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An adaptive design allows adaptations of trial and statistical procedures after its initiation without 
undermining the validity and integrity of the trial. In recent years, the use of adaptive designs in 
clinical research and development based on accrued data has become very popular due to its 
flexibility and efficiency. Multiple comparison procedures after using adaptive design methods in 
clinical trials have received much attention in recent literature. Certain types of cancers, like breast 
cancer, leukemia, a substantial proportion of patients may now be cured by treatment, i.e., cured 
proportion. The patients who are cured are called immunes or long-term survivors, while the 
remaining patients who develop a recurrence of the diseases are termed susceptible. The population 
of interest is thus divided into two groups viz., cured and noncured. Cure rate models provides 
satisfactory models in such cases. In this paper, it is proposed to discuss the adaptive design methods 
and its multiple comparison procedures concerning the development of Velcade intended for 
multiple myeloma using cure rate models. Numerical example is provided.                                                      
 
 
  

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

INTRODUCTION 
 

The concept of adaptive design can be traced back to 1970s 
when the adaptive randomization and a class of designs for 
sequential clinical trials were introduced. As a result, most 
adaptive design methods in clinical research are referred to as 
adaptive randomization, group sequential designs with the 
flexibility for stopping a trial early due to safety, futility and/or 
efficacy, and sample size re-estimation at interim for achieving 
the desired statistical power.  
 

The use of adaptive design methods for modifying the trial 
and/or statistical procedure of on-going clinical trials based on 
accrued data has been practiced for years in clinical research. 
Adaptive design methods in clinical research are very attractive 
to clinical scientists due to the following reasons. First, it 
reflects medical practice in real world. Second, it is ethical with 
respect to both efficacy and safety (toxicity) of the test 
treatment under investigation. Third, it is not only flexible, but 
also efficient in the early and late phase of clinical 
development. However, it is a concern whether the p-value or 
confidence interval regarding the treatment effect obtained 
after the modification is reliable or correct. For a detailed 
study, refer to Chow et.al (2005), Jennison and Tumbull 
(2000), Hung et.al (2005). 
 

In recent years, the potential uses of adaptive design methods 
in clinical trials have attracted much attention. An adoptive 
design allows adaptations of trial and statistical procedures 
after its initiation without undermining the validity and 
integrity of the trial. In recent years, the use of adaptive designs 
in clinical research and development based on accrued data has 
become very popular due to its flexibility and efficiency. 
Multiple comparison procedures after using adaptive design 
methods in clinical trials have received much attention in 
recent literature. Cure rate models, used for modeling time-to-
event data, consist of a surviving fraction and have become 
increasingly popular in the analysis of data from clinical trials. 
Recently, the developments of new drugs and treatment 
regimens have resulted in patients living longer with certain 
types of cancer and heart disease.  Cure rate models have 
applications in a wide array of areas such as biomedical 
studies, criminology, finance, demography, manufacturing, and 
industrial reliability. At an individual level, diagnosis of cancer 
is regarded as a human tragedy. At the level of society, cancer 
is one of the major chronic diseases, causing a notable amount 
of health administrative costs. Prognosis and possible cure 
from cancer are thus important measures of lifetimes which can 
be assessed by analyzing the survival of cancer patients. 
Different statistical approaches are used for analyzing the 
cancer survival data. The results of survival analysis for cancer 
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patients have been widely presented and reported for different 
human sub populations of the globe Woolson  (1981), Kardaun 
(1983), Beadle et al., (1984), Sedmak et al., (1989).     
However, very few survival results at national level are 
available for the populations of Pakistan refer to Khan et al., 
(2004). McGarty (1974) has mentioned that for adopting any 
suitable. Statistical technique for analyzing survival data for 
certain types of cancers, like breast cancer, leukemia, a 
substantial proportion of patients may now be cured by 
treatment, i.e., cured proportion. The patients who are cured are 
called immunes or long-term survivors, while the remaining 
patients who develop a recurrence of the diseases are termed 
susceptible. The population of interest is thus divided into two 
groups viz., cured and noncured. Cure rate models provides 
satisfactory models in such cases.  In this paper, it is proposed 
to discuss the adaptive design methods in clinical trials using 
multiple comparison procedures concerning the development of 
Velcade intended for multiple myeloma. Numerical example is 
provided.   
 

Adaptive Design  
 

In clinical trials, it is not uncommon to modify trial and/or 
statistical procedures during the conduct of clinical trials based 
on the review of interim data. The purpose is not only to 
efficiently identify clinical benefits of the test treatment under 
investigation, but also to increase the probability of success of 
clinical development. Trial procedures are referred to as the 
eligibility criteria, study dose, treatment duration, study 
endpoints, laboratory testing procedures, diagnostic procedures, 
criteria for evaluability, and assessment of clinical responses. 
Statistical procedures include randomization, study design, 
study objectives/hypotheses, sample size, data monitoring and 
interim analysis, statistical analysis plan, and/or methods for 
data analysis. Thus, an adaptive design is defined as a design 
that allows adaptations to trial and/or statistical procedures of 
the trial after its initiation without undermining the validity and 
integrity of the trial. An adaptive design as a clinical trial 
design that uses accumulating data to decide on how to modify 
aspects of the study as it continues, without undermining the 
validity and integrity of the trial. In many cases, an adaptive 
design is also known as a flexible design 
 

Type of adaptive designs 
 

Based on (primarily prospective) adaptations employed, 
commonly considered adaptive design methods in clinical trials 
include, but are not limited to: (i) an adaptive randomization 
design, (ii) a group sequential design, (iii) a sample size re-
estimation design, (iv) a drop-the-loser design, (v) an adaptive 
dose finding (e.g., dose escalation) design, (vi) a biomarker-
adaptive design, (vii) an adaptive treatment-switching design, 
(viii) a hypothesis-adaptive design, (ix) an adaptive seamless 
phase II/III trial design, and (x) a multiple adaptive design.  
 

