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There is a huge problem of soil pollution throughout the world. Its results lead to thrashing of 
environment and health. So it is important to know about soil quality with metals. This research 
aims to identify content of copper within soil samples using FieldSpec4Spectroradiometer 
(Analytical Spectral Devices, Inc., USA). The instrument ASD FieldSpec4 Spectroradiometer is 
used for gathering spectral signature of soil samples collected from different agricultural lands in 
Aurangabad district of Maharashtra state in India. We used Partial Least Squares Regression (PLSR) 
to calculate the expected reflectance spectroscopy in the VNIR ranges to identify the copper content 
in the soil samples. It is used with several spectral preprocessing techniques including first 
derivative and Savitzky-Golay smoothing, Absorbance, Standard Normal Variate and Continuum 
Removal. Then, the expected results were evaluated by relative root mean square error (RRMSE) 
and coefficients of determination (R2). According to the criteria of minimal RRMSE and maximal 
R2, the observations using the PLSR models with the FD pretreatment was (RRMSE =0.0008-
0.1453, R2 =0.9987), SNV pretreatment was (RRMSE= 0.0004,R2 =0.9793 ), and CR pretreatment 
was (RRMSE =0.0003 , R2 =0.9789). Wavebands at around 650-700 nm and 900-1000 nm were 
selected as important spectral variables to construct final models. The correlation analyses and 
regression results in the PLSR models both suggest that the main mechanism for estimating Cu 
content in this case study lies in its correlation with Fe content. In conclusion, concentrations of 
copper in soils could be indirectly assessed by soil spectra, therefore, spectral reflectance would be 
an alternative tool for monitoring soil heavy metals contamination. 
 
  

  
 

 
 
 

 
 

 

 
 

 
 

 
 
 

 
 

 
 
 

 
 
 
 
 
 

 
 
 

 
 

  
 

 

 

INTRODUCTION 
 

Soil is an important resource for the survival of plants, animals 
and human races. Doran and Park in defined soil quality as “the 
capacity of a soil to function, within ecosystem and land use 
boundaries, to sustain productivity, maintain environmental 
quality, and promote plant and animal health”, a definition that 
includes an inherent and adynamic component[1][2].  
 

However, soil is being threatened by increased natural and 
human induced activities. Degradation of soil leads to a 
reduction or complete loss of its ecological and productive 
values. It is caused primarily by chemical pollution, especially 
with excessive, unnatural amounts of trace elements such as 
cadmium, lead, zinc and copper, which may disturb the 
function of the complex system of processes occurring in the 
soil, and cause negative changes in biological activity and 
physical properties of the soil[3].  

 

Copper belongs to elements whose natural content in the soil is 
most considerably exceeded. Copper is an important element 
for normal growth of living things, but both its excess and 
deficiency are harmful. Copper deficiency in the diet may 
cause anaemia, insufficient growth, fertility problems, nervous 
system disorders and circulatory system diseases. Its excess 
may lead to changes in the liver and damage kidneys, brain 
tissue, coronary vessels and myocardium. Soils high in organic 
matter and weathered, sandy soils are likely to be deficient in 
copper. A great deficiency may cause serious stunting of 
growth and visible symptoms of disease in plants, but moderate 
deficiency may merely reduce yields [3]. Therefore, this study 
was conducted to assess Cu concentrations in croplands, to 
evaluate the feasibility of reflectance spectra in the rapid 
prediction of Cu content in the soils. 
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MATERIALS AND METHODOLOGY 
 

Study Area: The Soil Samples were collected from different 
agricultural lands in Aurangabad District of Maharashtra state 
in India. Aurangabad is in Maharashtrastate to the west of 
India. It is located at 19° 53' N and 75° 23' E having annual 
mean temperature of 17°C to 33°C. A total of30 samples were 
collected for the study. Soil samples were collected from the 
plough layer (0-20 cm) and stored in an air-tight plastic bag. 
The samples were air dried for two to three days under normal 
room temperature. Small pieces of stones, root debris, and plant 
parts in the soil samples were removed by hand picking before 
analysis. Large lumps were broken down. Then the soil was 
sieved through 2mm sieve and taken for measurements to the 
laboratory. 
 

