

*Corresponding author: Amratansh Sharma
Department of Computer Science and Engineering, SRM University, Chennai, India

ISSN: 0976-3031

Research Article

ANALYSIS AND PROCESSING OF STREAMING DATA USING SPARK

Amratansh Sharma and Poovammal E

Department of Computer Science and Engineering, SRM University, Chennai, India

DOI: http://dx.doi.org/10.24327/ijrsr.2017.0808.0701

ARTICLE INFO ABSTRACT

The data flow is consistently increasing with the volume of data. The batch processing which
requires different programs and computations for input, processing and output will definitely lead to
lower efficiency of the big data management systems in terms of cost and speed. Hence it is
important to handle the streaming data which is the real time processing. The rate at which it ingest
in, the variety of with which occurs gives rise to the need of having big data processing engines and
software which brings computation to the data and analyze the data in an efficient manner. One such
tool which is described in details is spark. Besides the elucidation of various concepts and tools for
the data processing, some analysis is done on the streaming data set which is the weather data set
containing different attributes and values at different time stamps. The analysis is done taking into
account different window size, the time interval which it takes to extract the data and different
sliding size.

INTRODUCTION

The infinite flow of data which comes from the data source is
known as streaming data [1]. Some of the real life examples
which we see are sensor data from instruments, stock price
data, etc. The rate at which data arrives vary, sometimes it can
be too fast while on the other side it can be too slow as well. It
is often processed in memory. Moreover because of the high
velocity of data, it needs to be processed immediately. The
streaming data can be used for event detection and prediction.

Big Data Management Systems are designed for parallel and
distributed processing. It may not guarantee the consistency for
every update, however it more likely assure the eventual
consistency. Traditional database lacks storage space for very
large data and cannot cope up with the speed of data coming in.
Therefore buffers or queues are used to process data in chunks.
As the demand increases, the processing nodes also go high.
There are several processing nodes, as if one of the node goes
down, the system need not restart the processing which, it will
relieve data loss. Batch processing [2] is slow and costly. As
the scalability increases the complexity decreases. Spark helps
in data parallel scalability as shown in Figure 1. Some of the
requirements of Big Data Systems are: they support big data
operations, handle fault tolerance, enable adding more racks,
optimized and extensible for many data types, enable both
streaming and batch processing.

Pipelining in simple words can be understood as one after the
other execution. Data flows along the pipeline having going
through various transformations. For instance, in the case of
Map-Reduce [3] we have the data transformations as shown in
Figure 2 in which the data first gets partitioned, some user
defined functions are applied and at the end results are
combined, merged or reduced. Big Data pipelines elucidate the
scenario when the output of one running program is given as
the input to another program.

Data goes through various transformations which are indeed
the tools for giving a shape to data. Data parallelism can be
defined as running the same function simultaneously on

Available Online at http://www.recentscientific.com
 International Journal of

Recent Scientific

 Research International Journal of Recent Scientific Research
Vol. 8, Issue, 8, pp. 19477-19481, August, 2017

Copyright © Amratansh Sharma and Poovammal E, 2017, this is an open-access article distributed under the terms of the
Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided
the original work is properly cited.

DOI: 10.24327/IJRSR

CODEN: IJRSFP (USA)

Article History:

Received 06th April, 2017
Received in revised form 14th
June, 2017
Accepted 23rd July, 2017
Published online 28th August, 2017

Key Words:

Spark, Streaming Data, Big Data
Processing Engines, Pipelines, real
time processing, Big Data Analytics.

Figure 1 Data Parallel Scalability

http://dx.doi.org/10.24327/ijrsr.2017.0808.0701
http://www.recentscientific.com

Amratansh Sharma and Poovammal E., Analysis And Processing of Streaming Data Using Spark

19478 | P a g e

different pipelines/ partition of data sets on multiple cores.
After the big data integration platform, the streaming data
processing platform comes which give either the real time view
or batch view. Some of the operations on big data pipelines are
manifested in the following sections.

Map

Map is the basic data block of big data pipeline which applies
same operations to the number of collections. For instance,
colour each member of a set, discount each product price by
10%.

Reduce

Reduce operation collectively apply the same process to objects
of similar nature. For instance collection of object which have
same keys as shown in Figure 3.

Cross/Cartesian

Cross operation takes place when two data sets are identified
by the same key. Some process has to be done on each pair of
the two sets, thereby each data set gets paired with all other
data partition regardless of the keys.

