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In this Literature the problem of stability analysis for neutral delay-differential systems is 
investigated. Using lyapunov method, we present new sufficient conditions for the stability of the 
systems in terms of Linear matrix inequality (LMI) which can be easily solved by using the 
YALMIP MATLAB toolbox. Numerical examples are given to illustrate the improvement of our 
proposed method.  
 
 
 
 
 

 
 

 
 
 
 
 
  

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

INTRODUCTION 
 

Problem of Stability with delay-differential systems with an emphasis on Lyapunov methods by framing LMIs ,These LMI 
techniques have seen more investigation and have emerged as powerful design tools in the areas ranging from control engineering 
to system identification, structural design and also other engineering systems. 
 

LMI techniques very useful because A variety of design specification and constraints can be expressed as LMIs, Once formulated in 
the LMIs, a problem can be solved exactly by Using MATLAB LMI tool box, YALMIP tool box and also by convex optimization 
problems. 
 

While most of the engineering or control system problems with multiple constraints or objectives and it is difficult to getting 
analytical solutions in terms of matrix equations, they can solve efficiently in the LMI frame work. This makes LMI-based design 
problems a valuable alternative to remaining classical analytical method. 
 

In this journey here we continued the analysis of stability of neutral delay differential systems by referring some of the literature as 
follows Ref. [11] P. Balasubramaniam and et.al are worked on Leakage delays in T-S fuzzy cellular neural networks systems by 
using LMI approach and compared results with existing literature, Ref. [3] Pin-Lin-Liu worked on further results on the exponential 
stability criteria for time delay singular systems with delay-dependence and shows the more conserved results than the earlier 
literature solutions existing in control journal. Ref. [7, 8, 9] researchers are worked on to give the improved results for the time 
delay systems, continuation of this Ref. [5] Liu and SU studied about the stability analysis and they given one or more choice by an 
Lyapunov method to get the best results for time delay systems of equation and Ref. [2] Liu continued the work by Lyapunov 
method and compared the results with earlier literature. On the other hand Chang-Hua Ref. [1] is improved the results which is 
existing Ref. [5] by using Lyapunov-karovaski method and given four numerical examples to show their improved results. Ref[4]  
researcher given the results for neutral delay differential systems continuation of this here we continued the work on stability of the 
system of equations. 
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To solve the problems of neutral delay differential equation, LMI formation using Lyapunov function is a best method. It will give 
us more conserved results than any other methods, methodology of Lyapunov method to analyze stability of a system as follows. 
 

Consider the linear system 
   

(ݐ)ݔ̇ =  (1)                                                                                                                                                                 (ݐ)ݔܣ
 

Where ܣ ∈ ܴ௡∗௡ (ݐ)ݔ	݀݊ܽ	 ∈ ܴ௡ . Assume that (1) has equilibrium X=0 
 

Definition 1.1 Asymptotically Stable 
 

Let ܺ = 0 be an equilibrium point of ܺ̇ = ݂(ܺ),let ܸ:ܴ௡ → ܴ be a continuously differentiable function such that: 
 

1. ܸ(0) = 0 
((ݐ)ܺ)ܸ .2 > 0 
((ݐ)ܺ)ܸ̇ .3 < 0                                                                       (2) 

 

This leads to the celebrated theorem of Lyapunov of (1). 
 

Theorem 1.2 (Lyapunov second Theorem on R) Given system (1) with equilibrium X=0, if there exists an Lyapunov function V, 
then X=0 is Lyapunov stable. Furthermore, if ܸ̇(ܺ(ݐ)) < 0, then X=0 is asymptotically stable. 
 

The power of Theorem 1.2 is that one can make conclusions about trajectories of a system (1) without actually solving the 
differential equation. For the system(1), a common choice of Lyapunov function candidate is the quadratic form, 
 

By choosing Lyapunov function ܸ(ܺ) = ்ܺܲܺ		,ܲ > 0, Where X=x(t)                                                                  (3) 
 

Then derivative analyses are ܸ̇ = ்ܺ̇ܲܺ + ்ܺܲܺ̇ 
்ܺܲܣ்ܺ =       +  ܺܣ்ܲܺ
்ܲܣ)்ܺ =                                                   +  (4)                                      ܺ(ܣܲ
 

The quadratic form of this derivative proves, if the central quantity satisfies 
 

்ܲܣ + ܣܲ < 0	                                                                                                      (5) 
     

ܸ̇(ܺ) < 0                                                                                       (6) 
 

It shows that the given systems of equations are asymptotically stable and the corresponding conservative results. 
By continue of this methods here we continued the work on improve the stability of a neutral delay differential systems. 
 