Multiple adaptive design 
  

A multiple-adaptive design is any combinations of the above 
adaptive designs. Commonly considered multiple-adaptation 
designs include (i) the combination of adaptive group 
sequential design, drop-the-losers design, and adaptive 
seamless trial design and (ii) adaptive dose-escalation design 
with adaptive randomization. In practice, since statistical 
inference for a multiple-adaptation design is often difficult, it is 

suggested that a clinical trial simulation be conducted to 
evaluate the performance of the resultant multiple adaptive 
design at the planning stage. 
 

Development of Velcade intended for Multiple Myeloma 
 

Multiple myeloma is a cancer of the blood. Some people with 
multiple myeloma have many symptoms, while others have 
few, if any. Common signs and symptoms of multiple myeloma 
may include: bone pain and broken bones, nausea and 
vomiting, fatigue, frequent infections, nervous system 
problems, anemia, and hypercalcemia. These symptoms may be 
referred to as CRAB: 
 

C=elevated Calcium, R=Renal (kidney) problems, A=Anemia, 
B=Bone lesions. 
 

Multiple myeloma affects the part of your bone called bone 
marrow. Your blood is produced in your bone marrow, which 
is made up of many different types of cells, including red blood 
cells, white blood cells, platelets, and plasma cells. A plasma 
cell is a type of white blood cell that normally produces 
antibodies to fight infections. If you have multiple myeloma, 
you have abnormal plasma cells, also called myeloma cells. 
These myeloma cells push out normal cells. They form tumors 
in bones and, sometimes, in various soft tissues of the body. 
Myeloma cells can collect over time and build up in the bone 
marrow. When they do, they prevent bone marrow from 
making enough blood cells for the body to fight infection and 
other diseases. Although multiple myeloma is not curable, there 
are many treatment options available. See the Appendix. 
 

Cox’s Regression Model 
 

Cox’s regression model (1972, 1975) based on the method of 
‘Partial likelihood’ plays a very important role in analyzing the 
data in a more realistic way on survival or fertility on any other 
kind involving population characteristics using Stochastic 
models. Suppose we are interested in the survival of patients 
suffering from hypertension. The hazard rate at any point of 
time need not necessarily depend on time only but also on a 
host of explanatory variables or covariates, some of which may 
not be expressed in quantitative form.  For example, other 
conditions affecting the hazard rate of an individual may be 
factors such as age, blood pressure, occupation, general health 
condition and the presence of other related complications etc.  
Cox’s regression model not only takes into account of all the 
explanatory variables but also is based on estimation 
techniques which estimate the parameters concerning the 
individual covariates independent of the parameters concerning 
the hazard rate on time t. 
 

To put the idea in concrete form let us take the simplest form of 
the Cox’s model. 

λ୨(t) = λ଴(t) exp ቈ
β′

~
z୨(t)
~						

቉ 
 

where 
j(t) ≡ hazard rate of the jth individual at any time t. 
0(t) ≡ hazard function with respect to time only ignoring the 
other covariates i.e., keeping zij = 0  i = 1,2,…,p; j = 1,2,…,n. 
Zj = (zj1, zj2,…,zjp) is the p-component covariate vector for 
the jth individual, j=1,2,…,n. 
Corresponding to every individual j=1,2,…n. the random 
variable Ti is the time of death, which in a randomly censored 
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sample is observed upto a period cj for the jth individual 
(j=1,2,…n).  Taking logarithm on both sides of Cox’s model 
we have. 
 

log j(t) = log 0(t) - [1z1 (t) + 2z2 (t) + … + pzp (t)] 
 

The equation could have been treated as a single equation log-
linear model for the estimation of i’s (i= 1,2,…,p) as well as 
0(t).  However, the innovativeness of Cox’s approach is that 
Cox proposed the estimates of the regression parameters 1, 
2,…,p independent of  0(t). Let R(t) =  {j: Tj ≥ t, cj} to be the 
risk set i.e the set of individual exposed to the risk under 
observations (the jth individual reserved observed between 
(0,cj)). Given that we have a set of n persons in the sample and 
that a person dies in the set the probability that the jth person 
dies (assuming that the deaths occur independently) is given by 
 

λୡ(t)expൣβ~
୸ౠ(୲)
~					 ൧

∑ λୡ(t)expൣβ~
୸ౠ(୲)
~					൧୨∈ୖ(୲)

=
expൣβ~

୸ౠ(୲)
~					 ൧

∑ expൣβ~
୸ౠ(୲)
~					൧୨∈ୖ(୲)

= P୐ 

 

the summation being extended over all the persons in the risk 
set R, Cox defined, 
 

L() = ෑ
expൣβ~

୸ౠ
~

(୲)
	 ൧

∑ expൣβ~
୸ౠ
~

(୲)
	 ൧୨∈ୖ(୲)୘ౠஸୡౠ

 

 

j=1,2,……….n (the product being extended over all j  Tj  cj, 
j=1,2,…,n). The partial likelihood estimating the parameters by 
the method of maximum likelihood conjectured that the method 
would give estimates of 1, 2,…, p which would have 
otherwise the asymptotic properties of the maximum likelihood 
estimators. 
 

Cox’s Partial likelihood 
 

The instantaneous propensity of leaving a job (or a profession) 
at time t is defined as the conditional probability of leaving a 
job (or profession) during an infinitesimal interval (t, t + di) 
given that the person was in job till the time t, denoting the 
hazard rate by h(t), we have 
 

h(t)dt =
f(t)dt
R(t)  

 

where R(t) is the Survival function or the probability of 
continuing the job at least upto a period t and f(t) di is the 
probability of leaving the job between    (t, t + di). It can be 
shown that R(t) = exp ቂ−∫ h(T)d(T)୲

଴ ቃ and  
 

f(t) = ୢ
ୢ୲
൫1− F(t)൯ = ୢ

ୢ୲
R(t). 

