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A large part of applied statistical analysis is based on linear regression modeling technique which is 
one of the most widely used statistical tools in agriculture. These regression models are of particular 
interest of agriculturists for a variety of inferential tasks such as prediction, parameter estimation 
and data description. The theory of least squares is widely used to analyse the agricultural field 
experiments. In this paper an attempt has been made to implement parallel Bayesian methods of 
deterministic as well as simulation tools to regression models. Implementations have been made 
using R, JAGS and Stan packages.  
 
 

 
 
 
 

 

 

  

  
 

 
 

 
 

 
 

 
 
 
 
 
 

 
 

 
 

 
 
 

 
 

 
 

 
 
 
 
 
 
  

 
 
 

INTRODUCTION 
 

In probability theory, linear regression model is one of the most 
commonly used statistical models that have received greatest 
attention due to their allowance for quantifying uncertainty and 
making predictions. Indeed these models became a much more 
flexible instrument in agriculture and in many areas of research 
through Fisher’s introduction of regression models. It is the 
geocentric model of applied statistics which is concerned with 
describing how the average value of a numerical outcome 
variable vary over to subpopulations defined by linear 
functions of predictors. Numerous texts have been written on 
the linear regression model; see, for example, Graybill (1961) 
and Searle (1971) for the sampling theory viewpoint. Carlin 
and Forbes (2004) provide an excellent introduction to the 
concepts of linear modeling and regression, Neter et al. (1996) 
and Weisberg (1985) provide accessible introduction to 
regression, Ramsey and Schafer (2001) is a good complement, 
with a focus on issues such as model understanding, graphical 
display, and experimental design. Gomez and Gomez (1984), 
Snedecor and Cochran (1989), and Welham et al. (2015) 
provide regression modeling to agricultural data. However, the 
introduction of Bayes’ theorem attracts researcher towards 
Bayesian inference to overcome the issues encountered in 
classical one. For example, Lindley (1971) rejects many 

sampling theory techniques because they violate the likelihood 
principle and thus violate the axioms of utility and probability. 
For more about the advantages and disadvantages of Bayesian 
inference and other inferential theories, Barnett (1973) gives an 
unbiased view. The general Bayesian inferential procedures as 
well as those methods which are peculiar to the linear models 
have seen in Jeffreys (1961) with vague prior distribution and 
Lindley (1965) with improper vague prior distribution. For 
details of Bayesian linear regression, see Zellner (1971), Box 
and Tiao (1973), and, for a more informally Bayesian 
treatment, see, Broemeling (1985), Gelman and Hill (2007) and 
Gelman et al. (2014).    
 

The aim of this paper is to cover the Bayesian framework of 
general linear models which includes, as special cases, the 
fixed models, which are used for regression analysis. In the 
Bayesian normal linear model framework, the key statistical 
modeling issues are (i) defining the predictor (x) and response 
(y) variable so that the conditional expectation of y is 
reasonably linear as a function of the columns of X (matrix of 
predictors) with approximately normal errors, and (ii) setting 
up a prior distribution on the model parameters that accurately 
reflects substantive knowledge (Gelman et al. 2014). Let � be a 
(� + 1) × 1 vector of real parameters,� = (��,… ,�� )′ a � × 1 
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vector of observations, � a � × (� + 1) known model matrix. 
Then the general linear model is,  
 

� = �� + � 
 

where � ∼ �(0� ,�� ��� ) and ���  is the precision matrix of �, 
which has covariance matrix ���� (�� = 1/� > 0). To make 
above model a Bayesian linear model we require a prior for 
parameters �and�. The simplest approach is to assume that all 
parameters are a priori independent having the structure   
 

�(�,�) = � �

�

���

(��)�(�) 

 

�� ∼ � ����
,��

��  ��� � = 0,… ,� ���  � ∼ �(�,�) 
 

Once prior information is represented by a probability density 
function, then the Bayes theorem combines this information 
with the information contained in the data. Thus, the joint 
posterior density of � = [�,�] is   
 

�(�,�|�,�) ∝ �(�|�,�,�) × �(�,�) 
 

With an equality sign, the posterior density is  
 

�(�,�|�,�) = � × �(�|�,�,�) × �(�,�) 
� ∈ �, � > 0 

where � is the normalizing constant and is given by   
 

�� � = � � �
�

∞

�

(�|�,�,�) × �(�,�)���� 

 

defines the marginal likelihood of �, or the prior predictive 
distribution of �. It can be used to predict an outcome given a 
linear function of these predictors, and regression coefficients 
can be thought of as comparisons across predicted values or as 
comparisons among averages in the data. A large part of 
applied statistical analysis is based on linear regression 
techniques that can be thought of as Bayesian posterior 
inference based on a weakly-informative prior distribution for 
the parameters of the normal linear model. In this paper, we 
outline, from a Bayesian perspective, the regression models for 
agricultural data with one and multiple predictors.   
 