Match/Join

Match is also known as selective multiplication. Some process
has to be done to each pair of the data sets which have the same
keys. In the end only the keys of both data gets joined and
become the part of final output of data transformation.

Co- Group

The Co-Group operation groups the common items initially. It
collects the similar things first. Further some process is to be
applied to each collection.

Filter

Filter selects the elements that match a certain criteria. It lists
the data sets with all keys even if they don’t exist in the
database. Analytical operations are basically performed for
extracting the meaningful patterns and trends. The flow of
analytics is shown in Figure 4.

Analytical operations are also performed in order to gain
insights into the problem and to make the data driven decisions.

Some of the analytical operations are: Classification,
Clustering, Path Analysis and Connectivity Analysis. Path
Analysis can be finding the shortest path from home to school
for an instance or to find the roots from one location to another.
Connectivity Analysis can be analyzing tweets, extracting
conversation trends, interacting groups, etc.

Depending on the resourced and applications, there are several
considerations which need to be evaluated and plays a crux role
for choosing the software for big data. Some of the important
factors are: Execution Model, latency, scalability,
programming language and fault tolerance. Few of the big data
processing engines which are supported by apache are
described in the following sections.

Map Reduce

The Map Reduce implementation of hadoop supports the batch
processing execution model which lets the data gets loaded
before it gets processed. It does have a high latency and low
scalability resulting from the lack of in memory processing.
Programming languages which can be used are java, python.
The fault tolerance is enabled because of the data replication
which also affects the execution speed and scalability.

Spark

Spark [4] is built to support iterative and interactive processing
using in memory structure called resilient distributed database
(RDD). It also provides support to join and filter operations
other than map and reduce. The RDD extraction is done to
handle fault tolerance. Moreover, spark can read data from
many other storage platforms and supports the processing of
streaming data as well. The technique is called micro-batching.
The latency depends upon the batch size which can be low for
small micro batch size. Programming languages which can be
used are scala, python, java and R.

Flink

Flink provides direct support for the streaming data, making it
lower latency framework. It also provides connection interface
with data engines such as kafka and flume. The programming
languages which it supports are java and scala. It has its own
execution engine called Nephele. In addition to map reduce, it
also provides the other data operations like join and group by.

Beam

Batch is a new big data engine which supports batch processing
as well as stream processing. It is developed by google and
was initially used for the cloud data flow. Moreover flink is a
low latency environment with high fault tolerance. The
programming languages which it supports are java, scala and
python software development kits. It provides a very strong
streaming framework.

Storm

Storm [5] is been designed for the stream processing and do
possess a very low latency. The input stream abstraction is
defined as spouts and the computational abstractions as bots.
They can be pipelined together by a data flow approach. There
is a master node which keeps track of the running jobs and
ensures that all data is processed. The lambda architecture was
developed using storm for stream processing and hadoop map
reduce for the batch processing.

Figure 3 Reduce Illustration

Figure 4 Analytics Flow

Figure 2 Map Reduce Transformations

International Journal of Recent Scientific Research Vol. 8, Issue, 8, pp. 19477-19481, August, 2017

19479 | P a g e

There were certain shortcomings and drawbacks of hadoop [5]
map reduce such as it can only be used for map reduce based
computation, relies on reading data from hadoop based file
system (HDFS), native support of java only , no interactive
shell support and no support for streaming which gave rise for
an expressive programming model called Spark. It provides in
memory processing which makes it efficient for iterative
applications. Moreover it supports diverse workloads such as
batch and streaming at once. It also provides API’s for python,
java, scala and SQL programming through an interactive shell.
The spark layer diagram called as the spark stack [6] as shown
in Figure 5,

consists of components that are built on top of spark
computational engines. Through all these layers spark provides
diverse, scalable interactive management and analyses of big
data. The engine distributes and monitors tasks across the
nodes of commodity cluster. The interactive shell allows the
scientists to explore, build and scale the data. Spark does in
memory processing using RDD abstraction. In hadoop map
reduce as shown in Figure 6, the pipeline reads from the disk to
memory, performs the computation and then write back the
output to the disk. Writing data to disk is costly operation and it
increases as the volume of data increases.