 

The Cox hazard model as indicated by (vide Gill (1984)), 
h(t) = h଴(t)exp	(βଵXଵ + βଶXଶ + βଷXଷ +⋯+ β୩X୩) 
 

where h0(t) represents the hazard rate or the rate of propensity 
of leaving at time t purely on the consideration of time or CLS 
in the profession. hu(t) is called the base line hazard rate. The 
probability that the ith person will leave the job at time t in (0, 
T) is given by 
 

୦బ(୲)ୣβభ౔భ౟శβమ౔మ౟శβయ౔య౟

୦బ(୲)∑ ୣβభ౔భ౟శβమ౔మ౟శβయ౔య౟౤
౟సభ

 ,  (i=1,2,…,n)               …(1) 
 

where Xଵ୧, Xଶ୧, Xଷ୧ are the scores of the covariates 1, 2 and 3 
respectively of the ith person. Note that the ratio in equ. (1) is 

independent of t, the length of service. If we take the product of 
all such terms for all the professionals with serial number 1, 
2,…, k, we get a simplified form of Cox’s partial likelihood 
given by 
 

P୐ = ∏ ୣβభ౔భ౟శβమ౔మ౟శβయ౔య౟

∑ ୣβభ౔భ౟శβమ౔మ౟శβయ౔య౟ౡ
౟సభ

୩
୧ୀଵ                … (2) 

 

Maximizing PL (or log PL) with respect to 1, 2and 3 
respectively, we get three estimating equations for estimating 
1, 2 and 3 (assuming eβభଡ଼భ౟ାβమଡ଼మ౟ାβయଡ଼య౟ ≅ 1 + βଵXଵ୧ +
βଶXଶ୧ + βଷXଷ୧) approximately both in the numerator and 
denominator of equ. (2) as follows: 
 

∑ Xଵ୧ − k
∑ ଡ଼భ౟൫ଵାβభଡ଼భ౟ାβమଡ଼మ౟ାβయଡ଼య౟൯
ౡ
౟సభ
∑ ൫ଵାβభଡ଼భ౟ାβమଡ଼మ౟ାβయଡ଼య౟൯
ౡ
౟సభ

୩
୧ୀଵ = 0              … (3) 

 

∑ Xଶ୧ − k
∑ ଡ଼మ౟൫ଵାβభଡ଼భ౟ାβమଡ଼మ౟ାβయଡ଼య౟൯
ౡ
౟సభ
∑ ൫ଵାβభଡ଼భ౟ାβమଡ଼మ౟ାβయଡ଼య౟൯
ౡ
౟సభ

୩
୧ୀଵ = 0              … (4) 

 

∑ Xଷ୧ − k
∑ ଡ଼య౟൫ଵାβభଡ଼భ౟ାβమଡ଼మ౟ାβయଡ଼య౟൯
ౡ
౟సభ
∑ ൫ଵାβభଡ଼భ౟ାβమଡ଼మ౟ାβయଡ଼య౟൯
ౡ
౟సభ

୩
୧ୀଵ = 0              … (5) 

 

Having estimated the parameters 1, 2 and 3 relating to the 
covariates, the parameters affecting the leaving from profession 
for personal reason or covariates, we estimate the parameter of 
the CLS corresponding to the base line hazard function. 
 

Bayesian Variable selection for Cox’s Regression model 
 

A proportional hazards model is denoted by a hazard function 
of the form 
 

h(t, x) = hୠ(t) exp(x′β) 
 

where hb(t) denotes the baseline hazard function at time t, x 
denotes the covariate vector for an arbitrary individual in the 
population, and β denotes a vector of regression coefficients. 
 

Prior and Posterior Distribution for hb 
 

Let G(α,λ) denote the gamma distribution with shape parameter 
α>0 and scale parameter λ>0, where the density is given by 
 

f(x|α, λ) = ቐ
λαxαିଵeିλ୶

Γ(α) ݔ > 0															

0																														otherwise
 

 

Consider a discrete gamma process prior for the baseline 
hazard rate. To denote the discrete gamma process, we first 
construct a finite partition of the time axis. Let 0 ≤ s0< 
s1<…<sm denote this finite partition, with sm > tj, for all j = 
1,…,n.  
 

Let ξ୧ = hୠ(s୧) − hୠ(s୧ିଵ) 
 

denote the increment in the baseline hazard in the interval (si−1; 
si); i = 1,…,M. The ξi's are random variables since the baseline 
hazard is assumed random. The ξi's are independent a priori, 
and have gamma distributions, which are induced by the 
underlying gamma process. Thus, the ξi's have independent 
gamma distributions with shape parameters α(si)-α(si−1) and 
scale parameter λ. The variance of the gamma process is 
controlled by choosing λ large or small to reflect vague prior 
beliefs at various time intervals. Letting τ =(ξ1,…, ξ m); the 
prior density of τ is given by 

P୰ = ψ(τ) = ෑ f൫ξ୧൯
୫

୧ୀଵ
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where f(ξi) is a G{α(si)−α(si−1), λ} density. The prior 
parameters of the ξ i's may be chosen to depend on m. Choices 
of prior parameters for τ can be made in several ways. One may 
take vague choices of prior parameters for the ξ i's such as              
α(s) = si−si−1 for si−1≤ s ≤ si, and take λ large. This choice may 
be suitable if there is little prior information available on the 
baseline hazard rate. 
 

We assume a priori independence between the baseline hazard 
rate and the regression coefficients, and thus the joint prior 
density of (β(m), τ)under model m is given by 
 

ψ൫β(୫), τ|m൯ = ψ൫β(୫)|m൯ψ(τ) 
 

We consider a fully parametric multivariate normal prior for 
β(m), since the normal prior has proved to be a flexible and 
useful class of priors for many regression problems, refer to 
Geisser (1993). Thus let Np(μ,T) denotes the p dimensional 
multivariate normal distribution with mean μ and precision 
matrix Q . Thus, under model m, we take 
 

β(୫)~N୩ౣ൫μ
(୫), c଴	Q୫൯ 

 

where c଴ is a scalar quantifying the degree of prior belief one 
wishes to attach to μ(m). Under model m, we have the prior 
information W0= (n0, y0, X0,m, δ0) and c଴, where X0,m is an 
n0×km design matrix, y0 is an n0×1 vector of prior predictions, 
and δ0 is the corresponding n0×1 vector of censoring indicators. 
We take the prior mean of β(m) to be the solution to Cox's 
partial likelihood equations for β(m) using W0 as data. Suppose 
there are r failures and n0− r right censored values in y0. Cox's 
partial likelihood for β(m) based on W 0 is given by 
 