Remark: In this article to prove Theorem1 along with the definition of Asymptotic stability and Lyapunov theory we are 
considering following two Lemma’s to improve the solutions of the Neutral Delay-Differential systems. 
 

Lemma 1.3. [18]For any positive semi-definite matrices 
 

ܺ = ቎
ଵܺଵ ଵܺଶ ଵܺଷ

ଵܺଶ
் ܺଶଶ ܺଶଷ
ଵܺଷ
் ܺଶଷ் ܺ33

቏ ≥ 0                                         (7) 

 

The following integral inequality holds  
 

−∫ ௧(ݏ)்ݔ̇
௧ି௛ ܺଷଷ̇(ݏ)ݔ ≤ ∫ (ݐ)்ݔ] ݐ)்ݔ − ℎ) ௧(ݏ)்ݔ̇

௧ି௛ ] ቎
ଵܺଵ ଵܺଶ ଵܺଷ

ଵܺଶ
் ܺଶଶ ܺଶଷ

ଵܺଷ
் ܺଶଷ் 0

቏ ቎
(ݐ)ݔ

ݐ)ݔ − ℎ)
(ݏ)ݔ̇

቏  (8)                                                          ݏ݀

 
 

We now present a delay-dependent criterion for asymptotic stability of the systems (1). 
 

Lemma 1.4 [19]The following matrix inequality 
 

൤
(ݔ)ܳ (ݔ)ܵ
(ݔ)்ܵ ൨(ݔ)ܴ < 0                          (9) 

 

Where ܳ(ݔ) = (ݔ)ܴ,(ݔ)்ܳ = ,ݔ	݊݋	ݕ݈݂݂݁݊݅ܽ	݀݊݁݌݁݀(ݔ)ܵ	݀݊ܽ	(ݔ)்ܴ  ݋ݐ	ݐ݈݊݁ܽݒ݅ݑݍ݁	ݏ݅
(ݔ)ܴ < 0 
(ݔ)ܳ < 0 
 

And 
 

(ݔ)ܳ − (ݔ)்ܵ(ݔ)ଵିܴ(ݔ)ܵ < 0                                                                                                                 (10) 
 

This Lemma also called as Schur-complement Lemma. 
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MAIN RESULT 
 

Consider a Neutral delay-differential system of the form 
 

(ݐ)ݔ̇ = (ݐ)ݔܣ + ݐ)ݔܤ − ℎ) + ݐ)ݔ̇ܥ − ℎ)                                                   (11)
  

With the initial condition function 
 

଴ݐ)ݔ + (ߠ = ,(ߠ)∅ ߠ	݈݈ܽ	ݎ݋݂ ∈ (−ℎ, 0)                                                                    (12) 
 

(ݐ)ݔ ∈ ܴ௡is the state vector, ܣ	݀݊ܽܤ,	ܥ ∈ ܴ௡∗௡  are constant matrices, h is a positive constant time-delay,	∅(. )is the given 
continuously differentiable function on (−ℎ, 0),and the system matrix A is assumed to be a Hurwitz matrix. 
 

The system given in (11) often appears in the theory of automatic control or population dynamics. First, we establish a delay-
independent criterion, for the asymptotic stability of the delay-differential system (11) using Lyapunov method in terms of LMI. 
 

Theorem 2. 1: For a given Scalar ℎ > 0,the neutral delay differential System (11) is asymptotically stable if there exist positive-
definite symmetric matrices	P = ்ܲ > 0,ܴ = ்ܴ > 0	are of appropriate dimensions and a positive semi-definite Matrixܺ =

቎
ଵܺଵ ଵܺଶ ଵܺଷ

ଵܺଶ
் ܺଶଶ ܺଶଷ
ଵܺଷ
் ܺଶଷ் ܺଷଷ

቏ ≥ 0 such that the following LMIs hold: ൥
߶ଵଵ ߶ଵଶ ߶ଵଷ
߶ଶଵ ߶ଶଶ ߶ଶଷ
߶ଷଵ ߶ଷଶ ߶ଷଷ

൩ < 0and[ܴ − ܺଷଷ] > 0 

where 
    

߶ଵଵ = ்ܲܣ + ܣܲ + +ܣ்ܣ ܴ + ℎܴܣ்ܣ + ℎ ଵܺଵ + ଵܺଷ + ଵܺଷ
்  

߶ଵଶ = ܤܲ + ܤ்ܣ + ℎܴܤ்ܣ + ℎ ଵܺଶ + ܺଶଷ் − ଵܺଷ 
߶ଵଷ = ܥܲ + ܥ்ܣ + ℎܴܥ்ܣ 
߶ଶଵ = ்ܲܤ + +ܣ்ܤ ℎܴܣ்ܤ + ℎ ଵܺଶ

