

*Corresponding author: Surbhi Goyal
Department of CSE, G. J. University of Science & Technology, Hisar, Haryana, India

ISSN: 0976-3031

Research Article

IMPLEMENTATION AND EVALUATION OF COTS METRICS

Surbhi Goyal1 and Pradeep Kumar Bhatia2

1,2Department of CSE, G. J. University of Science & Technology, Hisar, Haryana, India

DOI: http://dx.doi.org/10.24327/ijrsr.2017.0807.0460

ARTICLE INFO ABSTRACT

Now a days it is necessary to measure the reusability of a component as this is the most effiective way to increase
our productivity. Building new software from pre-existing software is Component Based Software Engineering.
COTS stands for Commercial off-the shelf products. COTS can be used for building new software from pre-
existing components. In this paper, we introduce new metrics for COTS so that we can measure the quality of a
software product as this is very useful for building new software now a days. We validate our study by Java
programming examples and calculate CK metrics for COTS based on object oriented metrics and also define
some metrics based on reusability.

INTRODUCTION

Software engineers should apply effective metrics with new
tools within the context of a mature software process to
evaluate reusable suite of software system. [12] A software
component is a defined package of software implementation
which offers well defined functionality and can be reuse for
building new application. Reusability increases efficiency and
decreases cost, time, effort etc.

Commercial off-the shelf (COTS) are the ready- made products
which can be used as “it is”. These products are designed to be
easily installed and to interoperate with existing system
components.

As people develop components, there is a need for defining
suitable metrics to measure such components. Software metric
is a measure of degree to which software system or process
possesses some property. Metrics are very useful to measure
the quality of software. If we know the quality of software then
we can reuse the software. Basically COTS are reusable
products and we can reuse them if we know the quality like
cohesion, coupling, reuse factor etc. The goal of this work is on
definition and validation of metrics for components. The
Chidamber and Kermerer (CK) metrics suite is a “de-facto”
standard for measuring properties of classes and objects. We
base our work on an extension of such metrics In addition,
(Briand et al.,1996) has set reference properties that size,

length, complexity, coupling and cohesion measure must
follow: the proposed metrics follows such properties. We also
define some new metrics for reusability.

Component Based Software Engineering aims to build software
from pre-existing components, build components as reusable
entities and evolve application by replacing component. Now
days reusing any product while building any new software are
very common. While reusing any software it is necessary to
measure the reusability of the product effectively because
reusability is an effective way to improve productivity. But if
we want to reuse any product we can face many problems like
it can increase the complexity of the new software we are
building, it can increase the cost, quality of the pre-existing
software is not good for the new software etc. Therefore we
should define some measure or quality which can address this
problem. These measures can be defined by metrics which is a
standard of measure of a degree to which a software system or
process possesses some property.

Object Oriented Ck Metrics

Object oriented CK metrics are given below:

Weighted Methods per Class (WMC)

The WMC is a count of the methods implemented within a
class or the sum of the complexities of the methods [2]. This
metric is used to measure the understandability, reusability and

Available Online at http://www.recentscientific.com
 International Journal of

Recent Scientific

 Research International Journal of Recent Scientific Research
Vol. 8, Issue, 7, pp. 18148-18154, July, 2017

Copyright © Surbhi Goyal and Pradeep Kumar Bhatia, 2017, this is an open-access article distributed under the terms of
the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium,
provided the original work is properly cited.

Article History:

Received 15th April, 2017
Received in revised form 25th
May, 2017
Accepted 28th June, 2017
Published online 28th July, 2017

DOI: 10.24327/IJRSR

CODEN: IJRSFP (USA)

Key Words:

COTS, Reusability, Adaptability,
Complexity.

http://dx.doi.org/10.24327/ijrsr.2017.0807.0460
http://www.recentscientific.com

Surbhi Goyal and Pradeep Kumar Bhatia., Implementation and Evaluation of cots Metrics

18149 | P a g e

maintainability.WMC is the predictor of how much Time and
Effort is required to develop and to maintain the class. Greater
the number of methods, more is the impact on the children.
Classes with large WMC are likely to have more faults,
limiting the possibility of re-use and making the effort
expended one-shot investment. Large WMC increases the
density of bugs and decreases the quality of software [7].