Spectral Measurements and preprocessing: The FieldSpec4 
Spectroradiometer was used for measurements of soil samples 
in the Geospatial Lab, Dept. of CS & IT, Dr. B. A. M. 
University Aurangabad, Maharashtra, India. To minimize the 
influence of external light, the spectra scanning procedure was 
carried out in a dark room. The sampling interval and spectral 
resolution of the instrument is 1.4nm for 350-1000nmand 2nm 
for 1000-2500nm. Spectral Reflectance of the soil samples was 
collected with the wavelength starting from 350nm to 2500nm 
using the RS3 Spectral Acquisition software. A light source 
matched with the spectroradiometer was used with a 45  
incident angle. A square pieces of black paper with side lengths 
of about 35cm were used in turn to hold the soil samples.  
About 200 g of soil samples panning a diameter of 
approximately 20 cm was scanned by the spectroradiometer at 
a distance of 30cm from probe to sample surface and a zenith 
angle of 90 . The distance between gun and the light source 
was 60cm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A standardized white Spectralon panel has 100% reflectance 
and was used to optimize signal and calibrate accuracy and 
detector responses. The spectral radiance over it was measured 
every 10 samples. Then spectral radiance of the soil sample 
was measured. Approximately 10 scans were made for each 
sample. Statistical mean of the 10 scan was acquired using the 
View SpecPro software and it was recorded as the spectral 
radiance of the particular soil sample. Spectral radiance was 
exported in ASCII format and then to .xlsx format for further 
analysis. 
 

All the spectra preprocessing and processing was carried out in 
Matlab7.12.0 (R2011a) software. Spectra preprocessing is 
considered as an integral part. Transformations onpredictors 
could be useful for model calibration. Several spectra 
preprocessing techniques were applied on the spectral data 
including first and second derivative, Savitzky Golay filtering 
with 11 points and a second-order polynomial, absorbance (log 
[1/reflectance]), first and second derivative of absorbance, 
standard normal variate (SNV), and continuum removal 
(CM).[4].  
 

Data Analysis 
 

The partial least square regression technique was used to 
establish relations between reflectance spectra and measured 
soil variables [11][12]. This technique makes use of all 
variables and compresses them into a few principal components 
(PCs) comprising some highly interrelated variables [13][14].    
It is based on latent variable decomposition of two variable 
blocks, matrices X and Y that contain spectral data and soil 
characteristics, respectively. However, the purpose of this 
technique is to find a small number of latent factors that are 
predictive of Y and use X efficiently. For all 30 samples, cross-
validation of leave-one-out method was used to verify the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 1 mean spectral data of 30 soil samples 
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prediction capability of the PLSR models for the training set. 
At each time, all n samples were formed within a dataset, n¡1, 
to develop the regression model. Based on such a model, values 
of the properties of the soil sample not used in developing the 
models were predicted. This procedure was repeated for all 
samples (n), resulting in predictions for all samples. The 
parameter root mean square error (RMSE) was used to evaluate 
the prediction results [20]: 
 

n

ypym
RMSE

 


2)(
                    --------------------(1) 

 

where ym is the measured value for a soil parameter and yp is 
the predicted value by the PLSR model. Coefficients of 
determination (R2) were calculated for reliability of prediction. 
For clarity of comparison, RMSEs were divided by the mean 
value of soil properties and shown as relative RMSE 
(RRMSE). 
 

RESULT AND DISCUSSION 
 

The results obtained after applying PLSR on the spectral data is 
stated in Table1. Wavelengths around1900 nm and 2200 nm 
were known as diagnostic features of water [15] and which 
vary under different moisture conditions. Therefore, 
wavelength regions of 650-700 nm and 900-1000 nm were 
considered to be particularly useful for Cu estimation in this 
case. Both of these regions were representative of absorptions 
due to iron oxides, such as hematite and goethite [16]. 
Therefore, the mechanism of estimating Cucontent was 
assumed to lie in its correlation with Fe content. 
 

CONCLUSION 
 

In this study, we have identified the copper content in 
agricultural soils from the Aurangabad district of Maharashtra 
state using the VNIR reflectance spectroscopy. The feasibility 
of estimating copper content from soil samples collected from 
different agricultural lands in Aurangabad district of 
Maharashtra state is possible with VNIR reflectance 
spectroscopy (350nm-2500nm). It can be concluded that VNIR 
reflectance spectroscopy coupled with PLSR model could be an 
effective model for estimating other metal concentration in 
agricultural soils. 
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