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In this paper an attempt has been made to fit Marshall and Olkin (1997) generalized family of 
distributions with special case of exponential distribution. Bayesian approach has been adopted to fit 
this model as survival model. Codes have been developed in R and JAGS to implement the 
Bayesian approach using both optimization and simulation tools. Right censoring case is illustrated 
for a real data and comparison of Bayesian simulation and optimization tools have been made. 
 
 
 
 
 
 
 
 

  

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

INTRODUCTION 
 

The field of survival analysis has experienced tremendous 
growth during the latter half of the 20th century. Survival 
analysis is a statistical method for data analysis where the 
outcome variable of interest is the time to the occurrence of an 
event. Hence, it is also referred to as time to event analysis.    
For example: time to recurrence of a disease, time until 
cardiovascular death after some treatment intervention, time to 
death of patient with certain disease, etc. Survival analysis 
techniques are used in a variety of disciplines including human 
and veterinary medicine, epidemiology, engineering and 
economy. Our main focus is on the application of survival 
analysis to data arising from medical research. Marshall and 
Olkin (A new method for adding a parameter to a family of 
distributions with application to the exponential and Weibull 
families, Biometrika 84 (1997) 641-652) introduced a method 
for adding a new parameter into a family of distributions.          
In this paper an attempt has been made to fit Marshall and 
Olkin generalized family of distributions with special case of 
exponential distribution which play important role in reliability 
theory and survival analysis. Bayesian approach has been 
adopted to fit this model as survival model. Right censoring 
case is illustrated for a real data set. The tools and techniques 
used in this paper are in Bayesian environment, which are 

implemented in Laplaces Demon package using Markov chain 
Monte Carlo (MCMC) tools (Statisticat LLC 2015). Goal of 
this package is to provide a complete and self contained 
Bayesian environment from within R, and approximate the 
posterior density using both analytic and simulation method 
like LaplaceApproximation and Markov chain Monte Carlo 
(MCMC) algorithms. The function LaplaceApproximation of 
LaplacesDemon approximates the posterior results analytically 
and then after convergence it gives simulated results using 
sampling importance resampling (SIR) method. In 
LaplaceApproximation function there is an argument called 
"Method". The method used to approximate posterior density is 
the Trust Region(TR) algorithm of Nocedal and Wright(1999). 
The TR algorithm attempts to reach its objective in the fewest 
number of iterations, is therefore very efficient, as well as safe. 
The efficiency of TR is attractive when model evaluations are 
expensive. Another important function of this package is 
LaplacesDemon, which maximizes the logarithm of the 
unnormalized joint posterior density using one of the MCMC 
algorithm. In LaplacesDemon the algorithm used for simulation 
is Independent Metropolis. Independent Metropolis(IM) 
algorithm proposed by Hastings (1970) and popularized by 
Tierney (1994). JAGS ("Just Another Gibbs Sampler") can be 
run directly from R using R2jags package. Package R2jags is 
also used for simulation from posterior density. The JAGS 
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function takes data and starting values as input. It automatically 
writes a jags script, calls the model, and saves the simulations 
for easy access in R. Real survival data set is used to illustrate 
the implementation in R and JAGS. Thus, Bayesian analysis of 
Marshall-Olkin Exponential distribution has been made with 
the following objectives:   
 

 To define a Bayesian model, that is, specification of 
likelihood and prior distribution.  

 To write down the R and JAGS code for approximating 
posterior densities with Laplace Approximation and 
simulation tools.  

 To illustrate numeric as well as graphics summaries of 
posterior densities. 

 

The Marshall-Olkin Exponential Distribution 
 
Marshall Olkin distribution due to Marshall and Olkin (1997) is 
given by (S. Nadarajah and R. Rocha, Newdistns (2016)) the 
pdf  

2)]()(1[
)(=)(
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where g(t) and G(t) are corresponding pdf and cdf of t, 
respectively. Now, its generalized family of distributions with 
special case of exponential distribution when )()( exptg ~ . 
This density is abbreviated as MOExp(b,  ). 
 