் + ܺଶଷ − ଵܺଷ
் 

߶ଶଶ = ܤ்ܤ − ܴ + ℎܴܤ்ܤ + ℎܺଶଶ −ܺଶଷ −ܺଶଷ்  
߶ଶଷ = ܥ்ܤ + ℎܴܥ்ܤ 
߶ଷଵ = ்ܲܥ + +ܣ்ܥ ℎܴܣ்ܥ 
߶ଷଶ = ܤ்ܥ + ℎܴܤ்ܥ 
߶ଷଷ = ܥ்ܥ − ܫ + ℎܴܥ்ܥ 
 

Proof: Consider the Delay differential  system (11), using the Lyapunov- Krasovskii functional candidate in the following form, we 
can write 
 

ܸ = ଵݒ + ଶݒ + ଷݒ +  ସ                                                      (13)ݒ
        

Where 
 

ଵݒ = (14)                                                       (ݐ)ݔܲ(ݐ)்ݔ
    

ଶݒ = ∫ ݐ)்ݔ̇ + ݐ)ݔ̇(ݏ + ଴ݏ݀(ݏ
ି௛                                                      (15) 

 

ଷݒ = ∫ ݐ)்ݔ + ݐ)ݔܴ(ݏ + ଴ݏ݀(ݏ
ି௛                                                                    (16) 

 

ସݒ = ∫ ∫ ௧ߠ݀ݏ݀(ݏ)ݔܴ̇(ݏ)்ݔ̇
௧ାఏ

଴
ି௛                                                     (17)

    
 

The time derivative of V along the solution of (11) is given by 
 

ܸ̇ = ଵ̇ݒ + ଶ̇ݒ + ଷ̇ݒ +  ସ̇                                                                     (18)ݒ
 

Where ݔ,ݔ௛ ݐ)ݔ,(ݐ)ݔ ௛̇ denoteݔ, − ℎ), ݐ)ݔ̇ − ℎ)respectively. From 14 , 15,16 &17 we obtain 
 

ଵ̇ݒ = ்ܲܣ)்ݔ + ݔ(ܣܲ + ௛ݔܤ்ܲݔ2 +  ௛̇                                                                   (19)ݔܥ்ܲݔ2
        

ଶ̇ݒ = ݔ்̇ݔ̇ −  ௛ݔ௛்̇ݔ̇
 

ݔܣ்ܣ்ݔ=      + ௛ݔܤ்ܤ௛்ݔ + ௛ݔ̇ܥ்ܥ௛்̇ݔ + ௛ݔܤ்ܣ்ݔ2 + ௛ݔ̇ܥ்ܣ்ݔ2 + ௛ݔ̇ܥ்ܤ௛்ݔ2 −  ௛                                                            (20)ݔ௛்̇ݔ̇
  