Note that Bayes’ rule provides a rational method for updating 
our beliefs in the light of new information. It does not tell us 
what our beliefs should be; it tells us how they should change 
after seeing new information. The prior distribution is 
important in Bayesian inference since it influences the 
posterior. When no information is available, we need to specify 
a prior which will not influence the posterior 
distribution�(�|�). Such priors are called weakly-informative 
or non-informative or vague priors. This type of priors will be 
used throughout this paper. Usually a conjugate prior 
distribution for an unknown parameter leads to a posterior 
distribution is used for which there is a simple formulae for 
posterior means and variances. But we have situations in which 
obtaining exact value from posterior quantity may be difficult 
or impossible; however, if we generate random sample values 
of the parameters from the posterior distribution then we can 
get exact values of that posterior quantity of interest. Cases in 
which conjugate priors are considered to be unrealistic or are 
unavailable, either asymptotic approximation such as Laplace 
approximation (see, for example Tierney and Kadane 1986, 

Tierney, Kass and Kadane 1989, Erkanli 1994) or numerical 
integration techniques (see for example Evans and Swartz 
1996) can be used. Another appealing alternative is the usage 
of simulation based techniques. By simulation, we mean 
summarizing inferences by generating random samples from 
posterior distribution. Simulation techniques based on Markov 
chain Monte Carlo (MCMC) methods enable statisticians to use 
highly complicated models and estimate the corresponding 
posterior distributions with accuracy. In this paper main focus 
is given on how to implement Bayesian methods using 
simulations tools as an alternative to least square theory. 
Moreover, asymptotic analytic tools using Laplace 
approximation have also been implemented to cross verify the 
simulation results. The variants of MCMC such as 
independence Metropolis (proposed by Hastings, 1970 and 
popularized by Tierney, 1994.), Metropolis within Gibbs, and 
Hamiltonian Monte Carlo (Duane et al., 1987 and Neal, 1994) 
are performed to the Bayesian linear regression analysis of 
agricultural data. Computational and graphical aspects of 
Bayesian analysis have been implemented via R2jags, 
LaplacesDemon and rethinking packages of R.  
 

Simple linear regression 
 

We begin with the simplest case of linear regression in which 
only one predictor is involved. For Bayesian analysis of this 
simple linear model, we adopt Diploid wheat data from 
Welham et al. (2015) (also in Jing et al., 2007) in which all the 
concepts and computations have been discussed in classical 
viewpoint. In this dataset, several morphological traits were 
measured for 190 seeds selected at random from a line of 
diploid wheat, Triticum monococcum, with the aim of 
identifying variables associated with differences in seed 
weight. The variables measured are weight (mg), diameter 
(mm), length (mm), moisture content (%) and endosperm 
hardness (single-kernel characterization system index value). 
Seed size, as measured by length, is expected to be a major 
contributor to differences in seed weight, and so, we start by 
examining the relationship between seed weight and seed 
length. The header part of the data is    
 

DSeed Weight Length Diameter Moisture Hardness 
 

1. 30.15   3.27     2.09    10.27   -16.63 
2. 35.51   3.65     2.34    10.61    -8.27 
3. 29.16   3.36     2.15    10.27   -21.45 
4. 16.82   2.77     1.79    11.05     4.13 
5. 23.42   2.78     1.80    10.02    -2.05 
6. 31.77   3.37     2.15    10.34   -41.78 

 

Bayesian analysis of diploid wheat data 
 

To make regression model, a Bayesian model, specification of 
the prior parameters is required. The full Bayesian model for 
the diploid wheat data is expressed as  
 

�� ∼ �(��,��)  ���  � = 1,… ,190 
�� = �� + ����  
 

In matrix notation, this can be reexpressed as  
 

� ∼ �(��,���) 
 

where � = (��,… ,�� )� is a 190 × 1 vector of seed weights, �� 
the values of explanatory variable seed length for individuals 
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� = 1,… ,190 , � the 190 × 2 model matrix, and � = (��,��)� 
is the vector of regression coefficients. The next job is to 
choose appropriate priors for the parameters � and �. For this, 
some weakly informative priors have been taken. Prior 
distribution for the parameters (��,��) are taken to be 
independent normal distribution with zero mean which 
corresponds to the assumption of no effect of � on � and high 
variance to make prior flat (Ntzoufras, 2009). Further, for the 
parameter�, we consider uniform distribution as a low-
information prior distribution since it a priori gives the same 
probability to any interval of the same range. Notationally, 
prior probabilities for � and �(= �� �/�) are specified as  
 
�� ∼ �(0,1000)   ���   � = 0,1 

� ∼ �(0,100) 
 

By using Bayes’ theorem, the joint posterior density of � and � 
can be defined as  
 

�(�,�|�,�)

=
�(�|�,�,�) × ∏ ��

��� (��) × �(�)

∫ ∫ ∫ � (�|�,�,�) × ∏ ��
��� (��) × �(�)��������

 

 

The corresponding marginal posterior probability densities can 
be obtained as,  
 

�(��|�,�) = � � � (�|�,�,�) × � �

�

���

(��) × �(�)����� 

�(��|�,�) = � � � (�|�,�,�) × � �

�

���

(��) × �(�)����� 

�(�|�,�) = � � � (�|�,�,�) × � �

�

���

(��) × �(�)������ 

 

These posterior densities are not in closed form, hence, one has 
to use either analytic approximation or simulation tools. The 
simplest is to use normal approximation to the posterior 
density, essentially a Bayesian version of the Central limit 
theorem (Carlin and Louis, 2009). More complicated 
asymptotic techniques, such as Laplace’s method (Tierney and 
Kadane, 1986), enable more accurate, possibly asymmetric 
posterior approximations. However, when approximate 
methods are intractable or result in insufficient accuracy, we 
must resort to simulation techniques such as MCMC, the output 
of which corresponds to a sample from the joint posterior 
density, provide more complete information and are 
comparatively easy to program, even for very high dimensional 
models. A variant of MCMC known as independence 
Metropolis is implemented to approximate the joint posterior 
density �(�,�|�,�), through the package LaplacesDemon in R 
and also the Metropolis within Gibbs sampling and 
Hamiltonian Monte Carlo are introduced through the package 
R2jags and package rethinking respectively in R.  
 

