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The data flow is consistently increasing with the volume of data. The batch processing which 
requires different programs and computations for input, processing and output will definitely lead to 
lower efficiency of the big data management systems in terms of cost and speed. Hence it is 
important to handle the streaming data which is the real time processing. The rate at which it ingest 
in, the variety of with which occurs gives rise to the need of having big data processing engines and 
software which brings computation to the data and analyze the data in an efficient manner. One such 
tool which is described in details is spark. Besides the elucidation of various concepts and tools for 
the data processing, some analysis is done on the streaming data set which is the weather data set 
containing different attributes and values at different time stamps. The analysis is done taking into 
account different window size, the time interval which it takes to extract the data and different 
sliding size. 
 
 

 
 
 
 
 
  

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

INTRODUCTION 
 

The infinite flow of data which comes from the data source is 
known as streaming data [1]. Some of the real life examples 
which we see are sensor data from instruments, stock price 
data, etc. The rate at which data arrives vary, sometimes it can 
be too fast while on the other side it can be too slow as well. It 
is often processed in memory. Moreover because of the high 
velocity of data, it needs to be processed immediately. The 
streaming data can be used for event detection and prediction. 
 

Big Data Management Systems are designed for parallel and 
distributed processing. It may not guarantee the consistency for 
every update, however it more likely assure the eventual 
consistency. Traditional database lacks storage space for very 
large data and cannot cope up with the speed of data coming in. 
Therefore buffers or queues are used to process data in chunks.  
As the demand increases, the processing nodes also go high. 
There are several processing nodes, as if one of the node goes 
down, the system need not restart the processing which, it will 
relieve data loss. Batch processing [2] is slow and costly. As 
the scalability increases the complexity decreases. Spark helps 
in data parallel scalability as shown in Figure 1. Some of the 
requirements of Big Data Systems are: they support big data 
operations, handle fault tolerance, enable adding more racks, 
optimized and extensible for many data types, enable both 
streaming and batch processing. 
 

Pipelining in simple words can be understood as one after the 
other execution. Data flows along the pipeline having going 
through various transformations. For instance, in the case of 
Map-Reduce [3] we have the data transformations as shown in 
Figure 2 in which the data first gets partitioned, some user 
defined functions are applied and at the end results are 
combined, merged or reduced. Big Data pipelines elucidate the 
scenario when the output of one running program is given as 
the input to another program. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Data goes through various transformations which are indeed 
the tools for giving a shape to data. Data parallelism can be 
defined as running the same function simultaneously on 
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Figure 1 Data Parallel Scalability 
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different pipelines/ partition of data sets on multiple cores. 
After the big data integration platform, the streaming data 
processing platform comes which give either the real time view 
or batch view. Some of the operations on big data pipelines are 
manifested in the following sections. 
 
 
 
 
 
Map 
 

Map is the basic data block of big data pipeline which applies 
same operations to the number of collections. For instance, 
colour each member of a set, discount each product price by 
10%. 
 

Reduce 
 

Reduce operation collectively apply the same process to objects 
of similar nature. For instance collection of object which have 
same keys as shown in Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
Cross/Cartesian 
 

Cross operation takes place when two data sets are identified 
by the same key. Some process has to be done on each pair of 
the two sets, thereby each data set gets paired with all other 
data partition regardless of the keys. 
 

Match/Join 
 

Match is also known as selective multiplication. Some process 
has to be done to each pair of the data sets which have the same 
keys. In the end only the keys of both data gets joined and 
become the part of final output of data transformation. 
 

Co- Group 
 

The Co-Group operation groups the common items initially. It 
collects the similar things first. Further some process is to be 
applied to each collection. 
 

Filter 
 

Filter selects the elements that match a certain criteria. It lists 
the data sets with all keys even if they don’t exist in the 
database. Analytical operations are basically performed for 
extracting the meaningful patterns and trends. The flow of 
analytics is shown in Figure 4. 
 
 
 
 
Analytical operations are also performed in order to gain 
insights into the problem and to make the data driven decisions. 

Some of the analytical operations are: Classification, 
Clustering, Path Analysis and Connectivity Analysis. Path 
Analysis can be finding the shortest path from home to school 
for an instance or to find the roots from one location to another. 
Connectivity Analysis can be analyzing tweets, extracting 
conversation trends, interacting groups, etc.  
 

Depending on the resourced and applications, there are several 
considerations which need to be evaluated and plays a crux role 
for choosing the software for big data. Some of the important 
factors are: Execution Model, latency, scalability, 
programming language and fault tolerance. Few of the big data 
processing engines which are supported by apache are 
described in the following sections. 
 

Map Reduce 
 

The Map Reduce implementation of hadoop supports the batch 
processing execution model which lets the data gets loaded 
before it gets processed. It does have a high latency and low 
scalability resulting from the lack of in memory processing. 
Programming languages which can be used are java, python. 
The fault tolerance is enabled because of the data replication 
which also affects the execution speed and scalability. 
 

