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In this paper we prove a generalized fixed point theorem of contraction mapping on cone metric 
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INTRODUCTION  
 

Huang and Zhang [5] in 2007 generalized the concept of a 
metric space to cone metric space. They replaced the set of real 
numbers by an ordered Banach space and obtained some fixed 
point theorem. In the present paper we shell establish a more 
generalized fixed point theorem of contractive mapping on 
cone metric space.  
 

Preliminaries  
 

The following notions have been used to prove the main result. 
 

Definition: Let E be a real Banach Space. A subset P of E is 
called cone [5] if and only if 
 

1. P is closed, non empty and P   {o}. 
2. a, b  R, a, b  0, and x, y  P implies ax + by  P. 
3. x  P and x  P  x = o. 

 

Definition: The partial ordering [5]  with respect to P  E is 
defined by x  y if and only if y  x  P.  
 

Definition: A cone P is called normal [5] if there is a number k 
> o such that for all x, y  E, the inequality  
0  x  y implies ||x||   k ||y ||     
 

The least positive number k satisfying the above inequality is 
called the normal constant [5] of P. 

Definition: Let X be a non empty set. Suppose that the 
mapping d: X  X  E Satisfies 
 

(d1) 0  d (x, y) for all x, y  X and d (x, y) = 0 if and only if x = y.  
(d2) d (x, y) = d (y, x) for x, y  X. 
(d3) d (x, y)  d (x, z) + d (z, y) for all x, y  X.   

Then d is called a cone metric [5] on X and (X, d) is called a 
Cone metric space [5]. 
 

Definition: Let (X, d) be a Cone metric space. Then a sequence 
{xn} is  
 

(a) Cauchy sequence [5] if for every c  E with 0 << c, 
there is N such that for all n, m > N, d (xm, xm) << c. 

(b) Convergent sequence [5] if for every c in E with 0 << c, 
there is N such that for all n > N, d (xn, x) << c for some 
fixed s in X. 

 

Definition: A cone metric space X is said to be complete [5] if 
every Cauchy sequences in X is convergent in X. 
 

It is known that (xn) Converges to x X. if and only it d (xn, x) 
 0 as n, Also the limit of a convergent sequence is unique 
provided P is a normal cone with normal constant k [5]. 
 

Fixed Point Theorem 
 

In this section we shell prove the following fixed point theorem 
of contractive mapping.  
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Theorem: Let (X, d) be a complete cone metric space, P be a 
normal cone with normal constant k. If T1 and T2 are two 
mapping of X into itself such that 
 

d( P
1T (x), q

2T (y))  k1 d(x, P
1T (x)) + k2 d(y, q

2T (y)). 
 

Where x, y  X, p and q are positive integers, k1 > 0, k2 > 0, k1 
+ k2 < 1.Then T1 and T2 have unique and common fixed point 
in X. 
 

Proof:  Let x  X be arbitrary. First we define a sequence {xn} 
in X as follows. 
 

x1 = P
1T (x), x2 = q

2T (x1), x3 = P
1T (x2), x4 = q

2T (x3) and so on.
  

In general, x2n + 1`= P
1T (x2n) and x2(n + 1) = q

2T (x2n +1). 

Now   d(x1, x2) = d( P
1T (x), q

2T (x1)) 

Or   d(x1, x2)  k1d(x, P
1T (x)) + k2 d(x, q

2T (x2))  
                              k1d(x, x1) + k2 d(x1, x2). 
Therefore d(x1, x2)  k1 d(x, x1) 
Also d(x2, x3) = d( q

2T (x1), 
P

1T (x2)) 
 

Or     d(x2, x3)  k1d(x2, 
P

1T (x2)) + k2 d(x1, 
q
2T (x1)). 

          k1d(x2, x3) + k2 d(x1, x2). 

Thus   d(x2, x3)  
1

2

k1
k
 2

1

k1
k


 d(x1, x2) 

Put r1 = 
2

1

k1
k


,  r2 = 

s

, We have d(x2, x3)  r1 r2 d(x1, x2). 

