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This paper focuses on the study of a stochastic model for predicting the excepted time to cross the 
antigenic diversity threshold of HIV infected using the intercontact time between the successive 
contact forms an order statistics. In the estimation of excepted time to seroconversion, there is an 
important role for the interarrival time between successive contact and its has a significance 
influence. We propose the stochastic model assuming the intercontact time between successive 
contact from a smallest order statistics and threshold distribution is Generalized Rayleigh 
Distribution. The mean time to seroconversion and its variance are derived and numerical 
illustrations are provided. 
 

 
 
 
 
 
  

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

INTRODUCTION 
 

One of the crucial points that has to be made about the 
HIV/AIDS epidemic is that it is different from most other 
epidemics and diseases. AIDS stands for Acquired Immune 
Deficiency Syndrome which is caused by Human 
Immunodeficiency Virus. In the study of HIV infection and its 
progression, the antigenic diversity of the antigen namely the 
HIV plays an important role. The intensity of sexual contact is 
an important factor that adds to the antigenic diversity since 
more number of new antigens are acquired by the individual 
who is getting infected. The time to seroconversion from the 
point of infection depends upon what is known as antigenic 
diversity, which acts against immune ability of an individual. 
The antigenic diversity threshold is a particular level of the 
antigenic diversity, above which the immune system is unable 
to suppress the virus population. According to Stiliankis et al. 
(1994) ‘the total virus population may escape control through 
continued generation of new mutants until the total number of 
different HIV strains exceeds the diversity threshold’. This 
model predicts unrestrained HIV replication, which includes 
transmission of more and more HIV in successive contacts and 
the simultaneous depletion of CD4 cells, the immune system of 

human body is completely suppressed which in turn leads to 
seroconversion. 
 

Mathematical methods have been developed by Nowak and 
May (1991), and Kirschner et al. (2000) developed suitable 
model to estimate the antigenic diversity threshold.  
Sathiyamoorthi and Kannan (2001) used the shock model and 
cumulative damage process evolved by Esary et al. (1973) to 
estimate the expected time to cross the antigenic diversity 
threshold. In the estimation of expected time to seroconversion 
there is an important role for interarrival times between 
successive contacts; and it has a significant influence.  In the 
case of persons exposed to HIV infection through sexual 
contacts, the contribution to the antigenic diversity would 
depend upon the number of contacts in the interval (0, t]. 
 

Ratchagar et al. (2003) have derived a model for the estimation 
of expected time to seroconversion of HIV infected using order 
statistics.  Kannan et al. (2008, 2009, 2013, 2015 and 2016) 
have obtained a stochastic model for estimation of expected 
time to seroconversion of HIV infected using order statistics 
and threshold follows Gamma, Erlang-2, Exponentiated 
Exponential, Exponentiated Modified Weibull, Exponential-
Geometric distribution. In this paper, it is assumed that the 
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threshold follows Generalized Rayleigh distribution and 
interarrival times form an order statistics; and so they are not 
independent.  This is due to the fact that if the smallest order 
statistics is taken, it implies that the interarrival times are 
becoming smaller.  Hence frequent contacts would be possible 
which will have its impact on the time to seroconversion. In 
this study, the theoretical results are substantiate using 
numerical data. 
 

Assumptions of the model 
 

The following are the assumptions underlying in the model 
developed here 
 

 The transmission of HIV is only through sexual 
contacts. 

 An uninfected individual has sexual contacts with HIV 
infected partner, and a random number of HIV are 
getting transmitted, at each contact. 

 An individual is exposed to a damage process acting on 
the immune system and the damage is assumed to be 
linear and cumulative. 

 The interarrival times between successive contacts are 
taken to be identically and independently distributed 
random variables. 

 The sequence of successive contacts and threshold level 
are independent. 

 From the collection of large number of interarrival times 
between successive contacts of a person, a random 
sample of ‘k’ observations are taken. 

 

Notations 
 

The notations used in this model are as follows 
 

iX  :  a random variable denoting the amount of damage 

arising due to
thi   contact 

's
iX  are identically and 

independently distributed with p.d.f.  .g  and c.d.f.

 .G . 

Y  :  a random variable representing the antigenic diversity 
threshold which follows Generalized Rayleigh 

distribution with parameter ' '  and ' '  the p.d.f. 

 .h  and c.d.f.  .H .  

 1U   :  a continuous random variable denoting the inter-arrival 
times between the contacts follows smallest order 

statistics with p.d.f. 
 
 

1uf t  and c.d.f. 
 
 

1uF t  . 

 .kg   :  the p.d.f. of the random variable 
1

k

i
i

X

  

 .kF  
:  

the ' 'thk  convolution of  .F .  

T  :  a continuous random variable denoting the time to 

seroconversion with p.d.f.   .l and c.d.f.  .L .   

 kV t  
: 

probability of exactly ' 'k  contacts in  0, t . 

 *l s  
:  

the Laplace Stieltjes transform of  l t .  

 *f s   
:  

the Laplace Stieltjes transform of  f t .  