L∗൫β(୫)൯ = ∏ ቎
ୣ୶୮൜୶బ౟

(ౣ)′
β(ౣ)ൠ

∑ ୣ୶୮൜୶బ౟
(ౣ)′

β(ౣ)ൠℓϵ౎൫౯బ౟൯

቏୰
୧ୀଵ                … (6) 

 

where x଴୧
(୫)′

 is the ith row of X0,m, (y01,…,y0r) are the ordered 
failures and R(y0i) is the set of labels attached to the individuals 
at risk just prior to y0i. Now we take μ(m) to be the solution to 
 

∂ log൛L∗൫β(୫)൯ൟ
∂β୨

(୫) = 0 

 

j = 1,…,km. The matrix Q m is taken to be the Fisher 
information matrix of β(m) based on the partial likelihood in 
(5). Thus 
 

Q୫ = ൥
−∂ଶ

∂β୧
(୫) ∂β୨

(୫) log൛L∗൫β(୫)൯ൟ൩อ
β(ౣ)ୀμ(ౣ)

 

 

Given the prior prediction y0, the prior probability of model m 
for the current study based on an update of y0 via Bayes 
theorem is given by 
p(m) = p(m|D଴) = ୮(୛బ|୫)୮బ(୫)

∑ ୮(୛బ|୫)୮బ(୫)ౣ∈౉
               … (7) 

 

where 

p(W଴|m) = ඵL൫τ, β(୫); W଴൯ψ଴൫β
(୫)|m൯ψ଴(τ)dβ(୫)dτ 

and L(τ, β(m), W0) is the likelihood function of the parameters 
based on D0.The posterior probability of model m (for the 
current study) is given by 
 

p(m|W) =
p(W|m)p(m)

∑ p(W|m)p(m)୫∈୑
 

 

where p(W|m) denotes the marginal distribution of the data 
given model m, and p(m) denotes the prior probability of 
model m given by (7). The marginal density p(W|m) 
corresponds precisely to the normalizing constant of the joint 
posterior density of (τ, β(m)). That is, 

p(W|m) = ඵL൫τ, β(୫); W൯ψ൫β(୫)|m൯ψ(τ)dβ(୫)dτ 
 

Finally, we let p(β, τ |W) denote the posterior distribution of 
the full model, that is, 
 

p(β, τ|W)	αL(β, τ|W)ψ(β|K)ψ(τ) 
where β = (β1, β2, …, βk) ׳ ; m = 1,2,…,k ;  k is the dimension 
of the model and is denoted by full model. 
 

Real data example: Cox’s proportional hazard model 
 

Assume the Completed Length of Service (CLS) distribution 
follows Gamma, the probability density function is 
 

f୶(t) = (λ୲)౤షభ

Γ(୬) λeିλ୲, λ> 0, n > 0, t > 0 
 

The reliability function is 
 

R୶(t) = ଵ
Γ(୬) ∫ u୬ିଵeି୳du∞

λ୲ , λ> 0, n > 0, t ≥ 0              … (8) 
 

which can be recognized as incomplete Gamma function. 

h୶(t) = (λ୲)౤షభλୣషλ౪

∫ ୳౤షభୣష౫ୢ୳∞
λ౪

, 
 

In this case it can be observed that hx(t) is an increasing 
function of t, when n>1. The calculations of hx(t) is rather 
complex as it involves incomplete gamma integrals. However, 
the expression for hx(t) is obtained using computer. First, the 
least square estimate of the λ and n are obtained for the 
stimulated observations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1 Variable Recorded-Multiple Myeloma Patients 
 

Notation Variable Name 
t Survival time from diagnosis to nearest month +1 
t' Maximum observed survival time from diagnosis +1 

A/D 0 – Alive, 1 – Dead 
X0 Constant = 1.0 
X1 log BUN at diagnosis 
X2 Hemoglobin at diagnosis 
X3 Platelets at diagnosis 0 – abnormal, 1 – normal 
X4 Infection at diagnosis 0 – none, 1 – present 
X5 Age at diagnosis (complete years) 
X6 Sex 1 – Male, 2 – Female 
X7 log WBC at diagnosis 
X8 Fractures at diagnosis 0 – none, 1 – present 
X9 log %BM (log % of plasma bone marrow) 
X10 % Lymphocytes in peripheral blood at diagnosis 
X11 % Myeloma cells in peripheral blood at diagnosis 
X12 Proteinuria at diagnosis 
X13 Bence Jone protein in urine at diagnosis 1 – present, 2 – none 
X14 Total serum protein at diagnosis 
X15 Serum globins (gm%) at diagnosis 
X16 Serum calcium (mgm%) at diagnosis 
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Using Newton-Raphson iterative procedure, with the statistical 
analysis and system (SAS) package, the value of λ෠ and nො for 
the simulated data set are obtained. Using λ෠ and nො in equ. (8), 
and using the estimated values of β1, β2, β3 has given in equ. (1) 
to (3), the propensity of leaving the organization upto the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
estimated number of years for the different combinations of 
personal covariates using hx(t), as Gamma distribution for CLS 
in the case of Cox’s proportional hazard model has been 
estimated. For more detailed discussion the Cox’s proportional 