Analysis with Laplaces Demon 
 

The implementation has been done through two main functions 
of the package Laplaces Demon which are Laplace 
Approximation and Laplaces Demon. The Laplace 
Approximation  is used for analytic approximation whereas, for 
simulation Laplaces Demon is used. First, we implement the 

analytic tool to approximate the posterior density and use the 
results as starting values in the MCMC algorithm.   
 

Creation of diploid wheat data in R  
 

The LaplacesDemon package requires data in a listed form. For 
the diploid data set, the individual’s observations of seed 
weight are entered as a vector of y. The model matrix X has 
two columns which is denoted by J, the vector of 1’s has been 
inserted for intercept and second column is for regress or 
variable seed length. The wheat is a data frame which contains 
all the information of data and is created from the data file 
TRITICUM.DAT from the homepage of the book.  
 

wheat<-read.table("TRITICUM", header=TRUE) 
y<-wheat$Weight 
x<-wheat$Length 
X<-cbind(1,x) 
J<-ncol(X) 
mon.names<-c("LP") 
parm.names<-as.parm.names(list(beta=rep(0,J),sigma=0)) 
pos.beta<-grep("beta",parm.names) 
pos.sigma<-grep("sigma",parm.names) 
MyData<-
list(X=X,mon.names=mon.names,parm.names=parm.names,po
s.beta=pos.beta,pos.sigma=pos.sigma,y=y) 
 

The three parameters beta[1], beta[2], and sigma are organized 
in the vector parm.names with the function as.parm.names. The 
function mon.names is used to monitor the log posterior (LP). 
In the end, all the data variables are combined in a listed form 
which is assigned to an object and named it MyData.  
 

Model specification 
 

To continue with the Bayesian analysis of the diploid wheat 
data, the logarithm of the unnormalized joint posterior 
distribution is used, which is the sum of the log-likelihood and 
prior distributions.  

��� �(�,�|�,�) ∝ ��� �(�|�,�,�) + � �

�

���

���(��) + ��� �(�) 

 

Model <- function(parm, Data) 
# Parameters 
beta <- parm[Data$pos.beta] 
sigma <-interval(parm[Data$pos.sigma], 1e-100, Inf) 
parm[Data$pos.sigma] <- sigma 
### Log-Prior 
beta.prior<-dnormv(beta,0,1000, 
log=TRUE) 
sigma.prior<-dunif(sigma,0,100, 
log=TRUE) 
# Log-Likelihood 
mu <- tcrossprod(beta, Data$X) 
LL <- sum(dnorm(Data$y, mu, sigma,  
log=TRUE)) 
# Log-Posterior 
LP <- LL + sum(beta.prior)+sigma.prior 
Modelout <- list(LP=LP, Dev=-2*LL,  
Monitor=LP,yhat=rnorm(length(mu), mu,  
sigma), parm=parm) 
return (Modelout)} 
 

The Model function is evaluated and the logarithm of the 
unnormalized joint posterior density is calculated as LP, and 
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returned in a list called Model out, along with the 
deviance(Dev), a vector (Monitor) of any variables desired to 
be monitored in addition to the parameters, ���� (yhat) or 
replicates of y, and the parameter vector parm. The � parameter 
must be positive-only, and so it is constrained to be positive in 
the interval function. The algorithm, outside of the Model 
function needs to be aware that � has been constrained, so the 
parm vector is updated with the constrained value.   
 

Initial Values 
 

The functions Laplace Approximation and Laplaces Demon in 
Laplaces Demon package require a vector of initial values for 
the parameters. Each initial value is a starting point for the 
estimation of a parameter. The order of the elements of the 
vector of initial values must match the order of the parameters 
associated with each element of parm passed to the Model 
function. In this case, parameter beta is given to value zero and 
parameter scale equal to 1. 
 
Initial.Values <- c(rep(0,J), 1) 
 

Asymptotic approximation 
 

The function Laplace Approximation is used to approximate 
integrals, which is a family of asymptotic techniques. It 
deterministically maximizes the logarithm of the unnormalized 
joint posterior density with one of several optimization 
algorithms. Here, trust region (TR) algorithm of Nocedal and 
Wright (1999) is used due to its efficiency than other 
algorithms as it attempts to reach its objective in the fewest 
number of iterations. In TR algorithm, the Hessian is 
approximated each iteration, making it best suited to models 
with small to medium dimensions.  
 

fit.TR <- Laplace Approximation (Model=Model, Initial. 
Values, MyData, Method=  "TR", Iterations=500) 
  

The two posterior summaries obtained by fit.TR object are 
reported in Table 1 and Table 2.   
 
 
 
 
 
 
 
The units of the intercept and slope here are mg and mg/mm, 
respectively, and an increase of 1 mm in seed length is 
expected to produce an increase of 17.13 mg in seed weight. 
The intercept represents the estimated average weight for seeds 
of length zero (i.e. -27.77 mg). Biologically, this is a startling 
value for two reasons: we clearly cannot have negative seed 
weights, and we expect a seed with zero length to have zero 
weight.  
 
 
 
 
 
 
 
 

This means we need to check that the model is appropriate for 
the data, but it does not necessarily mean that the model is 
inappropriate. Both intercept and slope are statistically 
significant.   
 