 

Results  
 

It can be shown that 
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0
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Let Y ~ Generalized Rayleigh Distribution   , ,  
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k

g                              

The survival function S(t)  is 
 S(t) = P[T > t] 

  


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
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
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k
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
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




0k

t](0, in contactsk exactly  are therePr
  

* Pr{the cumulative total of antigenic diversity < Y} 
 

L(t) = 1 - S(t) 
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k k 1
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k
g  
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        k 1* 2 * 2
k

k 1

L(t) 1 2  F t 1 2  g g     
 


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On simplification 
       

        k 1* 2 * 2
k

k 1
(t) 2 1 2   f t 1 2l g g     

 


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Now Taking Laplace Stieltjes transform of l(t),which is 
denoted by l*(s), we have 
 

 
   
   

* 2

* 2

1 2 * s
* s

1 2 * s  

g f
l

g f

  

  

    
        

 

On simplification                                                            … (1) 
 

The inter-arrival times 1 2 3, , ,......., kU U U U  are i.i.d random 

variables.  Now arranging 1 2 3, , ,......., kU U U U in the 
increasing order of magnitude we get  
 

       1 2 3 ......... kU U U U    . 
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The p.d.f of the smallest order statistics is 

       ttF-1K t 1k 
)1(

ffu


 
The Laplace Stieltjes transform the same is given by 
 

      dt ttF-1K  e t 1k 

0 

st*
)1( ff u

   
 

Assuming that f(t) follows exp(c), it can be shown that 

 
skc

kcs)1(
*


uf

                                                        … (2) 
Substituting equation (2) in (1), we get 

 
 
 

* 2

*
* 2

1 2

2

g kc
l s

kc s g kc

  

  

    
              

On Simplification 
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On Simplification 
 

At       s = 0 

 * 2
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E T
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Let      * . expg �
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Then (4) in (3), we can get 
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On Simplification                                                         ….. (5) 
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At      s = 0 
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Let     * . expg �
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On Simplification 
 

Hence, the variance of time to seroconversion is V(T) = E(T2) - 
[E(T)]2 
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On Simplification 
Numerical Illustrations 
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CONCLUSIONS 

 

1. At the value of k  increases the mean time to 
seroconversion and its variance decreases.  This is due to 
the fact that as k  namely number of contacts in (0,t] 
decreases it means that the contact are more frequent.  

Table 4 
 

α 
0.2, 0.3, 2k     

0.5c   
Mean Variance 

0.1 2.333333 5.444444 
0.2 3.666667 13.444444 
0.3 5.000000 25.000000 
0.4 6.333333 40.111111 
0.5 7.666667 58.777778 
0.6 9.000000 81.000000 
0.7 10.333333 106.777778 
0.8 11.666667 136.111111 
0.9 13.000000 169.000000 
1 14.333333 205.444444 

 

 
 

Table 5 
 

c
0.5, 0.2, 0.3      

2k   
Mean Variance 

1 1.833333 3.361111 
2 0.916667 0.840278 
3 0.611111 0.373457 
4 0.458333 0.210069 
5 0.366667 0.134444 
6 0.305556 0.093364 
7 0.261905 0.068594 
8 0.229167 0.052517 
9 0.203704 0.041495 
10 0.183333 0.033611 
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Table-1 
 

k
0.5, 0.2, 0.3      

0.5c   
Mean Variance 

1 7.333333 53.77778 
2 3.666667 13.44444 
3 2.444444 5.975309 
4 1.833333 3.361111 
5 1.466667 2.151111 
6 1.222222 1.493827 
7 1.047619 1.097506 
8 0.916667 0.840278 
9 0.814815 0.663923 
10 0.733333 0.537778 

 

 

Table 2 
 

 
  

0.2, 0.3, 2k     

0.5c   
Mean Variance 

0.5 3.666667 13.444444 
1 2.222222 4.938272 

1.5 1.807512 3.267099 
2 1.666667 2.777778 

2.5 1.609628 2.590903 
3 1.584699 2.511272 

3.5 1.573951 2.477323 
4 1.570048 2.465052 

4.5 1.569630 2.463737 
5 1.571028 2.468128 

 

 
 

Table 3 
 

λ 
0.5, 0.2, 2k   

0.5c   
Mean Variance 

0.5 2.600000 6.760000 
1 1.800000 3.240000 

1.5 1.533333 2.351111 
2 1.400000 1.960000 

2.5 1.320000 1.742400 
3 1.266667 1.604444 

3.5 1.228571 1.509388 
4 1.200000 1.440000 

4.5 1.177778 1.387160 
5 1.160000 1.345600 
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Hence, it takes less time to cross the threshold.  It is 
easily seen from Table (1) and Fig. (1). 

2. From the fixed value of , ,k c  and   when threshold 
parameter    is allowed to increase than the expected 
time to seroconversion and its variance time to 
seroconversion are decreases as indicated in Table (2) 
and Fig.(2). 

3. From the fixed value of , ,k c  and   when threshold 

parameter   is allowed to increase than the expected 
time to seroconversion and its variance time to 
seroconversion are decreases as indicated in Table (3) 
and Fig.(3). 

4. It is observed from the Table (4), the contribution to the 
antigenic diversity threshold parameter ‘ ’ which 
increases, then the mean time to seroconversion and its 
variance increases. 

5. As the value of the parameter ‘c’ is the distribution of 
the times intervals between successive contacts shown 
an increase it means that the average time intervals 
between successive contacts which is given by 

  1E U
c

  since U~ Exp(c),  therefore time intervals 

between successive contacts becomes smaller and hence 
the mean time to seroconversion and its variance 
decreases. 
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