Table 2 Data Set-Multiple Myeloma* 
 

Case No. t t' A/D X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 
1 1.25 40 1 1.0 2.2175 9.4 1.0 0.0 67.0 1.0 3.6628 1.0 1.9542 0.0 0.0 12.0 2.0 11.0 7.0 10.0 
2 1.25 51 1 1.0 1.9395 12 1.0 1.0 38.0 1.0 3.9868 1.0 1.9542 0.0 0.0 20.0 1.0 6.0 3.0 18.0 
3 2.00 21 1 1.0 1.5185 9.8 0.0 1.0 81.0 1.0 3.8751 1.0 2.0000 0.0 0.0 2.0 1.0 11.0 8.0 15.0 
4 2.00 54 1 1.0 1.7482 11.3 0.0 0.0 75.0 1.0 3.8062 1.0 1.2552 13.0 52.0 0.0 2.0 9.0 6.0 12.0 
5 2.00 41 1 1.0 1.3010 5.1 1.0 0.0 57.0 1.0 3.7243 1.0 2.0000 0.0 0.0 3.0 1.0 10.0 6.0 9.0 
6 3.00 29 1 1.0 1.5441 6.7 1.0 1.0 46.0 2.0 4.4757 0.0 1.9345 3.0 5.0 12.0 2.0 9.0 3.0 10.0 
7 5.00 19 1 1.0 2.2355 10.1 1.0 0.0 50.0 2.0 4.9542 1.0 1.6628 8.0 27.0 4.0 1.0 6.0 4.0 9.0 
8 5.00 29 1 1.0 1.6812 6.5 1.0 0.0 74.0 1.0 3.7324 0.0 1.7324 1.0 25.0 5.0 2.0 10.0 7.0 9.0 
9 6.00 90 1 1.0 1.3617 9 1.0 1.0 77.0 1.0 3.5441 0.0 1.4624 7.0 51.0 1.0 2.0 7.0 5.0 8.0 
10 6.00 85 1 1.0 2.1139 10.2 0.0 0.0 70.0 2.0 3.5441 1.0 1.3617 6.0 68.0 1.0 2.0 9.0 7.0 8.0 
11 6.00 14 1 1.0 1.1139 9.7 1.0 0.0 60.0 1.0 3.5185 1.0 1.3979 11.0 30.0 0.0 2.0 11.0 7.0 10.0 
12 6.00 25 1 1.0 1.4150 10.4 1.0 0.0 67.0 2.0 3.9294 1.0 1.6902 10.0 33.0 0.0 2.0 10.0 6.0 8.0 
13 7.00 93 1 1.0 1.9777 9.5 1.0 0.0 48.0 1.0 3.3617 1.0 1.4682 9.0 41.0 5.0 2.0 9.0 3.0 10.0 
14 7.00 61 1 1.0 1.0414 5.1 0.0 0.0 61.0 2.0 3.7324 1.0 2.0000 0.0 0.0 1.0 2.0 8.0 4.0 10.0 
15 7.00 92 1 1.0 1.1761 11.4 1.0 0.0 53.0 2.0 3.7243 1.0 1.5185 13.0 42.0 1.0 1.0 9.0 6.0 13.0 
16 9.00 89 1 1.0 1.7243 8.2 1.0 0.0 55.0 1.0 3.7993 1.0 1.7407 4.0 31.0 0.0 2.0 9.0 6.0 12.0 
17 11.00 68 1 1.0 1.1139 14 1.0 0.0 61.0 1.0 3.8808 1.0 1.2788 8.0 49.0 0.0 2.0 8.0 5.0 10.0 
18 11.00 15 1 1.0 1.2304 12 1.0 0.0 43.0 1.0 3.7709 1.0 1.1761 7.0 48.0 1.0 1.0 12.0 8.0 9.0 
19 11.00 35 1 1.0 1.3010 13.2 1.0 0.0 65.0 1.0 3.7993 1.0 1.8195 4.0 21.0 1.0 2.0 8.0 4.0 10.0 
20 11.00 78 1 1.0 1.5682 7.5 1.0 0.0 70.0 1.0 3.8865 0.0 1.6721 5.0 35.0 0.0 2.0 7.0 5.0 12.0 
21 11.00 41 1 1.0 1.0792 9.6 1.0 0.0 51.0 2.0 3.5051 1.0 1.9031 5.0 10.0 0.0 2.0 7.0 3.0 9.0 
22 13.00 93 1 1.0 0.7782 5.5 0.0 1.0 60.0 2.0 3.5798 1.0 1.3979 12.0 55.0 2.0 2.0 10.0 8.0 10.0 
23 14.00 28 1 1.0 1.3979 14.6 1.0 1.0 66.0 1.0 3.7243 1.0 1.2553 7.0 51.0 2.0 1.0 9.0 4.0 10.0 
24 15.00 39 1 1.0 1.6021 10.6 1.0 0.0 70.0 1.0 3.6902 1.0 1.4314 16.0 46.0 0.0 2.0 9.0 5.0 11.0 
25 16.00 62 1 1.0 1.3424 9 1.0 0.0 48.0 1.0 3.9345 1.0 2.0000 0.0 0.0 0.0 2.0 8.0 4.0 10.0 
26 16.00 93 1 1.0 1.3222 8.8 1.0 0.0 62.0 2.0 3.6990 1.0 0.6990 5.0 41.0 17.0 2.0 8.0 4.0 10.0 
27 17.00 79 1 1.0 1.2304 10 1.0 0.0 53.0 1.0 3.8808 1.0 1.4472 9.0 50.0 4.0 2.0 10.0 7.0 9.0 
28 17.00 60 1 1.0 1.5911 11.2 1.0 1.0 68.0 1.0 3.4314 0.0 1.6128 1.0 46.0 1.0 2.0 9.0 6.0 10.0 
29 18.00 49 1 1.0 1.4472 7.5 1.0 0.0 65.0 2.0 3.5682 0.0 0.9031 17.0 46.0 7.0 2.0 6.0 4.0 8.0 
30 19.00 44 1 1.0 1.0792 14.4 1.0 0.0 51.0 1.0 3.9191 1.0 2.0000 0.0 0.0 6.0 2.0 13.0 7.0 15.0 
31 19.00 52 1 1.0 1.2553 7.5 0.0 0.0 60.0 2.0 3.7924 1.0 1.9294 2.0 10.0 5.0 1.0 6.0 3.0 9.0 
32 24.00 39 1 1.0 1.3010 14.6 1.0 0.0 56.0 2.0 3.0899 1.0 0.4771 12.0 52.0 0.0 2.0 4.0 3.0 9.0 
33 25.00 56 1 1.0 1.0000 12.4 1.0 0.0 67.0 1.0 3.8195 1.0 1.6435 3.0 23.0 0.0 2.0 7.0 3.0 10.0 