Spark 
 

Spark [4] is built to support iterative and interactive processing 
using in memory structure called resilient distributed database 
(RDD). It also provides support to join and filter operations 
other than map and reduce. The RDD extraction is done to 
handle fault tolerance. Moreover, spark can read data from 
many other storage platforms and supports the processing of 
streaming data as well. The technique is called micro-batching. 
The latency depends upon the batch size which can be low for 
small micro batch size. Programming languages which can be 
used are scala, python, java and R. 
 

Flink 
 

Flink provides direct support for the streaming data, making it 
lower latency framework. It also provides connection interface 
with data engines such as kafka and flume. The programming 
languages which it supports are java and scala. It has its own 
execution engine called Nephele. In addition to map reduce, it 
also provides the other data operations like join and group by. 
 

Beam 
 

Batch is a new big data engine which supports batch processing 
as well as stream processing.  It is developed by google and 
was initially used for the cloud data flow. Moreover flink is a 
low latency environment with high fault tolerance. The 
programming languages which it supports are java, scala and 
python software development kits. It provides a very strong 
streaming framework. 
 

Storm 
 

Storm [5] is been designed for the stream processing and do 
possess a very low latency. The input stream abstraction is 
defined as spouts and the computational abstractions as bots. 
They can be pipelined together by a data flow approach. There 
is a master node which keeps track of the running jobs and 
ensures that all data is processed. The lambda architecture was 
developed using storm for stream processing and hadoop map 
reduce for the batch processing. 

 
 

Figure 3 Reduce Illustration 
 

 
Figure 4 Analytics Flow 

 

 
 

Figure 2 Map Reduce Transformations 
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There were certain shortcomings and drawbacks of hadoop [5] 
map reduce such as it can only be used for map reduce based 
computation, relies on reading data from hadoop based file 
system (HDFS), native support of java only , no interactive 
shell support and no support for streaming which gave rise for 
an expressive programming model called Spark. It provides in 
memory processing which makes it efficient for iterative 
applications. Moreover it supports diverse workloads such as 
batch and streaming at once. It also provides API’s for python, 
java, scala and SQL programming through an interactive shell. 
The spark layer diagram called as the spark stack [6] as shown 
in Figure 5,  
 
 
 
 
 

 
consists of components that are built on top of spark 
computational engines. Through all these layers spark provides 
diverse, scalable interactive management and analyses of big 
data. The engine distributes and monitors tasks across the 
nodes of commodity cluster. The interactive shell allows the 
scientists to explore, build and scale the data. Spark does in 
memory processing using RDD abstraction. In hadoop map 
reduce as shown in Figure 6, the pipeline reads from the disk to 
memory, performs the computation and then write back the 
output to the disk. Writing data to disk is costly operation and it 
increases as the volume of data increases. 
  
 
 
  
 
 
 
 
 
 
On the other hand memory operations can be of very high 
speed. Spark thus does the in memory processing and allows 
for immediate results of transformation in different stages of 
pipeline in memory as shown in Figure 7. Here the outputs of 
MAP operations are shared to the reduce operations without 
been written in the disk. The storage where the data gets stored 
in memory are called Resilient Distributed Datasets (RDD). 
Usually data sets come from batch data storage like HDFS, 
when spark reads the data it generates RDD which are 
immutable and cannot be changed. By distributed data we 
mean the partition data structure computations which are 
divided in partitions and atomic chunks of data. Resilient 
manifests that the recovery from the error is possible, for 
instance if any node goes down or gets failed, it can get 
recovered. In case if any portion of data is missed, track history 
of each portion is available.  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
The Spark mainly consists of two major components which are 
the driver program and the worker node as shown in Figure 8. 
The application starts in the driver program which distributes 
the RDD in the computation clusters and performs the 
transformations on them [7]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The driver program creates a connection with the spark with 
the spark clusters through the spark context object. It also 
maintains the coordination with the myriad nodes called the 
worker nodes. The execution takes place in the worker node. 
The Java Virtual Machine (JVM) which the spark keeps 
running is called the executor. For example if we have HDFS 
as the storage system, then on each worker node some of the 
data will be available. The main job of this system is to being 
computation to the data. Hence the spark will send 
computational jobs to be executed that are available in 
machine. Data will be read from HDFS and the in memory 
processing will be done, further data will get stored as one 
RDD.  In the real time scenario, there are many worker nodes 
which execute the specific tasks.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5 Spark Stack 
 

 
Figure 6 Map Reduce 

 

 
 

Figure 7 Spark 
 

 
 

Figure 8 Spark Architecture 
 

 
 

Figure 9 The Cluster manager coordination 
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So there should be a system which takes the responsibility of 
coordination and managing the nodes. This system is called 
cluster manager as shown in Figure 9. The driver program 
coordinates with the cluster manager for monitoring the 
resources and it also communicates with the worker nodes for 
executing the tasks.  
 