Depth of Inheritance Tree (DIT)

DIT is defined as the maximum length inheritance path from
the class to the root class. Classes with large DIT are likely to
inherit, making more complex to predict its behavior. Greater
value of DIT leads to greater the potential re-use of inherited
methods. Large DIT increases density of bugs and decreases
the quality of software. Small values of DIT in most of the
system’s classes may be an indicator that designers are for
asking re-usability for simplicity of understanding [1,6,7].

Number Of Children (NOC)

NOC is defined as the number of immediate subclasses
subordinated to a class in the class hierarchy. Greater NOC
leads to greater re-use, probability of improper abstraction of
parent class. Large NOC leads to more testing and misuse of
sub-classing. Large NOC leads to poor design and high
complexity. High NOC leads to high reuse which indeed less
faults. Small values of NOC may be an indicator of lack of
communication between different class designers [6,7].

Coupling between Objects (CBO)

Coupling is a measure of strength of association established by
a connection from one entity to another. Classes are couple in
three ways. One is, when a message is passed between objects,
the object are said to be coupled. Second one is, the classes are
coupled when methods declared in one class use methods or
attributes of the other classes. Third on is, inheritance
introduced significant tight coupling between super class and
subclass. CBO is a count of the number of other classes to
which a class is coupled[2]. It is measured the counting the
distinct non inheritance related class hierarchy on which a class
depends. Small value of CBO improves modularity and
promotes encapsulation. The larger the number of couples, the
higher the sensitivity to changes in other parts of the design and
therefore maintenance is more difficult. Small CBO indicates
independence in the class, making easier to re-use and also
makes easier to test a class.

Response For Class (RFC)

RFC is defined as the number of methods of the class plus the
number of methods called by any of those methods. The
response set of a class is a set of methods that can potentially
be executed in response to a message received by an object of
that class. RFC is simply the number of methods in the set.

If a large numbers of methods are invoked from a class testing,
debugging and maintenance of the class becomes more
complex and it becomes hard to understand. High RFC leads to
more fault-proneness. High RFC increases density of bugs and
thereby decreases the quality [3,7].

Lack of Cohesion of Methods (LCOM): LCOM uses variable
or attributes to measure the degree of similarity between
methods. We can measure the cohesion for each data field in a

class; calculate the percentage of methods that use the data
field. The number of pairs of member functions without shared
instance variables, minus the number of pairs of member
functions with shared instance variables. However, the metric
is set to zero whenever this subtraction is negative [2,4,5]. High
cohesion indicates good class subdivision. Lack of Cohesion or
low cohesion increases complexity, thereby increasing the
likelihood of errors during the development process. It does not
promote encapsulation and implies classes should probably be
split into two or more subclasses. Indicates the low quality
design of the software.

Part 1: Cots Metrics from Ck Metrics

Weighted Class per Component (WCC)

It is an extension for NOM. .Complexity of different classes of
a COTS product affect the complexity of a resulting COTS
product. If the classes are complex then the product will be
complex and that product will be more difficult to understand
and maintain. Therefore we can define weighted class per
component as:

WCC= 


m

i

NOM
1

(Ci)

Maximum Depth of Inheritance (MAXDIT)

It is an extension for DIT. If the DIT increases then effort
increases. MAX of DIT can be calculated as:

MAXDIT=max{DIT(Ci)}
Ci € k

Number of Children for Component (NOCC)

It is as an extension of NOC. NOCC can be calculated as the
sum of number of children of all the classes in the component.

NOCC=


m

i

NOC
1

(Ci)

External Coupling Between bjects (EXTCBO)

EXTCBO can be calculated as given below

EXTCBO=


m

i
ie

1

)(

Where ei is the number of external classes coupled
With the class Ci.

Response Set for a Component.(RFCOM)

It an extension for RFC. This is the number of all the methods
in the member classes and the methods called by those classes.
It can be calculated as:

RFCOM=


m

i

RFC
1

(Ci)

RFC= No. of local methods + No. of invoked methods
RFC =NOL+NOC

When all the methods complexity in the class are imagined to
be unity then NOL=WMC and CBO= No. of invoked methods,
NOC=CBO

International Journal of Recent Scientific Research Vol. 8, Issue, 7, pp. 18148-18154, July, 2017

18150 | P a g e

Therefore
RFC=WMC+CBO
In terms of COTS Metrics
∑RFC=∑WMC +∑CB0
RFCOM= WCC + EXTCBO

For high quality code components, components are loosely
coupled then EXTCBO metric will be low and increase in
RFCOM is due to WCC. Therefore, RFCOM = WCC +
EXTCBO approaches to RFCOM=WCC.