The pdf, cdf, survival function and hazard function of 
MOExp(b,  ) are given below  
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Functions for Marshall-Olkin Exponential distribution in R 
require(Newdistns)  
 

1. R code for probability density function is  
dmoexp<-function(x, b,theta,...){ 
d1<-dmog(x,"exp",beta=b,rate=1/theta) return(d1)  
}  

2. R code for cumulative density function is  
              pmoexp<-function(x, b,theta,...){ 
              p1<-pmog(x,"exp",beta=b,rate=1/theta) return(p1) 
              }  

3. R code for random generation function is  
rmoexp<-function(n,b,theta,...){ 

r1<-rmog(n,"exp",beta=b,rate=1/theta) return(r1)  
}  

4. R code for survival function is  
smoexp<-function(x, b,theta,...){ 
s1<-pmog(x,"exp",beta=b,rate=1/theta,lower.tail=F) 
return(s1)  
} 

 

The Prior Distributions 
 

In Bayesian paradigm, it is needed to specify prior information 
regarding the value of the parameter of interest or information 
that is available before analyzing the experimental data by 
using a probability distribution function. This probability 
distribution function is called the prior probability distribution, 
or simply the prior, since it reflects information about 
parameter prior to observing experimental data. Here some 
prior distributions are discussed according to their uses in 
subsequent Bayesian survival models.  
 

Weakly Informative Priors 
 

Weakly Informative Prior (WIP) distribution uses prior 
information for regularization and stabilization, providing 
enough prior information to prevent results that contradict our 
knowledge or problems such as an algorithmic failure to 
explore the state-space. Another goal is for WIPs to use less 
prior information than is actually available. A WIP should 
provide some of the benefit of prior information while avoiding 
some of the risk from using information that doesn’t exist 
(Statisticat LLC, 2015). A popular WIP for a centered and 
scaled predictor (Gelman, 2008) may be  
 

(0,10000)~ N  
 

where   is normally-distributed according to a mean of 0  
and a variance of 10,000, which is equivalent to a precision of 

4101.0  . In this case, the density for   is nearly flat (see 
Figure 1). Prior distributions that are not completely flat 
provide enough information for the numerical approximation 
algorithm to continue to explore the target density, the posterior 
distribution.  
 

The half-Cauchy prior distribution 
 

The probability density function of half-Cauchy distribution 
with scale parameter   is given by  
 

0.>0,>,
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The mean and variance of the half-Cauchy distribution do not 
exist, but its mode is equal to 0 . The half-Cauchy distribution 
with scale 25=  is a recommended, default, noninformative 
prior distribution for a scale parameter. At this scale 25= , 
the density of half-Cauchy is nearly flat but not completely (see 
Figure 1), prior distributions that are not completely flat 
provide enough information for the numerical approximation 
algorithm to continue to explore the target density, the posterior 
distribution. The inverse-gamma is often used as a 
noninformative prior distribution for scale parameter, however, 
this model creates problem for scale parameters near zero. 
Gelman and Hill (2007) recommend that, the uniform, or if 
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more information is necessary the half-Cauchy is a better 
choice. Thus, in this paper, the half-Cauchy distribution with 
scale parameter 25=  is used as a noninformative prior 
distribution (Khan, Akhtar and Khan, 2016).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Laplace Approximation 
 

Many simple Bayesian analyses based on noninformative prior 
distribution give similar results to standard non-Bayesian 
approaches, for example, the posterior t -interval for the normal 
mean with unknown variance. The extent to which a 
noninformative prior distribution can be justified as an 
objective assumption depends on the amount of information 
available in the data; in the simple cases as the sample size n  
increases, the influence of the prior distribution on posterior 
inference decreases. These ideas, sometimes referred to as 
asymptotic approximation theory because they refer to 
properties that hold in the limit as n  becomes large. Thus, a 
remarkable method of asymptotic approximation is the Laplace 
approximation which accurately approximates the unimodal 
posterior moments and marginal posterior densities in many 
cases. In this section we introduce a brief description of 
Laplace approximation method. 
 