Spark uses a lazy evaluation for transformation, which means 
that it will wait for an action to be performed and will not be 
executed immediately. Spark offers scalable processing for real 
time data and run on top of the spark core. The continuous data 
streams are converted into discrete resilient distributed 
databases (RDD) [8]. Further the RDD’s are processed in 
parallel. Spar can read the data from different data sources such 
as kafka, flume, hdfs. Also it can read the data from real time 
data sources such as twitter, machineries, etc. The streaming 
data which is read by spark is converted into micro batches 
which are called Dstreams or discretized streams. For instance 
as shown in Figure 10, the 6 second stream is converted into 
three RDDs of batch length of 2 second each. All the 
operations which are applicable for RDDs such as map, filter, 
reduce also works for the Dstreams. Further the window size 
consists of 2 seconds. The Sliding interval depends on the 
amount of batch size it moves forward.  
 
 
 
 
 
 
 
 
 
 
 
 
 

EXPERIMENT AND RESULTS 
 

The experiment is performed in the Jupyter Python Notebook 
in the cloudera [9] virtual machine. The data set is of weather 
station [10] in which the streaming data is analysed. Every 
specific line of data contains the time stamp and abbreviation 
of the attribute, such as Dn for wind direction minimum speed, 
Sm for average wind speed. The function is called which parses 
every line and returns the particular desired attribute. The spark 
streaming context and spark context are to be imported and a 
batch interval of 1 second is given.  A connection is needed to 
be made with the streaming data and henceforth the Dstreams 
are created. Further, we create a sliding window which contains 
two arguments which are indeed the time intervals, one is the 
window size which collects the data according to specified time 
period and the other attribute is of window sliding size which 
specifies by what time interval the window will move forward. 
We print the maximum and minimum values of the streaming 
data in different windows. To have a better and pervasive 
analysis we consider two attributes Sm and Dn. Moreover we 
change the window arguments, which are the window size and 
window sliding size to get different results for the analysis. In 
Figure 11 and Figure 14 the slide size of window remains the 
same. In Figure 11 the analysis is done for wind degree 
minimum whose unit are in degrees and in Figure 14 the 
analysis is done for the Average wind speed. In Figure 12 and 

Figure 15 the slide size of window changes while the window 
size remains the same. In Figure 12 the analysis is done for 
wind degree minimum and in Figure 15 the analysis is done for 
the Average wind speed.  In Figure 13 and Figure 16 the slide 
size of window and the window size both remains same, the 
slide size is 5 and the window size is 10. In Figure 13 the 
analysis is done for wind degree minimum for the two periods 
which are in the gap of 6 hrs and in Figure 16 the analysis is 
done for the Average wind speed for two periods which are in 
the gap of 6 hours as well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 10 Spark Streaming 
 

 

 
 

Figure 11 Window sliding size constant for Dn 
 

 
 

Figure 12 Window size constant for Dn 
 

 
 

Figure 13 Window sliding size and window size constant for Dn 
 

 
 

Figure 14 Window sliding size constant for Sm 
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CONCLUSION 
 

In the paper we have discussed various big data processing 
machines and had some deep insights of the spark processing. 
The data streaming is analysed in spark considering two 
different attributes for the weather station data sets, one is wind 
direction degree (Dm) and other is average wind speed (Sm). 
We have varied the arguments of window which gave different 
observations and results regarding the data values in the 
window, occurrence of values in the window and the minimum 
and maximum values of data. When the window sliding size is 
increased from 2 to 5 keeping the window size constant, we can 
observe the same pattern for both the sliding size, although 
there are certain rise and fall but it happens for both the sliding 
size. For both Sm and Dn it starts increasing gradually, starting 
from zero. When the window sliding size is constant and the 
window size is increased from 10 to 20, we can see a steep 
increase in the number of data points eventually after few 
windows. Once it gets start increasing when the window size is 
20, it goes on increasing and never seems to come down. When 
the window sliding size and the window size remains constant 
and the minimum-maximum values of data inside the window 
are calculated for two different periods, we can observe that for 
the Dn case, the minimum and maximum values are larger for 
period 1 as compared to period 2 which shows the difference in 
the wind direction for 2 periods which are having 6 hours gap 
in afternoon. Moreover when the window sliding size and the 
window size remains constant and the minimum maximum 
 
 
 
 

values of data inside the window are calculated for Sm case, 
the minimum and maximum values are smaller for period 1 as 
compared to period 2 which shows that the wind speed rises 
gradually as the day time increases. For both the Dn and Sm 
cases we can observe that for individual periods the difference 
between the minimum and maximum values are almost the 
same and do not vary much, though they at different periods 
difference in the wind direction for 2 periods which are having 
6 hours gap. It can also be observed that it is not necessary that 
if the sliding size of window is 5 then, the last five values of 
data for previous frame would be the first five values of 
consecutive frame. It works for Dn having window size 10 and 
sliding size 5 but not exactly for the other cases. Finally, it is 
observed in all cases that after the start execution is given, the 
empty windows arrive initially, the data starts coming at least 
after 2 or three windows, sometimes it may be more delayed as 
well. It can sometime occur because the server is down or we 
need to change the port which will enable the data ingestion. 
The patterns can definitely help us to predict the future 
outcomes of different attributes of weather station.  More 
patterns and analysis could be extracted from the streaming 
data which will definitely lead to better decision making and a 
betterment of analytics.   
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Figure 15 Window size constant for Sm 
 

 
 

Figure 16 Window sliding size and window size constant for Sm 
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