For low quality code components, components are highly
coupled then EXTCBO metric will be high and increase in
RFCOM is due to WCC as well EXTCBO. Therefore,
RFCOM= WCC + EXTCBO

Part 2: Cots Metrics Based on Reusability

Not only above metrics are useful for future reuse, reusability
metrics are one of the important concern while reusing any
component. Therefore, we define reusability metrics given
below:

Reusability: Reusability is one of the most important aspect
of software component. It is used to measure the degree of one
component that can be reused [8]. Some aspects used for
reusability:

 Availability: It determines how easy and fast is to

retrieve a software component.
 Quality: It is one of the important aspects while reusing

any component. It is regarded as a characteristic which
describes how good it fulfills its requirements and also
how error and bug free a component is [8].

 Adaptability: Adaptability of a component is defined as
a metric that how good a component is to adapt in a
different environment [8]. The adaptability of a
component can be written as Rate of Component
Adaptability (RCA). RCA depends on method
complexity (MC) and interface complexity(IC) [8]. MC
is the method dependency and can be calculated as:

n

CC
MC

n

1i
i



Where
∑CCi= sum of cyclomatic complexity of methods.
n = total numbers of methods in a class.

Cyclomatic complexity=E-N+X
Where E is number of edges, N is number of nodes or decision
points and X is number of exists.

Interface complexity gives the source of information to
understand and reuse the component. IC should be as low as
possible and it can be written as component interaction density
(CID). CID metric measures the ratio of actual number of
interactions to the available number of interaction in
component [8].

CID =
nsinteractio available Maximum

ninteractio actual ofNumber

Reuse: The actual reuse of a component can also be used to
infer how usable and how easy it is to adapt it. The amount and
frequency of reuse, especially in contexts similar to that of the
developer can serve as reference points and she or he may
select the component determines how expensive it is to reuse.
Reuse can be expressed by class reusability and method
reusability. We have to give class and method ranks for these
calculations.

Class Reusability(f(Ci)=




n

k 1
Ck

r(Ci)

where
r(Ci) is the sum of all classes ranks,c is a class that is used by
the classes c1….cn

Method Reusability(f(Mi)=




m

k 1
Mk

r(Mi)

where
r(Mi) is the sum of all method ranks, m is a method that is
used by the methods m1….mn.

Complexity: complexity is one of the most important factors
which are considered while reusing any component again.
There are three co-factors for calculating complexity which are:

Cyclomatic complexity: This is used after the implementation
of component if finished and cyclomatic complexity of
component (CCC) is given as:

CCC= 


m

i 1

CCi + DIM

DIM= depth of inherited method inside the class.

Coupling: Coupling defines interdependency. In this, we count
the way in which one module depend on other. In general,
coupling should be as low as possible. We calculate component
coupling average (CCA) which is given as:

CCAcoup=
TC

MCFC

Where, MCFC= method complexity based on class
TC= total no. of class in component.

Cohesion: Cohesion describes the similarity of method
between classes. In general, cohesion should be as high as

Fig 1 Reusability Factors

Surbhi Goyal and Pradeep Kumar Bhatia., Implementation and Evaluation of cots Metrics

18151 | P a g e

possible. We calculate Component Cohesion Average (CCAcoh)
which is given as:

CCAcoh=
TC

TCCh
 TCCh>0

 0, otherwise
Where, TCCh= total class cohesion based on
methods which is given by the max. no. of
similarity of method situation in class.

Empirical Study

This section is divided in two parts. Part 1: It describe the four
executed code segments, OO metrics and COTS metrics, part
2: it describes reusability metrics for COTS.

Part 1

Program 1: Multilevel inheritance: This program implement
the multilevel inheritance concept in Java design and Table 2.
Show the value of CK metrics and COTS metrics for class
diagram shown below:

RFCOM=


m

i

RFC
1

(Ci)=13

Program 2: Hierarchical Inheritance

This program implements the hierarchical inheritance concept
in java design and Table 3. Show the value of CK metrics and
COTS metrics for class diagram shown below:

Value of COTS metrics for hierarchical inheritance

WCC= 


m

i

NOM
1

iC()=4

MAXDIT=max {DIT(Ci)}=2
 Ci € k

NOCC=


m

i

NOC
1

(Ci)=2

EXTCBO=


m

i
ie

1

)(=4

RFCOM=


m

i

RFC
1

(Ci)=8

Program 3: Person classification: This program implements
the person classification concept in java design and Table 4.
Show the value of CK metrics and COTS metrics for class
diagram shown below:

Value of COTS metrics for person classification

WCC= 


m

i

NOM
1

iC()=12

MAXDIT=max {DIT(Ci)}=2
 Ci € k

Fig 1 class diagram for multilevel inheritance

Table 2 Value of CK metrics and COTS metrics for
multilevel inheritance

CK Metrics WMC DIT NOC CBO RFC
Class faculty 1 0 3 0 1
Class HRA 1 1 2 1 2
Class DA 2 2 1 2 4

Class 2 3 0 1 6
Science
COTS WCC=6 MAXDIT=3 NOCC=6 EXTCBO=4 RFCOM=13
Metrics

Fig 2 Class diagram for hierarchical inheritance

Table 3 Value of ck metrics and COTS metrics for
hierarchical inheritance

CK Metrics WMC DIT NOC CBO RFC
Class A 2 0 2 2 2
Class B 1 1 0 1 3
Class C 1 2 0 1 3
COTS WCC=4 MAXDIT=2 NOCC=2 EXTCBO=4 RFCOM=8
Metrics

International Journal of Recent Scientific Research Vol. 8, Issue, 7, pp. 18148-18154, July, 2017

18152 | P a g e

NOCC=


m

i

NOC
1

(Ci)=3

EXTCBO=


m

i
ie

1

)(=4

RFCOM=


m

i

RFC
1

(Ci)=24

Program 4: Hybrid Inheritance: This program implements the
hybrid inheritance concept in java design and Table 5. Show
the value of CK metrics and COTS metrics for class diagram
shown below:

Value of COTS metrics for Hybrid inheritance

WCC= 


m

i

NOM
1

iC()=3

MAXDIT=max {DIT(Ci)}=2
 Ci € k

NOCC=


m

i

NOC
1

(Ci)=3

EXTCBO=


m

i
ie

1

)(=0

RFCOM=


m

i

RFC
1

(Ci)=8

Part 2

We calculate adaptability, reuse, and complexity metric for
employee classification program whose flow diagram is given
below. In this program we have one class and five methods
which are ge tName(), getcomName() ,getSalary(), getId(),
show All(), end

Table 4 Value of CK Metrics and COTS metrics for
person classification

CK Metrics WMC DIT NOC CBO RFC
Class Person 4 0 2 1 4

Class 4 1 1 2 8
Employee

Class
Hourly 4 2 0 1 12

Employee
COTS WCC=12 MAXDIT=2 NOCC=3 EXTCBO=4 RFCOM=24
Metrics

Fig 3 Class diagram for Person Classification

Fig 4 Class diagram for hybrid inheritance

Table 5 Value of CK Metrics and COTS metrics for Hybrid
inheritance

CK Metrics WCC DIT NOC CBO RFC

Class a 1 0 2 0 1
Class b 1 1 0 0 2
Class c 1 1 1 0 2
Class d 0 2 0 0 3
COTS WCC=3 MAXDIT=2 NOCC=3 EXTCBO=0 RFCOM= 8

Metrics

Surbhi Goyal and Pradeep Kumar Bhatia., Implementation and Evaluation of cots Metrics

18153 | P a g e

 n
MC= ∑CCi ÷ n
 i=1

Cyclomatic complexity=5-0+1=6

n=5
MC=6/5=1.2

IC=0, because there is no interaction between classes as there is
only one class.

COTS Reuse

As there is only one class therefore rank is one and sum of
classes is also one

Therefore,

f(Ci)=1/1=1
As there is six methods therefore rank is six and sum of
methods is also six.
Therefore,
f(Mi)=6/6=1

COTS Complexity

 m
CCC= ∑ CCi+ DIM
 i=0
m
∑ CCi= 1+1+1+1+1= 5
i=0

DIM= 0 (As there is only one class)

COTS Coupling

CCAcoup = MCFC/ TC
MCFC = method complexity based on class
 = no. of methods in the class= 5

TC= total no. of class in a component= 1
CCAcoup= 5/ 1= 5

COTS Cohesion

CCAcoh= TCCh/ TC, TCCh>0
 0, otherwise

TCCh= 0 (As there are five different methods in the class)
TC= total no. of classes in a component= 1
Otherwise condition is applicable here
Cohesion= 0

RESULTS

Values of COTS metrics EXTCOM and RFCOM obtained
from above four programs ae summarized into tables 6.