On the other hand memory operations can be of very high
speed. Spark thus does the in memory processing and allows
for immediate results of transformation in different stages of
pipeline in memory as shown in Figure 7. Here the outputs of
MAP operations are shared to the reduce operations without
been written in the disk. The storage where the data gets stored
in memory are called Resilient Distributed Datasets (RDD).
Usually data sets come from batch data storage like HDFS,
when spark reads the data it generates RDD which are
immutable and cannot be changed. By distributed data we
mean the partition data structure computations which are
divided in partitions and atomic chunks of data. Resilient
manifests that the recovery from the error is possible, for
instance if any node goes down or gets failed, it can get
recovered. In case if any portion of data is missed, track history
of each portion is available.

The Spark mainly consists of two major components which are
the driver program and the worker node as shown in Figure 8.
The application starts in the driver program which distributes
the RDD in the computation clusters and performs the
transformations on them [7].

The driver program creates a connection with the spark with
the spark clusters through the spark context object. It also
maintains the coordination with the myriad nodes called the
worker nodes. The execution takes place in the worker node.
The Java Virtual Machine (JVM) which the spark keeps
running is called the executor. For example if we have HDFS
as the storage system, then on each worker node some of the
data will be available. The main job of this system is to being
computation to the data. Hence the spark will send
computational jobs to be executed that are available in
machine. Data will be read from HDFS and the in memory
processing will be done, further data will get stored as one
RDD. In the real time scenario, there are many worker nodes
which execute the specific tasks.

Figure 5 Spark Stack

Figure 6 Map Reduce

Figure 7 Spark

Figure 8 Spark Architecture

Figure 9 The Cluster manager coordination

Amratansh Sharma and Poovammal E., Analysis And Processing of Streaming Data Using Spark

19480 | P a g e

So there should be a system which takes the responsibility of
coordination and managing the nodes. This system is called
cluster manager as shown in Figure 9. The driver program
coordinates with the cluster manager for monitoring the
resources and it also communicates with the worker nodes for
executing the tasks.

Spark uses a lazy evaluation for transformation, which means
that it will wait for an action to be performed and will not be
executed immediately. Spark offers scalable processing for real
time data and run on top of the spark core. The continuous data
streams are converted into discrete resilient distributed
databases (RDD) [8]. Further the RDD’s are processed in
parallel. Spar can read the data from different data sources such
as kafka, flume, hdfs. Also it can read the data from real time
data sources such as twitter, machineries, etc. The streaming
data which is read by spark is converted into micro batches
which are called Dstreams or discretized streams. For instance
as shown in Figure 10, the 6 second stream is converted into
three RDDs of batch length of 2 second each. All the
operations which are applicable for RDDs such as map, filter,
reduce also works for the Dstreams. Further the window size
consists of 2 seconds. The Sliding interval depends on the
amount of batch size it moves forward.

EXPERIMENT AND RESULTS

The experiment is performed in the Jupyter Python Notebook
in the cloudera [9] virtual machine. The data set is of weather
station [10] in which the streaming data is analysed. Every
specific line of data contains the time stamp and abbreviation
of the attribute, such as Dn for wind direction minimum speed,
Sm for average wind speed. The function is called which parses
every line and returns the particular desired attribute. The spark
streaming context and spark context are to be imported and a
batch interval of 1 second is given. A connection is needed to
be made with the streaming data and henceforth the Dstreams
are created. Further, we create a sliding window which contains
two arguments which are indeed the time intervals, one is the
window size which collects the data according to specified time
period and the other attribute is of window sliding size which
specifies by what time interval the window will move forward.
We print the maximum and minimum values of the streaming
data in different windows. To have a better and pervasive
analysis we consider two attributes Sm and Dn. Moreover we
change the window arguments, which are the window size and
window sliding size to get different results for the analysis. In
Figure 11 and Figure 14 the slide size of window remains the
same. In Figure 11 the analysis is done for wind degree
minimum whose unit are in degrees and in Figure 14 the
analysis is done for the Average wind speed. In Figure 12 and

Figure 15 the slide size of window changes while the window
size remains the same. In Figure 12 the analysis is done for
wind degree minimum and in Figure 15 the analysis is done for
the Average wind speed. In Figure 13 and Figure 16 the slide
size of window and the window size both remains same, the
slide size is 5 and the window size is 10. In Figure 13 the
analysis is done for wind degree minimum for the two periods
which are in the gap of 6 hrs and in Figure 16 the analysis is
done for the Average wind speed for two periods which are in
the gap of 6 hours as well.