34 26.00 34 1 1.0 1.2304 11.2 1.0 0.0 49.0 2.0 3.6021 1.0 2.0000 0.0 0.0 27.0 1.0 6.0 3.0 11.0 
35 32.00 48 1 1.0 1.3222 10.6 1.0 0.0 46.0 1.0 3.6990 1.0 1.6335 6.0 32.0 1.0 2.0 12.0 8.0 9.0 
36 35.00 66 1 1.0 1.1139 7 0.0 0.0 48.0 1.0 3.6502 1.0 1.1761 16.0 42.0 4.0 1.0 12.0 9.0 10.0 
37 37.00 237 1 1.0 1.6021 11 1.0 0.0 63.0 1.0 3.9542 0.0 1.2041 10.0 53.0 7.0 1.0 7.0 4.0 9.0 
38 41.00 58 1 1.0 1.0000 10.2 1.0 0.0 69.0 1.0 3.4771 1.0 1.4771 5.0 30.0 6.0 1.0 10.0 6.0 10.0 
39 41.00 73 1 1.0 1.1461 5 1.0 0.0 70.0 2.0 3.5185 1.0 1.3424 18.0 53.0 0.0 2.0 7.0 4.0 9.0 
40 51.00 61 1 1.0 1.5682 7.7 0.0 0.0 74.0 1.0 3.4150 1.0 1.0414 10.0 50.0 4.0 1.0 12.0 8.0 13.0 
41 52.00 57 1 1.0 1.0000 10.1 1.0 0.0 60.0 2.0 3.8573 1.0 1.6532 1.0 27.0 4.0 1.0 10.0 7.0 10.0 
42 54.00 94 1 1.0 1.2553 9 1.0 0.0 49.0 1.0 3.7243 1.0 1.6990 8.0 37.0 2.0 1.0 8.0 3.0 10.0 
43 58.00 74 1 1.0 1.2041 12.1 1.0 0.0 42.0 2.0 3.6990 1.0 1.5798 9.0 35.0 22.0 1.0 7.0 4.0 10.0 
44 66.00 74 1 1.0 1.4472 6.6 1.0 0.0 59.0 1.0 3.7853 1.0 1.8195 4.0 22.0 0.0 2.0 5.0 3.0 9.0 
45 67.00 97 1 1.0 1.3222 12.8 1.0 0.0 52.0 1.0 3.6435 1.0 1.0414 24.0 54.0 1.0 1.0 11.0 7.0 10.0 
46 88.00 90 1 1.0 1.7161 10.6 1.0 0.0 47.0 2.0 3.5560 0.0 1.7559 22.0 17.0 21.0 1.0 6.0 3.0 9.0 
47 89.00 121 1 1.0 1.3222 14 1.0 1.0 63.0 1.0 3.6532 1.0 1.6232 7.0 38.0 1.0 1.0 9.0 7.0 9.0 
48 92.00 11 1 1.0 1.4314 11 1.0 0.0 58.0 2.0 4.0755 1.0 1.4150 12.0 36.0 4.0 1.0 9.0 6.0 11.0 
49 4.00 4 0 1.0 1.9542 10 1.0 0.0 59.0 1.0 4.0453 0.0 0.7782 21.0 51.0 12.0 1.0 7.0 3.0 10.0 
50 4.00 4 0 1.0 1.9243 10 1.0 1.0 49.0 2.0 3.9590 0.0 1.6232 21.0 24.0 0.0 2.0 17.0 12.0 13.0 
51 7.00 7 0 1.0 1.1139 12.4 1.0 0.0 48.0 2.0 3.7993 1.0 1.8573 1.0 11.0 0.0 2.0 6.0 3.0 10.0 
52 7.00 7 0 1.0 1.5315 10.2 1.0 1.0 81.0 1.0 3.5911 0.0 1.8808 1.0 16.0 0.0 2.0 12.0 10.0 11.0 
53 8.00 8 0 1.0 1.0792 9.9 1.0 0.0 57.0 2.0 3.8325 1.0 1.6532 1.0 40.0 0.0 2.0 8.0 4.0 8.0 
54 12.00 12 0 1.0 1.1461 11.8 1.0 0.0 46.0 2.0 3.6435 0.0 1.1461 7.0 47.0 0.0 2.0 7.0 3.0 7.0 
55 11.00 11 0 1.0 1.6128 14 1.0 0.0 60.0 1.0 3.7324 1.0 1.8451 0.0 0.0 3.0 1.0 6.0 2.0 9.0 
56 12.00 12 0 1.0 1.3979 8.8 1.0 0.0 66.0 2.0 3.8388 1.0 1.3617 8.0 50.0 0.0 2.0 9.0 5.0 9.0 
57 13.00 13 0 1.0 1.6628 4.9 0.0 0.0 71.0 2.0 3.6435 0.0 1.7924 2.0 21.0 0.0 2.0 10.0 11.0 9.0 
58 16.00 16 0 1.0 1.1461 13 1.0 0.0 55.0 1.0 3.8573 0.0 0.9031 13.0 53.0 0.0 2.0 9.0 5.0 9.0 
59 19.00 19 0 1.0 1.3222 13 1.0 0.0 59.0 2.0 3.7709 1.0 2.0000 0.0 0.0 1.0 2.0 8.0 4.0 10.0 
60 19.00 19 0 1.0 1.3222 10.8 1.0 0.0 69.0 2.0 3.8808 1.0 1.5185 0.0 0.0 0.0 2.0 10.0 7.0 10.0 
61 28.00 28 0 1.0 1.2304 7.3 1.0 1.0 82.0 2.0 3.7482 1.0 1.6721 7.0 40.0 0.0 2.0 7.0 4.0 9.0 
62 41.00 41 0 1.0 1.7559 12.8 1.0 0.0 72.0 1.0 3.7243 1.0 1.4472 2.0 56.0 1.0 1.0 7.0 3.0 9.0 
63 53.00 53 0 1.0 1.1139 12 1.0 0.0 66.0 1.0 3.6128 1.0 2.0000 0.0 0.0 1.0 2.0 6.0 3.0 11.0 
64 57.00 57 0 1.0 1.2553 12.5 1.0 0.0 66.0 1.0 3.9685 0.0 1.9542 0.0 0.0 0.0 2.0 8.0 4.0 11.0 
65 77.00 77 0 1.0 1.0792 14 1.0 0.0 60.0 1.0 3.6812 0.0 0.9542 4.0 50.0 0.0 2.0 6.0 3.0 12.0 

 

*source Krall et. al. (1975) and Kailash (1992) 
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hazard model using real data example, refer to Elangovan 
(1998) and Elangovan et.al.(2006). 
 