MCMC simulation 
 

To initialize markov chains, the above asymptotic posterior 
summaries are used as the starting values. The function 
LaplacesDemon is used for this purpose which maximizes the 
logarithm of the unnormalized joint posterior density with 
MCMC and provides samples of the marginal posterior 
distributions, deviance, and other monitored variables. 
Independence Metropolis (IM) proposed by Tierney (1994) is 
used in which the proposal distribution does not depend on the 
previous state.  
 

fit.Demon<-
LaplacesDemon(Model, Data =MyData, Initial.Values,Covar= 
fit.TR$Covar,Iterations =5000,  
Status=100,Thinning=10,Algorithm="IM",Specs=list(mu=fit.T
R$Summary1[1:length(Initial.Values),1])) 
 

The two summary matrices of the marginal posterior 
distributions of parameters can be obtained, one calculated over 
all the samples and the other calculated only on the stationary 
samples. Here, we report only the posterior summaries 
calculated on the stationary samples.   
 

 
 
 
 
 
 
 
It can be seen from Table 3 that the posterior summaries based 
on simulation with IM come out with lower standard deviation 
as compared to that based on Laplace approximation. This is 
because of two reasons. Firstly, the simulation technique 
summarizes posterior on the basis of samples directly drawn 
from it, whereas, in Laplace’s method, it is approximated 
asymptotically and thus, does not capture the true picture of the 
posterior density. Secondly, with independence-Metropolis 
algorithm, posterior is summarized more precisely, when the 
proposal is a good approximation of the true posterior 
(Ntzoufras, 2009).  
 

Analysis with JAGS 
 

JAGS (Plummer, 2003) is designed for inference on Bayesian 
models using Markov chain Monte Carlo (MCMC) simulation. 
JAGS can evaluate the integrals of full conditional distribution 
of the parameters by using Metropolis within Gibbs algorithm 
which is simply a component wise Metropolis-Hastings 
algorithm in which some components of the parameter vector 
are directly generated from the corresponding full conditional 
posterior distribution (Ntzoufras, 2009). To make the posterior 
analysis comparatively easier, the package R2jags (Su and 
Yajima, 2015) have been used in which data is created in R, 
simulation is done in JAGS and finally result is reported in R.   
 

Table 1 Marginal posterior densities summaries of the 
parameters using the function Laplace Approximation. 

 

Parameter Mode SD LB UB 
beta[1] -27.77 2.19 -32.15 -23.39 
beta[2] 17.13 0.66 15.80 18.45 
sigma 2.91 0.15 2.61 3.21 

 

Table 2 Summaries of the posterior samples drawn with sampling 
importance resampling (SIR), given the point-estimated posterior modes and the 

covariance matrix with the bounds that constitute a 95% probability interval. 
 

Parameter Mode  SD  LB  Median  UB   
beta[1]  -27.61  2.19  -31.73  -27.67  -23.08   
beta[2]  17.08  0.67  15.70  17.09  18.32   
sigma  2.94  0.15  2.66  2.94  3.26   

Deviance  948.47  2.48  945.62  947.95  954.73   
LP  -488.11  1.24  -491.29  -487.83  -486.67   

 

Table 3 Simulated marginal posterior summary obtained 
by independence Metropolis algorithm over stationary 

samples. 
 

Parameter Mean SD LB Median UB 
beta[1] -27.80 1.26 -30.41 -27.79 -25.47 
beta[2] 17.13 0.38 16.45 17.12 17.92 
sigma 2.91 0.09 2.74 2.91 3.10 

Deviance 946.40 0.87 945.45 946.19 948.65 
LP -487.09 0.44 -488.24 -486.99 -486.62 
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Setting up diploid wheat data in R 
 

The vector � is the individual observations of seed weight of 
length �. The model matrix with two columns, one is for 
intercept and the other is for regressor seed length, is denoted 
by �. The object j.dat assembles data in a form of list.  
 

y<-wheat$Weight 
n<-length(y) 
x<-wheat$Length 
X<-cbind(1,x) 
J<-ncol(X) 
j.dat<-list(y=y,n=n,X=X,J=J) 
 

Model definition 
 

The model definition consists of a series of relations inside a 
block delimited by curly brackets and preceded by the keyword 
model.  
 

cat("model{  
for(i in 1:n){  
y[i]~dnorm(mu[i],tau)  
mu[i]<-inprod(X[i,],beta[]) 
}  
for(j in 1:J){ 
beta[j]~ dnorm(0.0,1.0E-04)} 
tau<-1/(sigma*sigma)  
sigma~dunif(0,10)  
}",file="wheat.txt") 
 

The first three lines preceded by the keyword model define the 
data level model. The function inprod is used to compute the 
inner product of matrix X and vector beta. We assign a weakly-
informative normal prior for thecoefficients � with mean 0 and 
standard deviation 100. This states, roughly, that we expect 
these coefficients to be in the range (-100,100) and if the 
estimates are in this range, the prior distribution providing very 
little information in the inference. In JAGS, the normal 
distribution is specified in terms of precision (inverse of 
variance) parameter (� = 1/��) rather than the usual variance 
parameter.   
 