Suppose )(h  is a smooth, bounded unimodal function , 

with a maximum at ̂ , and   is a scalar. By Laplace’s 
method (e.g., Tierney and Kadane, 1986), the integral  
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As presented in Mosteller and Wallace (1964), Laplace’s 

method is to expand about ̂  to obtain:  
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Recalling that 0=)ˆ(h , we have  
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Intuitively, if )]([exp nh  is very peaked about ̂ , then the 
integral can be well approximated by the behavior of the 

integrand near ̂ . More formally, it can be shown that  
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To calculate moments of posterior distributions, we need to 
evaluate expressions such as:  
 

,
)]([exp

)]([exp )(
=)]([E






dnh

dnhg
g








                   (6) 

 

 where )()|(=)]([exp  pyLnh  (e.g., Tanner, 1996).  
 

Fitting with Laplace Approximation 
 

The LaplaceApproximation is a family of asymptotic 
techniques used to approximate the integrals. It is accurately 
approximates unimodal posterior moments and marginal 
posterior distributions in many cases. This function 
deterministically maximizes the logarithm of unnormalized 
joint posterior density with one of several optimization 

 
Figure 1 Weakly informative priors for the parameters. 
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algorithms. The goal of LaplaceApproximation is to estimate 
the posterior mode and variance of each parameter. The 
function and arguments are as follows  
 

LaplaceApproximation(Model, parm, Data, Interval=1.0E-6,  
Iterations=100, Method="SPG",Samples=1000, Cov Est= 
"Hessian",sir=TRUE,Stop.Tolerance=1.0E-
5,CPUs=1,Type="PSOCK") 
 

First argument Model is used as a user-defined function. The 
user-defined function is where the model is specified. 
LaplaceApproximation passes two arguments to the model 
function, parm and Data. The parm argument requires a vector 
of initial values equal in length to the number of parameters. 
Data argument accepts a list of data. By default method is 
Method=SPG. Several methods of optimization are available in 
LaplaceApproximation but we have found that trust region is 
better than others. 
 

Bayesian Analysis of Marshall-Olkin Exponential Model 
 

The Model 
 

The pdf of MOExp(b, ) is given by  
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The survival function is given by  
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We can write the likelihood function for right censored (as is 
our case the data are right censored)as  
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where i  is an indicator variable which takes value 0  if 
observation is censored and 1 if observation is uncensored. 
Thus, the likelihood function is given by  
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Thus, the joint posterior density is given by  
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which is not in closed form. Consequently, the marginal 
posterior densities of parameters j  and b are also not in 
closed form. These marginal densities are the basis of Bayesian 
inference, and therefore one needs to use numerical integration 
or MCMC methods. However, due to the availability of 
computer software package like R and LaplacesDemon, the 
required model can easily be fitted in Bayesian paradigm using 
Laplace approximation as well as MCMC techniques. 
 

Data set: Survival of multiple myeloma patients 
 

Let us introduce a lifetime data set due to Krall et al.(1975) and 
discussed by Collet (2003), so that all the concepts and 
computations will be discussed around that data. Multiple 
myeloma is a malignant disease characterized by the 
accumulation of abnormal plasma cells, a type of white blood 
cell, in the bone marrow. The proliferation of the abnormal 
plasma cells within the bone causes pain and the destruction of 
bone tissue. Patients with multiple myeloma also experience 
anaemia, haemorrhages, recurrent infections and weakness. 
Unless treated, the condition is invariably fatal. The aim of a 
study carried out at the Medical Centre of the University of 
West Virginia, USA, was to examine the association between 
the values of certain covariates and the survival time of 
patients. In the study, the primary response variable was the 
time, in months, from diagnosis until death from multiple 
myeloma. A part of this data is considered for the study. The 
data contains the following variables: (Table 1 is header part of 
data) 
 

Age: age of the patient 
Sex: sex of the patient (0 = male, 1 = female) 
Bun: blood urea nitrogen 
Ca: serum calcium 
Hb: serum haemoglobin 
PC: percentage of plasma cells 
BJ: Bence-Jones protein (0 = absent, 1 = present) 
 
 
 
 
 
 
 
 
 
 
Implementation using Laplaces Demon 
 

Bayesian modeling of MOExp (b,  ) distribution in 
LaplacesDemon package includes the creation of data, model 
specification, initial values and fitting model using 
LaplaceApproximation and LaplacesDemon functions. 
 