Multiple Myeloma Study 
 

A real data example has been taken from Krall et.al. (1975) and 
Kailash (1992). The former study of Krall et.al. Analyze data 
from study on multiple myeloma in which n0=65 patients with 
alkylating agent. Of those patients, 48 died during the study 
and 17 survived. The response variable measured for these data 
at diagnosis. These are blood urea nitrogen, hemoglobin, 
platelet count age, white blood cell count, bone fractures, 
percentage of the plasma cells in bone marrow, proteinuria, and 
serum calcium. These are typical covariates measured in 
multiple myeloma studies. Another multiple myeloma study 
using similar alkylating agents was studied by Kailash (1992), 
had n = 479 patients with the same set of covariates being 
measured. 
 

Based on the Myeloma study by Krall et. al. (1975) and 
Kailash (1992) given in table 1 and table 2, taking k=8 
covariates x1, x2, x3, x4,x5, x6, x7 and x8. Standaization can be 
done to avoid computational difficulties using the method 
suggested by Gills and Wild (1992). For the prior distribution 
of β(m) the prior mean was chosen to be the solution to Cox 
partial likelihood using the data given in table 2 and the prior 
precision matrix was computed using the equ. Given in (6) with 
data W0. Using the simulation by Gibbs sample, refer to 
Rubinstein (1981), with the following data values as an input c0 
= n0 / n = 65/339 = 0.19 and (r1, r2) = (0.10, 0.15). For each 
value of c0 in model with largest prior probability and the 
model with largest posterior probability has been obtained and 
is given in table 3.Forthe ranges of c0 given in Table 2, the (x1, 
x2, x3, x4, x7, x8) model consistently obtains the largest 
posterior probability. Also, we note that when we use a uniform 
prior on the model space, the (x1, x2, x3, x4, x7, x8) model 
obtains the largest posterior model probability with value 
0.403.  
 

The real data example shown in previous section using 
proportional hazard model based on three covariates only. If 
more number of covariates are used in such a case computation 
will be so difficult and it is observed that most of the covariate 
combinations, the propensities to leave increase with time. It is 
not so in the case of computing prior and posterior probability 
using multiple myeloma study. The prior and posterior 
probability can be calculated only moderate variable selecting 
problem involving 15 - 20 covariates. For more than 20 
covariates and for large regression problem, the method 
suggested by George and McCulloch (1993) can be adopted for 
the proportional hazard model. As is well known that in the 
case of Cox’s proportional hazard model and Bayesian variable 
selection model based on the real data example, it is observed 
that both the model are perhaps equally suitable. Based on the 
Myeloma data example the simulation results showed that the 
posterior models probabilities were not sensitive to the 
increasing hazard rate assumption and this is not to be true in 
general. Once the figures or information’s are made available, 
the application of the models would be really helpful for future 
decision. Hence it shows that Bayesian variable selection for 
Cox’s regression model performs effectively. Finally the 
proposal methodology (in both proportional hazard and 
Bayesian variable selection) can be used as a tool for screening 

suitable subsets of models which could be consider for future 
analysis. The adaptive design methods in clinical trials using 
multiple comparison procedures concerning the development of 
Velcade intended for multiple myeloma based on Bayesian 
perspective and Cox’s approach is best suited to data set and 
gives better estimates and more consistent results for the 
Velcade intended for multiple myeloma. The methodology 
used for the real data example using multiple myeloma is found 
to be best fit for the cure rate models discussed in the recent 
literature.   
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APPENDIX 

 

Supporting Medical Necessity for Velcade Indications:  
 

Velcade (bortezomib) is indicated for the treatment of patients 
with multiple myeloma and patients with mantle cell 
lymphoma. 
 

Contraindications: Velcade is contraindicated in patients with 
hypersensitivity (not including local reactions) to bortezomib, 
boron, or mannitol, including anaphylactic reactions. Velcade 
is contraindicated for intrathecal administration. Fatal events 
have occurred with intrathecal administration of Velcade. 
 

Warnings and Precautions: Velcade is for subcutaneous or IV 
administration only. Because each route of administration has a 
different reconstituted concentration, caution should be used 
when calculating the volume to be administered. 
 

1. Peripheral neuropathy, including severe cases, may occur. 
Patients should be monitored for symptoms and managed 
with dose modification or discontinuation. Patients with 
preexisting symptoms may experience worsening 
peripheral neuropathy (including ≥Grade 3). Starting with 
Velcade subcutaneously may be considered for patients 
who either have preexisting or are at high risk for 
peripheral neuropathy. 

2. Hypotension: Caution should be used when treating 
patients receiving antihypertensives, those with a history 
of syncope, and those who are dehydrated. 

3. Cardiac toxicity, including acute development or 
exacerbation of congestive heart failure and new onset of 
decreased left ventricular ejection fraction, has occurred. 
Isolated cases of QT-interval prolongation have been 
reported. Patients with risk factors for, or existing, heart 
disease should be closely monitored. 

4. Pulmonary toxicity: Acute respiratory distress syndrome 
(ARDS) and acute diffuse infiltrative pulmonary disease of 
unknown etiology have occurred (sometimes fatal). 
Pulmonary hypertension, in the absence of left heart failure 
or significant pulmonary disease, has been reported. In the 
event of new or worsening cardiopulmonary symptoms, 
consider interrupting VELCADE until a prompt and 
comprehensive diagnostic evaluation is conducted. 