Initial values and parameters 
 

We supply the initial values (using random numbers) for the 
parameter �. When initial values are not specified, JAGS 
generates them itself, however, BUGS often crashes when 
using its self-generated initial values (Lunn et al. 2013). The 
object j.ini is used for initial values and desired parameters are 
saved to object j.params.  
 

j.ini<-function(){list(sigma= 
runif(1,0,10))}  
j.params<-c("beta","sigma")  
 

Calling JAGS from R 
 

After setting up all the codes, function jags is used to run the 
model. Gelman and Hill (2007) assess convergence by 
checking whether the distributions of the different simulated 
chains mix; thus at least two chains must be simulated. We 
simulate three chains for checking the convergence. Thus, 
jagsran three sequences, each with 2000 iterations, with the 
first 1000 from each sequence discarded.  
 

model.jags<-
jags(data=j.dat,inits=j.ini,j.params,model.file="wheat.txt",  
n.chains=3, n.iter=2000, progress.bar=NULL)  

 
 
 
 
 

 
The first five columns of Table 4 give inferences for the model 
parameters. Column first named as mean denotes posterior 
mean of the parameters and column second named as sd 
denotes their respective posterior standard deviations. The 
intercept beta[1] has a mean estimate of -27.95 and a standard 
error of 2.33. The median estimate of beta[1] is -28, with a 
95% interval of [-32.42, -23.36]. Moving to the bottom of the 
table, the 95% interval for the seed weight coefficient, beta[2], 
is [15.81,18.54]. Both intercept and coefficient of seed height 
are statistically significant as zero doesn’t lie in their 95% 
credible regions. The second right most column (Rhat) gives 
informationabout the convergence of the algorithm. The 
Gelman-Rubin diagnostic test (Rhat) should be less than 1.1 for 
all parameters to have approximately converged algorithm. The 
final column, n.eff is the effective sample size of the 
simulations.   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Analysis with Stan 
 

Stan is similar to BUGS: a program that draws random samples 
from the joint posterior distribution of the model parameters 
given a model, the data, prior distributions, and initial values. 
To do so, it uses the no-U-turn sampler, which is a type of 
Hamiltonian Monte Carlo(HMC) simulation (Hoffman and 
Gelman, 2013; Betancourt, 2013), and optimization-based 
point estimation. Stan can handle large data sets and complex 
models in less computing time than BUGS. Specifically, the 
number of effective samples compared to the total number of 
iterations is substantially higher in Stan compared to BUGS, 
since Stan uses more efficient MCMC algorithms and is 

 
Figure 1 Graphical representation of posterior summaries. Rhat is near 

one for all parameters indicating good convergence, and right side shows 
the posterior inference for each parameter and the deviance. 

 

Table 4 Posterior parameter estimates for jags model of 
diploid wheat data. 

 

Parameter mean sd 2.5% 50% 97.5% Rhat n.eff 
beta[1] -27.95 2.33 -32.42 -28.00 -23.36 1.001 3000 
beta[2] 17.18 0.70 15.81 17.19 18.54 1.001 3000 
sigma 2.96 0.15 2.67 2.95 3.26 1.001 2000 

Deviance 948.48 2.52 945.59 947.83 954.80 1.001 3000 
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implemented using a language focusing on efficiency and 
stability. The rethinking (McElreath, 2015) package provides a 
convenient interface, map2stan, to compile lists of formulas, 
into Stan HMC code. To see how it’s done, let’s revisit the 
diploid wheat data.  
 

Model definition 
 

model.stan<- map2stan( 
alist( 
Weight~ dnorm( mu , sigma) , 
mu <- a + b*Length , 
a ~ dnorm( 0, 100 ) , 
b ~ dnorm( 0 , 10 ) , 
sigma ~ dunif( 0 , 50 ) 
) ,data=wheat) 
After executing this code, map2stan returns an object that 
contains a bunch of summary information , as well as samples 
from the posterior distribution of all parameters.  
 

 
 
 
 

 
The estimates in Table 5 are very similar to the estimates 
obtained through LaplacesDemon and JAGS. The interval 
boundaries are highest posterior density interval (HPDI).   
 

Figure 2 shows all the simulated values from the joint posterior 
distribution of the three model parameters. It clearly shows that 
the intercept (a) and regression coefficient for seed length (b) 
are most perfectly negatively correlated. It justmeans that these 
two parameters carry the same information-as we change the 
slope of the line, the best intercept changes to match it. But in 
more complex models, strong correlations like this can make it 
difficult to fit the model to the data. It is possible to avoid it 
with center the predictors ( McElreath, 2015). Centering 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

is the procedure of subtracting the mean of a variable from 
each value. To create a centered version of the Length variable:  
wheat$cLength <- (wheat$Length-mean( 
wheat$Length)) 
 

The refitted model is  
 

model.stan1<- map2stan( 
alist( 
Weight~ dnorm( mu, sigma ), 
mu <- a + b*cLength, 
a ~ dnorm( 0, 50 ), 
b ~ dnorm( 0 , 10 ), 
sigma ~ dunif( 0 , 10) 
),data=wheat) 
 

The above code just replaces Length with cLength, the new 
variable. Now for the new estimates:   
 
 
 
 
 
 

 
The estimates for �� (b) and � are unchanged, but the estimate 
for �� (a) is now the same as the average weight value in the 
data. And the correlations among parameters are almost zero 
(see, Figure 3). The estimate for the intercept, a, still means the 
same thing it did before: the expected value of the outcome 
variable, when the predictor variable is equal to zero. But now 
the mean value of the predictor is also zero. So the intercept 
also means: the expected value of the outcome, when the 
predictor is at its average value. This makes interpreting the 
intercept a lot easier.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 shows the 95% prediction intervals for actual seed 
weights. It encounters both uncertainty in parameter values and 
uncertainty in sampling process as it is known that prediction in 
a Bayesian context takes the parameter uncertainty directly into 
account, contrary to classical inference which does not take 

into account the sampling variability of ��.  
 