Table  1 Survival times of patients in a study on multiple 
myeloma. 

 

Survival 
time Status Age Sex Bun Ca Hb PC BJ 

13 1 66 0 25 10 14.6 18 1 
52 0 66 0 13 11 12.0 100 0 
6 1 53 1 15 13 11.4 33 1 
40 1 69 0 10 10 10.2 30 1 
10 1 65 0 20 10 13.2 66 0 
7 0 57 1 12 8 9.9 45 0 
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Creation of data for LaplacesDemon 
 

The data of Krall et al. (1975) is used for Bayesian modeling of 
MOExp(b,  ) distribution. The data set dat.txt contains seven 
regressor variables namely, Age, Sex, Bun, Ca, Hb, PC and BJ. 
The design matrix X is extracted from survreg object M2 and is 
named as X, naming of predictors, naming of parameters, 
information regarding censoring and response variable.  
require(LaplacesDemon)  
censor<-c(1,0,1,1,1,0,1,0,1,1,1,1,1,1,0,1,0,1,0,0,1,1,1,1,0,1,1,1, 
1,1,1,1,1,1,1,1,0,1,0,1,1,1,1,1,0,1,1,0)  
dat=read.table("dat.txt",header=TRUE)  
require(survival)  
M2<-
survreg(Surv(time,Status)~Agec60+Sext+Bunc+Cac+Hbc+Pce
llsc+Protein,data=dat) 
X<-model.matrix(M2)  
J<-ncol(X)  
N=nrow(X)  
y<-dat$time  
mon.names<-c("LP","b")  
parm.names<-as.parm.names(list(beta=rep(0,J),log.b=0)) 
MyData<-list(J=J,N=N,X=X,mon.names=mon.names, 
parm.names=parm.names,y=y,censor=censor)  
 

In this case, there are two parameters beta and b which must be 
specified in vector parm.names. The logposterior LP is 
included as monitored variables in vector mon.names. The 
number of observations is specified by N, that is, 48. Censoring 
is taken into account, where 0  stands for censored and 1 for 
uncensored values. Finally, all these things are combined with 
object name MyData which returns the data in a list.  
 

Model Specification 
 

The function LaplaceApproximation can fit any Bayesian 
model for which likelihood and prior are specified(e.g., Khan, 
Akhtar and Khan, 2016). 
 

To use this method one must specify a model 
 

),( bMOExpy ~  
 

Since, b and   both are positive, hence, logarithm link 
function is used to spread them on the whole real line, that is  
 

 X=log  

)(exp=  X  

 where, X is model matrix and   is the vector of regression 

coefficients. Prior probabilities are specified for   and b are  
 

JjNj ,1,=(0,1000), ~  

(25).HCb ~  
 

The large variance indicates a lot of uncertainty about each   
and is hence a weak informative prior distribution. Similarly, 
half-Cauchy is weakly informative prior for b(Statisticat LLC 
2015).  
 

Model<-function(parm,Data) { 
beta<-parm[1:Data$J]  
b<-exp(parm[Data$J+1])  
beta.prior<-sum(dnormv(beta,0,1000,log=TRUE))  

b.prior<-dhalfcauchy(b,25,log=TRUE)  
mu<-tcrossprod(beta,Data$X)  
theta<-exp(mu)  
lf<-log(b/theta)-(y/theta)-2*log(b+(1-b)*(1-exp(-y/theta)))     
ls<-log(b)-(y/theta)-log(b+(1-b)*(1-exp(-y/theta)))  
LL<-censor*lf+(1-censor)*ls  
LL<-sum(LL)  
LP<-LL+beta.prior+b.prior  
Modelout<-list(LP=LP,Dev=-2*LL,Monitor=c(LP,b), 
yhat=rmoexp(length(y),b,theta),parm=parm) return(Modelout)  
}  
 