ଷ̇ݒ = ݔ்ܴݔ −  ௛                                       (21)ݔ௛்ܴݔ
 

ସ̇ݒ = ݔℎ்ܴ̇ݔ̇ − ∫ ௧(ݏ)்ݔ̇
௧ି௛ ܺଷଷ̇(ݏ)ݔ − ∫ ௧(ݏ)்ݔ̇

௧ି௛ (ܴ − ܺଷଷ)̇(22)                                                  (ݏ)ݔ 
 

 	݁ݎℎ݁ݓ

−∫ ௧(ݏ)்ݔ̇
௧ି௛ ܺଷଷ̇(ݏ)ݔ ≤ ∫ (ݐ)்ݔ] ݐ)்ݔ − ℎ) ௧(ݏ)்ݔ̇

௧ି௛ ] ቎
ଵܺଵ ଵܺଶ ଵܺଷ

ଵܺଶ
் ܺଶଶ ܺଶଷ

ଵܺଷ
் ܺଶଷ் 0

቏ ቎
(ݐ)ݔ

ݐ)ݔ − ℎ)
(ݏ)ݔ̇

቏   ݏ݀
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Then 
ସ̇ݒ = ݔℎܴܣ்ܣ்ݔ + ௛ݔℎܴܤ்ܣ்ݔ + ௛̇ݔℎܴܥ்ܣ்ݔ + ݔℎܴܣ்ܤ௛ݔ + ௛ݔℎܴܤ்ܤ௛்ݔ + ௛ݔℎܴ̇ܥ்ܤ௛்ݔ + ݔℎܴܣ்ܥ௛்ݔ̇ + ௛ݔℎܴܤ்ܥ௛்ݔ̇ +
௛ݔℎܴ̇ܥ்ܥ௛்ݔ̇ + ℎൣ்ݔ ଵܺଵ + ଵܺଷ + ଵܺଷ

்൧ݔ+ ℎൣ்ݔ ଵܺଶ − ଵܺଷ + ܺଶଷ்൧ݔ௛ + ௛்ൣℎݔ ଵܺଶ
் + ܺଶଷ − ଵܺଷ

்൧ݔ + ௛்ൣℎܺଶଶݔ −ܺଶଷ −ܺଶଷ்൧ݔ௛ −
∫ ௧(ݏ)்ݔ̇
௧ି௛ (ܴ − ܺଷଷ)̇(23)                                                                                                                                                                  (ݏ)ݔ                                         

      

Total Derivative becomes 
 

ܸ̇ = ்ܲܣ)்ݔ + ݔ(ܣܲ + ௛ݔܤ்ܲݔ2 + ௛̇ݔܥ்ܲݔ2 + ݔܣ்ܣ்ݔ + ௛ݔܤ்ܤ௛்ݔ + ௛ݔ̇ܥ்ܥ௛்̇ݔ + ௛ݔܤ்ܣ்ݔ2 + ௛ݔ̇ܥ்ܣ்ݔ2 + ௛ݔ̇ܥ்ܤ௛்ݔ2 −
௛ݔ௛்̇ݔ̇ + ݔ்ܴݔ − ௛ݔ௛்ܴݔ + ݔℎܴܣ்ܣ்ݔ + ௛ݔℎܴܤ்ܣ்ݔ + ௛̇ݔℎܴܥ்ܣ்ݔ + ݔℎܴܣ்ܤ௛ݔ + ௛ݔℎܴܤ்ܤ௛்ݔ + ௛ݔℎܴ̇ܥ்ܤ௛்ݔ +
ݔℎܴܣ்ܥ௛்ݔ̇ + ௛ݔℎܴܤ்ܥ௛்ݔ̇ + ௛ݔℎܴ̇ܥ்ܥ௛்ݔ̇ + ℎൣ்ݔ ଵܺଵ + ଵܺଷ + ଵܺଷ

்൧ݔ+ ℎൣ்ݔ ଵܺଶ − ଵܺଷ + ܺଶଷ்൧ݔ௛ + ௛்ൣℎݔ ଵܺଶ
் + ܺଶଷ − ଵܺଷ

்൧ݔ +
௛்ൣℎܺଶଶݔ − ܺଶଷ −ܺଶଷ்൧ݔ௛ − ∫ ௧(ݏ)்ݔ̇

௧ି௛ (ܴ − ܺଷଷ)̇(24)                                                                                                                    (ݏ)ݔ 
 

Can be written as 
 

቎
(ݐ)ݔ

ݐ)ݔ − ℎ)
ݐ)ݔ̇ − ℎ)

቏

்

൥
߶ଵଵ ߶ଵଶ ߶ଵଷ
߶ଶଵ ߶ଶଶ ߶ଶଷ
߶ଷଵ ߶ଷଶ ߶ଷଷ

൩ ቎
(ݐ)ݔ

ݐ)ݔ − ℎ)
ݐ)ݔ̇ − ℎ)

቏ < 0                                                                              (25) 

 

where 
    

߶ଵଵ = ்ܲܣ + ܣܲ + +ܣ்ܣ ܴ + ℎܴܣ்ܣ + ℎ ଵܺଵ + ଵܺଷ + ଵܺଷ
்  

߶ଵଶ = ܤܲ + ܤ்ܣ + ℎܴܤ்ܣ + ℎ ଵܺଶ + ܺଶଷ் − ଵܺଷ 
߶ଵଷ = ܥܲ + ܥ்ܣ + ℎܴܥ்ܣ 
߶ଶଵ = ்ܲܤ + +ܣ்ܤ ℎܴܣ்ܤ + ℎ ଵܺଶ