Table 5 Posterior parameter estimates for Stan model of 
diploid wheat data. 

 

Parameters Mean StdDev 
lower 
0.95 

upper 
0.95 

n_eff Rhat 

a -27.75 2.08 -31.63 -23.38 286 1 
b 17.12 0.63 15.89 18.37 279 1 

sigma 2.94 0.15 2.64 3.21 476 1 
 

Figure 2 Pairs plot of the samples produced by Stan. The diagonal 
shows a density for each parameter. Below the diagonal, correlations 

between parameters are shown. 
 

Table 6 Posterior parameter estimates for Stan model of 
diploid wheat data after centering the predictor Length. 

 

Parameters Mean StdDev 
lower 
0.95 

upper 
0.95 

n_eff Rhat 

a 28.66 0.22 28.23 29.11 853 1 
b 17.12 0.66 15.81 18.34 886 1 

sigma 2.95 0.16 2.68 3.30 943 1 
 

 
Figure 3 Pairs plot of the samples after centering the predictor variable. 

It is evident that the correlations among parameters are almost zero. 
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Figure 4.95% prediction interval for seed weights. The solid 
line is the posterior estimate of the mean weight at each length. 
The two shaded regions show different 95% possible regions. 
The narrow shaded interval around the line is the distribution of 
�. The wider shaded region represents the region within which 
the model expects to find 95% of actual seed weights in the 
population, at each seed length.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Multiple linear regression 
 

Multiple regression model describes the relationship between a 
single response variable and two or more variates. Regression 
coefficients are more complicated to interpret with multiple 
predictors because the interpretation for any given coefficient 
is, in part, contingent on the other variables in the model. The 
implementation of multiple regression or multivariate 
regression (McElreath, 2015) with LaplacesDemon, JAGS, and 
Stan has been done in a similar way as simple regression. We 
just add all the predictor variables in the formula notation. To 
show how asymptotic approximation and simulation based 
Bayesian study works for multivariate regression, again diploid 
wheat data is used with all the predictors. As suggested by 
McElreath (2015), all predictors are centered and scaled. 
Centering typically improves the interpretation of main effects 
in the presence of interactions, and dividing by the standard 
deviation puts all predictors on a common scale.   
 

Analysis with Laplaces Demon 
 

The function Laplace Approximation of package Laplaces 
Demon is used for implementing the Laplace’s method. Again 
TR algorithm is used due to its efficiency and fast convergence.   
 

Creation of data 
 

Data creation is as usual as in simple linear regression, only the 
difference is in the creation of model matrix (�). Since all the 
predictors are involved so that � is now a 190 × 5 model 
matrix. The model matrix with all the centered and scaled 
predictors are specified as  
 

x1<-(wheat$Length-mean(wheat$Length))/sd(wheat$Length) 
x2<-(wheat$Diameter-
mean(wheat$Diameter))/sd(wheat$Diameter) 
x3<-(wheat$Moisture-
mean(wheat$Moisture))/sd(wheat$Moisture) 
x4<-(wheat$Hardness-
mean(wheat$Hardness))/sd(wheat$Hardness) 

X<-cbind(1,x1,x2,x3,x4) 
 

Model specification 
 

To specify a model, let us consider a linear regression model, 
which is often denoted as:  
 

� ∼ �(�,���) 
� = �� 
 

 The dependent variable, y, is normally distributed according to 
expectation vector � and scalar variance ���, and the 
expectation vector � is equal to the inner product of model 
matrix X and transposed parameter vector �. Prior probablities 
are specified for � and � as  
 

�� ∼ �(0,1000), � = 1,… ,� 
 

� ∼ ℋ�(25) 
 

Each of the �� paramters is assigned to a vague prior 
probability distribution with zero mean and large variance 
which indicates a lot of uncertainty about each �. The residual 
standard deviation � is half-Cauchy with scale=25 as a weakly 
informative prior distribution which is the recommendation of 
Polson and Scott (2012). To specify the model, a function 
Model is created. All the codes would remain same as in simple 
regression model except for the prior density of sigma. Here, 
half-Cauchy with scale=25 is used rather than the uniform 
distribution.  
 

sigma.prior <- dhalfcauchy(sigma, 25, log=TRUE) 
 

Asymptotic approximation 
 

To approximate the posterior densities with the optimization 
technique TR, some initial values are specified for parameters 
� and � which is the requirement of LaplacesDemon package 
and then model is fitted with function LaplaceApproximation.  
 

Initial. Values <- c(rep(0,J), 1) 
fit.TR2 <- 
 

LaplaceApproximation (Model=Model, Initial.Values, MyData,  
Method="TR", Iterations=500) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The two posterior summaries obtained from Laplace 
Approximation are reported in Table 7 and Table 8.   
 
 

 
 

Figure 4 
 

Table 7 Marginal posterior densities summaries of the 
parameters using the function Laplace Approximation 

 

Parameter Mode SD LB UB 
beta[1] 28.66 0.20 28.26 29.05 
beta[2] -12.20 4.49 -21.18 -3.21 
beta[3] 17.61 4.49 8.62 26.59 
beta[4] -0.39 0.20 -0.79 0.01 
beta[5] -0.66 0.20 -1.06 -0.26 
sigma 2.72 0.14 2.44 3.00 

 

Table 8 Summmaries of the posterior samples drawn with 
sampling importance resampling. 