Initial Values 
 

To start the optimization, the function LaplaceApproximation 
requires a vector of initial values for the parameters.             
Each initial value is a starting point for the estimation of a 
parameter. So all the beta parameters have been set equal to 
zero and the remaining parameter, log.b (since, b > 0, log(b) 
will spread on whole real line, and optimization becomes 
unconstraint, which is requirement of the algorithm), has been 
set equal to log(1), which is zero, LaplaceApproximation will 
optimize initial values using trust region (TR) algorithm.        
The order of the elements of the vector of initial values must 
match the order of the parameters. Thus, define a vector of 
initial values. However, instead of taking this default guess we 
have taken regression coefficients obtain from fitting survreg 
function to represent a fitted parametric survival regression 
model. This empirical guess converges faster. 
Initial.Values<-c(coef(M2),log(2))  
 

Laplace Approximation 
 

To fit the above specified model, an object Fit1 has been 
created as a result of using LaplaceApproximation function. So 
the summary of results are printed by the function print.  
 

Fit1<-LaplaceApproximation(Model,Initial.Values,   
Data=MyData,Iterations=1000,Method="TR")  
print(Fit1)  
 

Summarizing Output 
 

The function LaplaceApproximation approximates the 
posterior density of the fitted model, and posterior summaries 
can be seen in the following tables. Table 2 represents the 
analytic results using LaplaceApproximation method while 
Table 3 represents the simulated results using sampling 
importance resampling(SIR) method. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 Approximated posterior summary using 
LaplaceApproximation function with posterior mode, 

posterior sd and their quantiles 
 

Parameter Mode SD LB UB 
Intercept 2.7584 0.3651 2.0181 3.4788 

Age 0.0056 0.0217 -0.0379 0.0493 
Sex -0.2446 0.3038 -0.8523 0.3631 
Bun -0.0189 0.0037 -0.0265 -0.0114 
Ca 0.0007 0.0525 -0.1043 0.1058 
Hb -0.0260 0.0181 -0.0624 0.0102 

Pcells 0.0001 0.0050 -0.0101 0.0103 
Protein 0.5967 0.3353 -0.0740 1.2675 
log.b 0.7367 0.5711 -0.4055 1.8789 
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Fitting with Laplaces Demon 
 

The LaplacesDemon function is the main function of 
LaplacesDemon package. This function maximizes the 
logarithm of the unnormalized joint posterior density with 
MCMC and provides samples of the marginal posterior 
distributions, deviance, and other monitored variables. The 
LaplacesDemon function for this model, simulates the data 
from posterior density with Independent Metropolis (IM) 
algorithm. The main arguments of the LaplacesDemon can be 
seen by using the function args as: 
 

LaplacesDemon(Model, Data, Initial.Values, Covar= NULL, 
Iterations= 10000, Status= 1000, Thinning= 100, Algorithm= 
"RWM", Specs= NULL,...) 
 

The arguments Model and Data specify the model to be 
implemented and list of data, which are specified in the 
previous section, respectively. The argument Iterations accepts 
integers larger than 10, and determines the number of iterations 
that Laplace’s Demon will update the parameters while 
searching for target distributions. 
 

The function LaplacesDemon is used to analyze the same data, 
that is, multiple myeloma patients survival data.  
 

Initial.Value<-as.initial.values(Fit1)  
 

Fit2<- LaplacesDemon(Model, Data=MyData, Initial.Values, 
Covar=Fit1$Covar, Iterations=80000, Status=0, Thinning=1, 
Algorithm="IM",  

Specs=list(mu=Fit1$Summary1[1:length(Initial.Values),1]))  
print(Fit2)  
 

Summarizing Output 
 

The function LaplacesDemon for this regression model, 
simulates the data from the posterior density with Independent 
Metropolis algorithm, and summaries of results are reported in 
the following table. 
 