் + ܺଶଷ − ଵܺଷ
் 

߶ଶଶ = ܤ்ܤ − ܴ + ℎܴܤ்ܤ + ℎܺଶଶ −ܺଶଷ −ܺଶଷ்  
߶ଶଷ = ܥ்ܤ + ℎܴܥ்ܤ 
߶ଷଵ = ்ܲܥ + +ܣ்ܥ ℎܴܣ்ܥ 
߶ଷଶ = ܤ்ܥ + ℎܴܤ்ܥ 
߶ଷଷ = ܥ்ܥ − ܫ + ℎܴܥ்ܥ 
and(ܴ − ܺଷଷ) > 0                                        (26) 
 

Hence Proved. 
 

Numerical Examples 
 

To illustrate the improvement of our proposed method, we present the following two simulation examples. 
 

Example 1 
 

Consider the following system: 
 

(࢚)̇࢞ = (࢚)࢞	࡭ + ࢚)࢞	࡮ − ̇(࣎                                        (27) 
 

Where 
 

࡭ = ቂ−2 1
−1 −1ቃ ࡮, = ቂ−1 −1

1 −2ቃ,h=0.1 
 

By solving LMI proposed in the Theorem.1, a following feasible solution is obtained by using YALMIP toolbox 
 

ࡼ = ቂ 4.8717				 1.4161
				1.4161				 4.4256ቃ ࡾ, = ቂ3.4964			 −0.2506

−0.2506 1.6330 ቃ ૚૚ࢄ, = ቂ3.4422			 −0.0664
−0.0664 2.7230 ቃ, 

 

૚૛ࢄ = ቂ3.5864			 −0.8307
−0.8307 3.8343 ቃ ૚૜ࢄ, = ቂ4.3431				 1.3003

1.3003 0.5714ቃ ૛૛ࢄ, = ቂ3.6309			 −0.4225
−0.4225 3.5854 ቃ 

 

૛૜ࢄ = ቂ2.0700 0.2117
0.2117 4.3046ቃ ૜૜ࢄ, = ቂ				1.7482			 −0.1253

−0.1253 0.8165 ቃ 
 

and maximum upper bounded value is 0.44223 
 

The obtained result shows that the delayed differential system is asymptotically stable. 
 

Example 2 
 

Consider the following system: 
 

(࢚)̇࢞ = (ࢎ)࢞	࡭ + ࢚)࢞	࡮ − (ࢎ +̇ ࢚)̇࢞࡯ −  (28)                                                    (ࢎ
 

Where 
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࡭ = ቂ−૛ ૙
૙ −૙.ૢቃ ࡮, = ቂ−૚ ૙

−૚ −૚ቃ ࡯, = ቂ−૙.૛ ૙
૙.૛ −૙.૚ቃ,h=0.1 

 

By solving LMI proposed in the Theorem.1, a following feasible solution is obtained by using YALMIP toolbox 
 

ࡼ = 1.0e + 07 ∗ ቂ3.6883								 2.1207
				2.1207				 1.6992ቃ ࡾ, = ቂ3.5648						 −3.6638

−3.6638 3.5648			ቃ 
 

૚૚ࢄ	
= 1.0e + 07	 ∗ ቂ				2.6137				 0.1038

0.1038 2.0975ቃ ૚૛ࢄ					, =1.0e+07 *ቂ				2.7615						 0.0384
0.0384 2.0614ቃ 

 

૚૜ࢄ =1.0e+07 *ቂ3.6023		 0.8448
0.8448 0.9788ቃ ૛૛ࢄ, = 1.0e + 07	 ∗ ቂ2.5894		 −0.0763

−0.0763 2.4098 ቃ 
 

૛૜ࢄ =1.0e+07 *ቂ3.1400	 0.9276
0.9276 1.2090ቃ ૜૜ࢄ, = ቂ			1.7824			 −1.8319

−1.8319 	1.7824 ቃ 
 

The obtained result shows that the delayed differential system is asymptotically stable. 
 

CONCLUSION 
 

In this paper we study about the sufficient conditions stability of the delay differential systems. The derived conditions are 
expressed in terms of LMI using schur-complement lemma and two simulation examples are given to demonstrate of our result with 
help of Yalmipmatlab tool box. 
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