa, "Generalized Hankel determinant for certain classes", Int. Journal of Math. Analysis,

How to cite this article:

Amruta Patil et al.2016, On Second Hankel Determinant For Starlike And Convex Functions. Int J Recent Sci Res. 7(12), pp. 14725-14728.