Fitting with JAGS 
 

Let us consider the Bayesian analysis of the same data, that is, 
multiple myeloma data with JAGS using its interface of R, that 
is, R2jags package of R. R2jags is designed for inference on 
Bayesian models using Markov chain Monte Carlo (MCMC) 
simulation. Running a model refers to generating samples from 
the posterior distribution of the model parameters. It is 
designed to work directly with JAGS from R. The jags function 
takes data and starting values as input. It automatically writes a 
jags script, calls the model, and saves the simulations for easy 
access in R.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 

Table 3 Simulated posterior summary using sampling importance resampling with posterior mode, posterior sd and their 
quantiles. 

 

Parameter Mode SD MCSE ESS LB Median UB 
Intercept 3.0275 0.3530 0.0112 1000.00 2.3925 2.9889 3.6949 

Age 0.0048 0.0243 0.0007 1000.00 -0.0395 0.0041 0.0476 
Sex -0.1940 0.3325 0.0105 1000.00 -0.8712 -0.2232 0.5045 
Bun -0.0176 0.0042 0.0001 1000.00 -0.0253 -0.0178 -0.0084 
Ca 0.0043 0.0857 0.0027 1000.00 -0.1656 0.0142 0.1531 
Hb -0.0268 0.0179 0.0005 1000.00 -0.0626 -0.0262 0.0079 

Pcells 0.0002 0.0051 0.0001 1000.00 -0.0106 0.0004 0.0092 
Protein 0.6440 0.3708 0.0117 1000.00 -0.0191 0.6566 1.4582 
log.b 0.2613 0.5158 0.0163 1000.00 -0.8889 0.2947 1.1746 

Deviance 312.68 3.4483 0.1090 1000.00 307.2626 312.21 320.91 
LP -195.00 1.7243 0.0545 1000.00 -199.1114 -194.76 -192.29 
b 1.4730 0.7413 0.0234 1000.00 0.4111 1.3428 3.2369 

 
Table  4 Simulated posterior summary using Laplaces 

Demon function with posterior mean, posterior sd and their 
quantiles 

 

Parameter Mean SD MCSE ESS LB Median UB 
Intercept 2.8012 0.2159 0.0046 4265.87 2.3872 2.7990 3.2325 

Age 0.0055 0.0129 0.0028 4156.24 -0.0201 0.0055 0.0308 
Sex -0.2384 0.1827 0.0035 4912.03 -0.5976 -0.2408 0.1298 
Bun -0.0188 0.0022 0.000 4157.74 -0.0232 -0.0188 -0.0143 
Ca 0.0017 0.0361 0.0007 4341.61 -0.0679 0.0011 0.0719 
Hb -0.0260 0.0106 0.0002 4760.89 -0.0475 -0.0259 -0.0048 

Pcells 0.0001 0.0030 0.0000 4447.73 -0.0057 0.0001 0.0061 
Protein 0.5927 0.1991 0.0039 4151.29 0.2025 0.5952 0.9866 
log.b 0.6502 0.3425 0.0074 4264.05 -0.0108 0.6488 1.3065 

Deviance 307.31 1.4402 0.0405 2338.82 305.1928 307.09 310.76 
LP -192.32 0.7213 0.0201 2341.73 -194.0470 -192.21 -191.26 
b 2.0315 0.7122 0.0153 4201.41 0.9892 1.9133 3.6933 

 

 
 

Figure  2 Caterpillar plot for Marshall Olkin Exponential distribution 
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Figure 3  Survival curve of MOExp(b,  ) Model. 
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Creation of data 
 

The data set dat.txt contains seven regressor variables namely, 
Age, Sex, Bun, Ca, Hb, PC and BJ. The design matrix X is 
extracted from survreg object M2 and is named as X.  
censor<-
c(1,0,1,1,1,0,1,0,1,1,1,1,1,1,0,1,0,1,0,0,1,1,1,1,0,1,1,1,1,1,1,1,1,
1,1,1,0,1,0,1,1,1,1,1,0,1,1,0)  
dat=read.table("dat.txt",header=TRUE)  
dat$censor<-censor  
require(survival) M2<-
survreg(Surv(time,Status)~Agec60+Sext+Bunc+Cac+Hbc+Pce
llsc+Protein,data=dat)  
X<-model.matrix(M2)  
J<-ncol(X)  
n<-length(y)  
y<-dat$time  
zeros<- rep(0,n)  
C<-10000  
data<-list(n=n,y=y,X=X,zeros=zeros,censor=censor,C=C)  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model definition 
 