 

Parameter Mode SD LB Median UB 
beta[1] 28.65 0.21 28.21 28.65 29.03 
beta[2] -12.18 4.85 -22.00 -12.22 -2.93 
beta[3] 17.58 4.86 8.63 17.52 27.50 
beta[4] -0.39 0.21 -0.78 -0.39 0.03 
beta[5] -0.66 0.21 -1.07 -0.66 -0.24 
sigma 2.78 0.16 2.49 2.77 3.09 

Deviance 925.57 3.76 920.38 924.96 934.70 
LP -489.00 1.90 -493.52 -488.65 -486.44 

 



Shagufta Yasmeen and Athar Ali Khan., Applications of Bayesian Simulation Tools For Regression  
Modeling of Agricultural Data 

 

21543 | P a g e  

MCMC simulation with independence Metropolis  
 

The function Laplaces Demon with independence Metropolis is 
used for simulation.  
 

fit2.demon <-
 LaplacesDemon (Model, Data=MyData, Initial.Values,Covar=
fit.TR2$Covar, Iterations=5000, Status=100, Thinning=10,Alg
orithm="IM",  
Specs=list(mu=fit.TR2$Summary1[1: 
length(Initial.Values),1])) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When there are many explanatory variates, the selection of 
important one are highly preferred to agriculturists. Moreover, 
it is one of the main aim of regression analysis that provide a 
good description of the response. The Importance function of 
LaplacesDemon package is used for this purpose which 
considers variable importance (or predictor importance) to be 
the effect that the variable has on replicates ���� when the 
variable is removed from the model by setting it equal to zero. 
Here, variable importance is considered in terms of the 
comparison of posterior predictive checks. This may be 
considered to be a form of sensitivity analysis, and can be 
useful for model revision, variable selection, and model 
interpretation.  
 

Importance(fit2.demon, Model, MyData, Discrep="Chi-
Square", CPUs=1) 

 
 
 
 
 

 
 
The results from Table 10 show the impact of sequentially 
removing each predictor. The criterion for variable importance 
is the Bayesian Predictive Information Criterion (BPIC), 
introduced by Ando (2007). BPIC is a variation of the 
Deviance Information Criterion (DIC) that has been modified 
for predictive distributions. With BPIC, variable importance 
has a positive relationship, such that larger values indicate a 
more important variable, because removing that variable 
resulted in a worse fit to the data. The best model has the 

lowest BPIC. In this way, it is evident that Length and 
Diameter are the most important variables for seed weight.  
 

Analysis with JAGS 
 

Bayesian analysis for diploid wheat data with multiple 
predictors has been done via package R2jags, interface of R 
and JAGS, which simulates the samples from posterior 
densities and approximate the results using Metropolis-within-
Gibbs algorithm.   
 

Creation of data in R 
 

Here, each regressor is centered and scaled as per the 
recommendation of McElreath (2015). The model matrix X 
contains the column of one for intercept and and columns of all 
modified explanatory variables. The object jdat assembles all 
the data in a listed form.  
 

y<-wheat$Weight 
x1<-(wheat$Length-mean(wheat$Length))/sd(wheat$Length) 
x2<-(wheat$Diameter-
mean(wheat$Diameter))/sd(wheat$Diameter) 
x3<-(wheat$Moisture-
mean(wheat$Moisture))/sd(wheat$Moisture) 
x4<-(wheat$Hardness-
mean(wheat$Hardness))/sd(wheat$Hardness) 
X<-cbind(1,x1,x2,x3,x4) 
J<-ncol(X); n<-length(y)  
jdat<-list(y=y, J=J, n=n, X=X) 
 

Model definition 
 

A JAGS model is defined in a text file using a dialect of the 
BUGS language (Lunn et al., 2012). The model is same as 
defined in SLR model only the difference is in the specification 
of weakly informative prior distribution for scale parameter 
(sigma). Here, half-Cauchy (scale=25) prior is used instead of 
uniform distribution. When degrees of freedom, � = 1 of the 
half-t distribution, the density is proportional to a proper half-
Cauchy distribution.  
 

cat("model{  
for(i in 1:n){  
y[i]~dnorm(mu[i],tau)  
mu[i]<-inprod(X[i,],beta[])}  
for(j in 1:J){ 
beta[j]~ dnorm(0.0,1.0E-04)} 
tau<-1/(sigma*sigma)  
sigma~ dt(0, 25, 1) T(0,) 
}",file="wheat.txt") 
 

Initial values and parameters 
 

Before a model can be run, it must be initialized. The user may 
supply initial value files, one for each chain, containing initial 
values for the model parameters. Initial values may not be 
supplied for logical or constant nodes. The object j.ini is used 
for initial values and j.params is used for monitored variables.  
 

j.ini<-function(){list(sigma=runif( 
1,0,10))}  
j.params<-c("beta","sigma")  
 
 
 
 

Table 10 Variable importance as the impact of each 
variable in design matrix � on ���� , when the variable is 

removed. 
 