5. Posterior reversible encephalopathy syndrome has 
occurred. Consider MRI imaging for onset of visual or 
neurological symptoms; discontinue VELCADE if 
suspected. 

6. Gastrointestinal toxicity, including nausea, diarrhea, 
constipation, and vomiting, has occurred and may require 
use of antiemetic and antidiarrheal medications or fluid 
replacement. Interrupt Velcade for severe symptoms. 

7. Thrombocytopenia/Neutropenia: Manage with dose and/or 
schedule modifications. Complete blood counts should be 
monitored frequently during treatment. There have been 
reports of gastrointestinal and intracerebral hemorrhage. 
Support with transfusions and supportive care, according 
to published guidelines. 

8. Tumor lysis syndrome: Closely monitor patients with high 
tumor burden and take appropriate precautions. 

9. Hepatic toxicity: Monitor hepatic enzymes during 
treatment. Upon occurrence, interrupt therapy with 
VELCADE to assess reversibility. 

10. Embryo-fetal risk: Women should avoid breast-feeding or 
becoming pregnant while on VELCADE. 

11. Patients with diabetes may require close monitoring and 
adjustment of the antidiabetic medications. 

 

Drug Interactions: Closely monitor patients receiving 
VELCADE in combination with strong CYP3A4 inhibitors. 
Avoid concomitant use of strong CYP3A4 inducers. 
 

Adverse Reactions 
 

1. Previously untreated multiple myeloma (MM): In the 
phase 3 study of VELCADE administered intravenously 
with melphalan and prednisone (MP) vs MP alone, the 
most commonly reported adverse reactions (ARs) were 
thrombocytopenia (48% vs 42%), neutropenia (47% vs 
42%), peripheral neuropathy (46% vs 1%), nausea (39% vs 
21%), diarrhea (35% vs 6%), neuralgia (34% vs <1%), 
anemia (32% vs 46%), and leukopenia (32% vs 28%). 

2. Relapsed MM subcutaneous vs IV: In the phase 3 study of 
VELCADE administered subcutaneously vs intravenously 
in relapsed MM, safety data were similar between the two 
treatment groups. The most commonly reported ARs in the 
subcutaneous vs IV treatment groups were peripheral 
neuropathy (37% vs 50%) and thrombocytopenia (30% vs 
34%). The incidence of serious ARs was similar in the 
subcutaneous treatment group (20%) and the IV treatment 
group (19%). The most commonly reported serious ARs 
were pneumonia and pyrexia (each 2%) in the 
subcutaneous treatment group and pneumonia, diarrhea, 
and peripheral sensory neuropathy (each 3%) in the IV 
treatment group. 

3. Previously untreated mantle cell lymphoma (MCL): In a 
phase 3 study of VELCADE administered intravenously 
with rituximab, cyclophosphamide, doxorubicin, and 
prednisone (VR-CAP) vs vincristine, rituximab, 
cyclophosphamide, doxorubicin, and prednisone (R-
CHOP), the most commonly reported ARs were 
neutropenia (87% vs 71%), thrombocytopenia (72% vs 
17%), leukopenia (48% vs 36%), anemia (44% vs 29%), 
lymphopenia (28% vs 12%), peripheral neuropathy (30% 
vs 27%), diarrhea (25% vs 5%), nausea (23% vs 12%), and 
pyrexia (20% vs 10%). 

4. Relapsed MM and MCL: In the integrated analysis of 1163 
patients in phase 2 and 3 studies of VELCADE 
administered intravenously, the most commonly reported 
ARs were nausea (49%), diarrhea NOS (46%), fatigue 
(41%), peripheral neuropathy NEC (38%), and 
thrombocytopenia (32%). A total of 26% of patients 
experienced serious ARs. The most commonly reported 
serious ARs included diarrhea, vomiting, and pyrexia 
(each 3%); nausea, dehydration, and thrombocytopenia 
(each 2%); and pneumonia, dyspnea, peripheral 
neuropathies NEC, and herpes zoster (each 1%). 

 
Multiple Myeloma. Getting the facts 
 

Multiple myeloma is a cancer of the blood. Some people with 
multiple myeloma have many symptoms, while others have 
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few, if any. Common signs and symptoms of multiple myeloma 
may include: bone pain and broken bones, nausea and 
vomiting, fatigue, frequent infections, nervous system 
problems, anemia, and hypercalcemia. These symptoms may be 
referred to as CRAB. C=Elevated Calcium; R=Renal (kidney) 
problems; A=Anemia; B=Bone lesions; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Multiple myeloma affects the part of your bone called bone 
marrow. Your blood is produced in your bone marrow, which 
is made up of many different types of cells, including red blood 
cells, white blood cells, platelets, and plasma cells. A plasma 
cell is a type of white blood cell that normally produces 
antibodies to fight infections. If you have multiple myeloma, 
you have abnormal plasma cells, also called myeloma cells. 
These myeloma cells push out normal cells. They form tumors 
in bones and, sometimes, in various soft tissues of the body. 
Myeloma cells can collect over time and build up in the bone 
marrow. When they do, they prevent bone marrow from 
making enough blood cells for the body to fight infection and 
other diseases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
Figure targeting multiple myeloma cancer stem cell (MM 
CSC)-like cells. Targeting MM CSC-like cells or side 
population cells is clinically relevant to improve therapeutic 
efficacy. Different approaches have been preclinically 
investigated to target molecular, metabolic and epigenetic 
signatures, and the self-renewal signaling pathways 
characteristic of MM CSC-like cells. Abbreviations: ATP, 
adenosine triphosphate; ADP, adenosine diphosphate; C3B3: 
anti-HLA class I Fv diabody; 3BrPA, 3-bromopyruvate; 
BCRP1: breast cancer resistance protein 1; HDAC, histone 
deacetylase; HKII, hexokinase II; MCT1, monocarboxylate 
transporter1; SMO: smoothened. 
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