Table 4 illustrates that program 4 in Part 1 has the lowest
EXTCBO value and RFCOM is also lowest for this program,
implying this program has high quality code.

Part 2: Adaptability and reuse factors are greater than 1
therefore component can be reuse. But there is high coupling
and zero cohesion. There is less cohesion and high coupling.
This shows that this class is less reusable Therefore; we can say
that this component is not good for future reusability. As in this
study this has been seen that the continuous increase of the
reused component number, in order to develop software, how
to choose the component with improved reusability from the
component library is a crucial problem for the developers of the
component library and the persons of reusing components

CONCLUSION

In this paper we introduced COTS metrics from CK metrics
and reusability metrics for COTS so that we can reuse any
software again. We conclude that quality of software depend on
its RFCOM value, Reusability of software depend adaptability,
reuse, and complexity factor. RFCOM value should be low
because low value of RFCOM means low value of coupling
and complexity factor. Adaptability and reuse factor should be
greater than complexity (low coupling and high cohesion) for
better use in future.

References

1. Ahmed M. Salem, Abrar A. Qureshi, “Analysis of
inconsistencies in object oriented metrics”, Journal of
Software Engineering and Applications, Vol. 4,
pp.123-128, January 2011.

2. Sonu Dhariwal, Ashwani Kumar, Pradeep Kumar
Bhatia,” Design of COTS Metrics based upon CK
Metrics”, International Journal of Engineering
Research and Technology, vol.2 Issue 9, September
2013.

3. Pradeep Bhatia, Yogesh singh, H.L. Verma, “An
emperical study for accessing quality of OO code”,
Ultra Science, Vol. 14, No.3, pp.385-400, May 2002.

4. Tibor Gyimo thy, Rudolf Ferenc, Istvan Siket,
“Empirical validation of object-oriented metrics on
open source software for fault prediction”, IEEE
Transactions on Software Engineering, Vol. 31, No.
10, pp.897-910, October 2005.

5. Chidamber Shyam, Kemerer Chris, Darcy David,
“Managerial use of metrics for object- oriented
software: an exploratory analysis”, IEEE Transactions
on software Engineering, Vol 24, No. 8, pp.629-639,
August 2008.

6. http://www.aivosto.com/project/help/pm-oo-ck.html.
7. sdlab.naist.jp/members/camargo/presentations/CKMet

rics.ppt
8. Suchita Yadav, Dr. Pradeep Tomar, Sachin Kumar,”

Metrics Suite for Accessing the Reusability of
Component Based Software”, International Journal of
Advanced Research in Computer Science and
Software Engineering, vol. 4, Issue 5, May 2014.

9. Khaled Musa and Jawad Alkhateeb, ”Quality Model

Fig 5 Flow diagram for employee classification
COTS Adaptability

Tables 6 Summary of Values of COTS metrics

 EXTCBO RFCBO
Program 1 4 13
Program 2 4 8
Program 3 4 24
Program 4 0 8

http://www.aivosto.com/project/help/pm-oo-ck.html

International Journal of Recent Scientific Research Vol. 8, Issue, 7, pp. 18148-18154, July, 2017

18154 | P a g e

Based On COTS Quality Attributes”, International
Journal of Software Engineering and Application,
Vol.4, no.1, January 2013.

10. Macro Torchiano, Letizia Jaccheri, Cari-Fredrik
Sorensen and All Inge Wang,”COTS Products
characterization”, SEKE 02, July 15-19, 2002.

11. Sahra Sedigh, Raymond A.Paul, Arif Ghafoor,”
Software Engineering Metrics for COTS based
System”, Institute of Electrical and Electronics
Engineering (IEEE), May 2001.

12. Puneet Goswami, Pradeep Kumar, OP sangwan, ”A
Metrics Methodology For Predicting Reusable Suite
of Component Based Software System”, International
Journal of Computer Science and Security, vol.4,Issue
1, 2010.

How to cite this article:

Surbhi Goyal and Pradeep Kumar Bhatia.2017, Implementation and Evaluation of cots Metrics. Int J Recent Sci Res. 8(7), pp.
18148-18154. DOI: http://dx.doi.org/10.24327/ijrsr.2017.0807.0460

http://dx.doi.org/10.24327/ijrsr.2017.0807.0460