Figure 10 Spark Streaming

Figure 11 Window sliding size constant for Dn

Figure 12 Window size constant for Dn

Figure 13 Window sliding size and window size constant for Dn

Figure 14 Window sliding size constant for Sm

International Journal of Recent Scientific Research Vol. 8, Issue, 8, pp. 19477-19481, August, 2017

19481 | P a g e

CONCLUSION

In the paper we have discussed various big data processing
machines and had some deep insights of the spark processing.
The data streaming is analysed in spark considering two
different attributes for the weather station data sets, one is wind
direction degree (Dm) and other is average wind speed (Sm).
We have varied the arguments of window which gave different
observations and results regarding the data values in the
window, occurrence of values in the window and the minimum
and maximum values of data. When the window sliding size is
increased from 2 to 5 keeping the window size constant, we can
observe the same pattern for both the sliding size, although
there are certain rise and fall but it happens for both the sliding
size. For both Sm and Dn it starts increasing gradually, starting
from zero. When the window sliding size is constant and the
window size is increased from 10 to 20, we can see a steep
increase in the number of data points eventually after few
windows. Once it gets start increasing when the window size is
20, it goes on increasing and never seems to come down. When
the window sliding size and the window size remains constant
and the minimum-maximum values of data inside the window
are calculated for two different periods, we can observe that for
the Dn case, the minimum and maximum values are larger for
period 1 as compared to period 2 which shows the difference in
the wind direction for 2 periods which are having 6 hours gap
in afternoon. Moreover when the window sliding size and the
window size remains constant and the minimum maximum

values of data inside the window are calculated for Sm case,
the minimum and maximum values are smaller for period 1 as
compared to period 2 which shows that the wind speed rises
gradually as the day time increases. For both the Dn and Sm
cases we can observe that for individual periods the difference
between the minimum and maximum values are almost the
same and do not vary much, though they at different periods
difference in the wind direction for 2 periods which are having
6 hours gap. It can also be observed that it is not necessary that
if the sliding size of window is 5 then, the last five values of
data for previous frame would be the first five values of
consecutive frame. It works for Dn having window size 10 and
sliding size 5 but not exactly for the other cases. Finally, it is
observed in all cases that after the start execution is given, the
empty windows arrive initially, the data starts coming at least
after 2 or three windows, sometimes it may be more delayed as
well. It can sometime occur because the server is down or we
need to change the port which will enable the data ingestion.
The patterns can definitely help us to predict the future
outcomes of different attributes of weather station. More
patterns and analysis could be extracted from the streaming
data which will definitely lead to better decision making and a
betterment of analytics.

References

1. Shazia Nousheen M, Dr. Prasad G R, A Survey Paper
on Data Stream Mining, IJERT, August 2016, Vol. 05,
Issue 08.

2. Swati M. Gavali, Supriya Sarkar, Survey Paper on Big
Data Processing and Hadoop Components, IJSR, July
2016, Volume 5, Issue 7.

3. Kyong-Ha Lee Yoon-Joon Lee, Hyunsik Choi Yon
Dohn Chung, Bongki Moon, Parallel Data Processing
with MapReduce: A Survey, SIGMOD Record,
December 2011, Vol. 40, No. 4.

4. Spark Streaming. https://spark.apache.org/streaming/.
Downloaded spark in September 2017.

5. Telmo da Silva Morais, Survey on Frameworks for
Distributed Computing: Hadoop, Spark and Storm,
DSIE, 1 st Edition, 2015 - ISBN: 978-972-752-173-9.

6. Coursera, UC San Diego, Big Data Integration and
Processing, https://www.coursera.org/learn/big-data-
integrationprocessing/home/week/4

7. Getting Started with Apache Spark,
https://mapr.com/ebooks/spark/03apache-spark-
architecture-overview.html

8. Zeba Khanam and Shafali Agarwal, Map-Reduce
Implementations: Survey and Performance Comparison,
IJCSIT, August 2015, Vol. 7, No. 4.

9. Cloudera. http://www.cloudera.com/. Downloaded
Cloudera Quickstart virtual machines in September
2017.

10. https://github.com/words-sdsc/coursera/blob/master/
big-data-/, downloaded in September 2017.

Figure 15 Window size constant for Sm

Figure 16 Window sliding size and window size constant for Sm

https://spark.apache.org/streaming/.
https://www.coursera.org/learn/big-data-
https://mapr.com/ebooks/spark/03apache-spark-
http://www.cloudera.com/.
https://github.com/words-sdsc/coursera/blob/master/