 

Since K1 + K2, < 1, r1 and r2 < 1 after generalization we have, 
d(x2n, x2n+1)    r2 r1..........r1 r2 r1 d (x, x1) 
         n

2r
n

1r  d (x, x1) 
 

Similarly d(x2n + 1, x2(n+1))   1n
1r
 n

2r  d (x, x1). 
 

Since  d(xm, xm+n)   d(xm, xm+1) + d(xm+1, xm+2) + ………..+ 
d(xm+n-1, xm+n)    
 

So for m = 2l, we have 
 

d(xm, xm+n)   (
l
2r

l
1r + 

l
2r

1l
1r


+ 
1l

2r
 1l

1r


+…………..n terms)  d (x, x1) 

 ( l
2r

l
1r + l

2r
1l

1r
 + 1l

2r
 1l

1r
 +…………..up to infinity)  d (x, x1) 

= { l
2r

l
1r  (1 + r1r2 + 2

1r
2
2r + ……) + 1l

1r
 l

2r  (1 + r1r2 + 2
1r

2
2r + 

……)}  d (x, x1). 

= l
2r

1l
1r
  (1+ r1) 

21rr1
1


  d (x, x1) 

  as l   i. e. m  . 
 

Similarly, for m = 2l + 1 
 

d(xm, xm+n)   ( l
2r

1l
1r
 + 1l

2r
 1l

1r
 + l

2r
2l

1r
 +…………..)  d (x, x1) 

= { l
2r

1l
1r
  (1 + r1r2 + 2

1r
2
2r + ……) + 1l

1r
 1l

2r
  (1 + r1r2 + 2

1r
2
2r + ……)}  d (x, x1). 

= l
2r

1l
1r
  (1+ r2) 

21rr1
1


  d (x, x1) 

  as l   i. e. m  . 
 

This shows that {xn} is a Cauchy sequence. Since the space is 
complete there exists x0  X such that nlim xn = x0. 

We first show that P
1T (x0)  = q

2T (x0) = x0. 

Since d(x0, 
P

1T (x0))  d(x0, xt) + d(xt, 
P

1T (x0))    

 d(x0, xt) + d( q
2T (xt-1), 

P
1T (x0)),where t is taken to be even. 

Hence   d(x0, 
P

1T (x0))  d(x0, xt) + k1 d(x0, 
P

1T (x0)) + k2 d(xt-1, 
q
2T (xt-1) 

 

Or     (1  k1) d(x0, 
P

1T (x0))  d(x0, xt) + k2 d(xt-1, xt) 
 

The expression on the right hand side can be made arbitrarily 
small by choosing t sufficiently large. Therefore, d(x0, 

P
1T (x0)) = 0 

 

i.e.   P
1T (x0) = x0. Similarly P

1T (x0) = x0. 
 

Now we show that x0 is unique. For suppose that y0 also satisfies 
 

P
1T (y0) = q

2T (y0) = y0. 

Then d(x0, y0) = d( P
1T (x0), 

q
2T (y0)) 

  k1d(x0, 
P

1T (x0)) + k2 d(y0, 
q
2T (y0)).   

So     x0 = y0. 
 

Finally we prove that x0 is the common fixed point of T1 and T2. 
For, 1T (x0) = x0   P

1T (T1(x0)) = 1T (x0). 

    P
1T (x0) = x0.  Since P

1T  has a unique fixed point x0. 
Similarly T2 (x0) = x0. 
Also x0 is the only fixed point of T1 and T2. For suppose if 
possible  z0  x0  and T1 (z0) = T2 (z0) = z0 
Then d(x0, z0) = d( 2T (x0), 1T (z0)) 

           =  d( q
2T (x0), 

P
1T (z0)) 

                        k1d(z0, 
P

1T (z0)) + k2 d(x0, 
q
2T (x0)) = 0. 

  

Which implies x0 = z0. 
 

This completes the proof of the theorem. 
 

Remark: The theorem proved by Huang L. G. and Zhang X. is 
a particular case of above theorem if we take q = p = 1; k1 = k2 
and T1 = T2.  
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