Model BPIC 
Full 922.784 

Without Intercept 1705593.261 
Without Length 3147891.369 

Without Diameter 6565398.532 
Without Moisture 926.114 
Without Hardness 934.419 

 

Table 9 Simulated marginal posterior distributions of the 
parameters, deviance, and monitored variables over 

stationary samples. The closeness of posterior mean and 
posterior median of the parameters exhibits the symmetry 

in their posterior densities. 
 

Parameter Mean SD LB Median UB 
beta[1] 28.65 0.12 28.42 28.65 28.87 
beta[2] -12.27 2.81 -17.32 -12.39 -6.88 
beta[3] 17.66 2.81 12.23 17.76 22.77 
beta[4] -0.39 0.12 -0.62 -0.39 -0.16 
beta[5] -0.67 0.11 -0.89 -0.66 -0.44 
sigma 2.73 0.08 2.58 2.72 2.87 

Deviance 921.22 1.25 919.42 920.99 924.11 
LP -486.81 0.63 -488.29 -486.67 -485.92 
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Running JAGS from R 
 

The R2jags package offers a single interface to JAGS that 
carries out all the steps of running the model, with reasonable 
default values. The interface function, jags, is used to perform 
the simulations in JAGS and finally the results are assigned to 
an R object model.jags.  
 

model.jags<-
 jags (data=jdat, inits=j.ini, j.params, model.file="wheat.txt",n.i
ter=3000, progress.bar=NULL)  
 

The summaries of the posterior distribution are reported in 
Table 11 with the function print.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 5. Graphical representation of posterior summaries. The 
upper plot displayed in the right panel shows the significance, 
medians, and 80% intervals of all the parameters. Rhat is near 
one for all parameters indicating good convergence, and right 
side shows the posterior inference for each parameter and the 
deviance. 
 

Analysis with Stan 
 

To analyze diploid wheat data with Hamiltonian Monte Carlo 
algorithm, again map2stan is used. Here, Ls, Ds, Ms, and Hs 
are defined as same as x1, x2, x3, and x4 defined in JAGS and 
LaplacesDemon respectively. All the coefficients of centered 
and scaled predictors are assigned to a weakly informative 
normal prior and a half-Cauchy prior is used for standard 
deviation (sigma). 
model.stan<- map2stan( 
alist( 

 Weight ~ dnorm( mu , sigma ), 
 mu <-
 Intercept + beta1*Ls + beta2*Ds +beta3*Ms + beta4*Hs, 
   Intercept ~ dnorm(0,50), 
   beta1 ~ dnorm(0,10), 
   beta2 ~ dnorm(0,50), 
   beta3 ~   dnorm(0,1), 
   beta4 ~   dnorm(0,1), 
   sigma ~ dcauchy(0,2) 
),data=wheat,iter=4000) 
 

 
 
 
 
 
 
 
 

 
Figure 6 is the counterfactual plot which shows how the 
predictions change as we change only predictor at a time. This 
means holding the values of all predictors constant, except for a 
single predictor of interest.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Counterfactual plots for the multivariate seed weight 
model,model.stan. Each plot shows the change in predicted 
mean across values of a single predictor, holding the other 
predictors constant as its mean value (zero in all cases). Shaded 
regions show 95% percentile intervals of the mean (dark, 
narrow) and 95% prediction intervals (light, wide) 
 

CONCLUSION 
 

Analysis of linear regression model with one and more 
predictors under the framework of Bayesian inference has been 
studied. For the Bayesian implementation, asymptotic 
technique such as Laplace approximation and simulation with 
sampling importance resampling, independent Metropolis, 

Table 11 Posterior parameter estimates for jags model of 
diploid wheat data with three chains, each with 3000 

iterations (first 1500 discarded). 
 

Parameter mean sd 2.5% 50% 97.5% Rhat n.eff 
beta[1] 28.65 0.20 28.25 28.65 29.05 1.001 4500 
beta[2] -12.73 4.65 -21.93 -12.73 -3.77 1.002 1700 
beta[3] 18.14 4.65 9.14 18.16 27.36 1.002 1900 
beta[4] -0.39 0.20 -0.78 -0.39 0.01 1.001 4500 
beta[5] -0.66 0.20 -1.06 -0.66 -0.24 1.001 4400 
sigma 2.76 0.15 2.48 2.75 3.07 1.003 3600 

deviance 925.16 3.56 920.29 924.44 933.58 1.002 970 

 

 
Figure 5 

Table 12 Posterior parameter estimates for Stan model of 
diploid wheat data with all the centered and scaled 

regressors. 
 

Parameters Mean StdDev 
lower 
0.95 

upper 
0.95 

n_eff Rhat 

Intercept 28.66 0.20 28.27 29.04 2000 1 
beta1 -10.55 4.26 -8.63 -1.83 955 1 
beta2 15.97 4.26 7.34 24.09 954 1 
beta3 -0.37 0.19 -0.74 0.02 2000 1 
beta4 -0.63 0.20 -1.03 -0.26 1871 1 
sigma 2.76 0.14 2.50 3.05 1560 1 

 

 
Figure 6 
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Metropolis within Gibbs sampling and Hamiltonian Monte 
Carlo have been performed. It is concluded that the 
independence Metropolis implemented in LaplacesDemon 
function provides the lowest standard deviations as compared 
to other simulation techniques. The simulation results yielded 
by Laplace Approximation with SIR and R2jags with MWG 
have come out to be much closer for the parameters. We have 
also described the strategies for variable selection in terms of 
multiple linear regression model consists of a set of 
explanatory variates and concluded that Length and Diameter 
are the most important regressors for the seed weight variable.  
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