The model definition consists of a series of relations inside a 
block delimited by curly brackets { and } and preceded by the 
keyword model. Here is the JAGS code specifying the model, 
using cat function to put it in the file model.txt. The 
specification of this model in JAGS using Poisson zero trick 
method is  
 cat("model{  
for(i in 1:n){  
zeros[i]~dpois(phi[i])  
phi[i]<- -l[i]+C  
l[i]<-censor[i]*(log(b/theta[i])-y[i]/theta[i]-2*log(b+(1-b)*(1-
exp(-y[i]/theta[i]))))+ 
(1-censor[i])*(log(b)-y[i]/theta[i]-log(b+(1-b)*(1-exp(-
y[i]/theta[i]))))  
log(theta[i])<-inprod(X[i,],beta[]) }  
##Deviance dev<-sum(l[])  
Deviance<- -2*dev  
## Priors b~dunif(0,100)  
beta[1]~dnorm(0,0.001)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5 Summary of JAGS simulations after being fitted to the MOExp(b,  ) model for the myeloma patients data 
 

Parameter mu.vect sd.vect 2.5% 25% 50% 75% 97.5% Rhat n.eff 
Intercept 3.130 0.525 2.290 2.760 3.071 3.430 4.323 1.00 2000 

Age 0.005 0.026 -0.046 -0.012 0.005 0.022 0.057 1.00 2000 
Sex -0.185 0.380 -0.924 -0.443 -0.204 0.062 0.591 1.00 2000 
Bun -0.017 0.005 -0.026 -0.021 -0.018 -0.014 -0.007 1.00 2000 
Ca 0.017 0.126 -0.226 -0.0700 0.018 0.098 0.283 1.00 2000 
Hb -0.025 0.020 -0.0660 -0.039 -0.025 0.011 0.014 1.00 2000 

Pcells 0.001 0.006 -0.012 -0.004 0.001 0.004 0.011 1.00 350 
Protein 0.573 0.393 -0.255 0.311 0.580 0.832 1.310 1.00 2000 

Deviance 314 4.533 307 311 314 317 325 1.00 870 
b 1.66 1.217 0.265 0.868 1.370 2.140 4.901 1.01 1700 

 

                                    denplot(Fit.jags,parms=2:8)  

 
 

Figure  4 Posterior densities plots of JAGS for the MOExp(b, ) model, fit to the myeloma patients data 
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beta[7]~dnorm(0,0.001)  
for(j in c(2,3,4,5,6,8)){  
beta[j]~dnorm(0.0,.0001)  
}  
}", file="model.txt")  
JAGS model is completed, the rest of the work happens in R. In 
the code below, we define those data elements that are 
reference in the JAGS model and initial values for the 
parameters. The JAGS model file, data objects and initial 
values are passed to the Fit.jags function. 
inits<-
list(list(b=3,beta=coef(M2)*1.5),list(b=2.1,beta=coef(M2)*3))  
 Now, the above specified model is fitted with function Jags, an 
output object is Fit.jags.  
set.seed(12)  
Fit.jags<-jags(data=data, inits=inits, 
param=c("b","beta","Deviance"), n.chains=2, 
n.iter=10000,progress.bar=NULL, model.file="model.txt")  
print(Fit.jags)  
 

CONCLUSION 
 

This paper shows that it is possible to implement Bayesian 
approach to survival data. For this, three different tools i.e; 
asymptotic analytic tools using LaplaceApproximation and 
simulation using R2jags and LaplacesDemon have been 
proposed. After viewing the results obtained by these different 
tools in different sections, it is clear that simulation tools 
provide better results in terms of standard error as compared to 
that obtained by asymptotic approximation.  
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