

Available Online at http://www.recentscientific.com

CODEN: IJRSFP (USA)

International Journal of Recent Scientific Research Vol. 8, Issue, 11, pp. 21916-21922, November, 2017 International Journal of Recent Scientific Rerearch

DOI: 10.24327/IJRSR

Research Article

ASSESSMENT OF RADIOACTIVITY LEVELS AND HAZARDS FOR SOME SEDIMENTARY ROCK SAMPLES IN DIFFERENT LOCALITIES SOUTHWESTERN, SINAI, EGYPT

Abd El-Halim E.S¹., Sroor A¹., El-Bahi S.M¹., Ibrahim E. El-Aassy²., Enass M. El Sheikh² and Musa K.M³

¹Department of Physics, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis, Cairo, Egypt ²Nuclear Materials Authority, Cairo, Egypt ³Physics Department, Faculty of Science, Tripoli University, Tripoli, Libya

DOI: http://dx.doi.org/10.24327/ijrsr.2017.0811.1164

ARTICLE INFO	ABSTRACT
<i>Article History:</i> Received 17 th August, 2017 Received in revised form 12 th September, 2017 Accepted 04 th October, 2017 Published online 28 th November, 2017	This study aimed to the assessment of the activity concentrations and radiation hazard indices with excess lifetime cancer risk (ELCR) in twenty one sedimentary rock samples obtained from three different localities, southwestern Sinai, Egypt. The natural radionuclides have been measured by using HPGe detector with a specially designed shield. The results of this study showed that the activity concentrations of ²³⁸ U, ²²⁶ Ra, ²³² Th and ⁴⁰ K were higher than the world's average levels. The activity ratios ²³⁴ U/ ²³⁸ U, ²³⁰ Th/ ²³⁸ U, ²³⁰ Th/ ²³⁴ U, ²³⁰ Th/ ²³⁴ U, ²³⁰ Th/ ²³⁵ U and ²³⁴ U/ ²³⁵ U were calculated to estimate the radioactive equilibrium /
<i>Key Words:</i> Natural radioactivity, HPGe detector, Activity ratio, Sediment rock, Excess lifetime cancer risk.	disequilibrium in the three localities. The radium equivalent (Ra_{eq}) in Bq/Kg, external hazard index (H_{ex}), radioactivity level index (I γ), the absorbed dose rate (D) and the annual effective dose (AED) in outdoor environment were estimated. The excess lifetime cancer risk (ELCR) was found to be high for all samples due to high natural radioactivity concentrations in the area under investigation which represent radiological risk for the health of population.

Copyright © Abd El-Halim E.S *et al*, 2017, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The knowledge of radionuclides distribution and radiation levels in the environment is important for assessing the effects of radiation exposure due to both terrestrial and extraterrestrial sources. Terrestrial radiation is due to radioactive nuclides present in varying amounts in soils, building materials, water, rocks and atmosphere. Some of these radionuclides from these sources are transferred to man through food chain or inhalations, while the extraterrestrial radiation originates from outer space as primary cosmic rays [Keser et al., 2013]. The various geological formations play a predominant role in accumulating and transporting contaminants within а geographic area [Ramasamy et al., 2014]. Long-term exposure to radioactivity and inhalation of radionuclides could cause many health problems, such as acute leukopenia, anemia, leukemia, necrosis of the mouth, tooth fracture and cataracts as well as lung, pancreatic liver, hepatic, bone and kidney cancers [Taskin et al., 2009; Qureshi et al., 2014]. Human exposure to

ionizing radiation is an important scientific subject that attracts sustained public attention.

The objective of this paper is to observe the distribution of 238 U, 232 Th, 226 Ra and 40 K activities in the surface sediment of the area under investigation and to evaluate the radiological hazards in this area by calculating the radium equivalent activity (Ra_{eq}), absorbed gamma dose rate (D), annual effective dose equivalent (AEDE), external hazard index (H_{ex}) and excess lifetime cancer risk (ELCR).

MATERIALS AND METHODS

Study area

The study area (Fig.1) is located in the southwestern Sinai, Egypt. Where the samples collected from three localities; Wadi Nasab is at the intersection of longitude $33^{\circ} 26' 20''$ and latitude $29^{\circ} 2'$, Wadi Sad El-Banat is at the intersection of longitude $33^{\circ} 24'$ and latitude $29^{\circ} 2' 30''$ and Wadi Um Hamd is at the intersection of longitude $33^{\circ} 25' 45''$ and latitude $28^{\circ} 57'$.

^{*}Corresponding author: Abd El-Halim E.S

Department of Physics, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis, Cairo, Egypt

Sampling

Twenty one sedimentary rock grap samples were collected from three different locations (Fig.1) and different rock types; fourteen samples from Wadi Nasab, five samples from Wadi Sad El Banat and two samples from Wadi Um Hamd. These samples were prepared for $\gamma - Ray$ spectrometric analyses by HPGe detector where the samples first dried, crushed and sieved through -200 mesh size. Weighted samples were placed in polyethylene bottles of 250 cm³ volume. The bottles were completely sealed for more than one month to allow radioactive equilibrium to be reached before measured by the gamma spectrometer. This step was necessary to ensure that radon gas is confined within the volume and the daughters still also remain in the sample.

Fig 1 Geologic map of the studied area in southwestern Sinai, Egypt [After El Aassy et al. 1986]

Radioactivity measurements

High purity vertical germanium was coupled to a PC-computer with a special electronic card to make it equivalent to a multichannel analyzer. The system also contains the usual electronic components of preamplifier, amplifier and power supply. The detector has resolution (FWHM) 0f 1.85 KeV for the 1332.5 KeV γ -ray line of 60 Co.

The γ -ray spectrometer energy calibration was performed using 60 Co, 226 Ra and 241 Am point sources. The detector was surrounded by a special heavy lead shield of about 10 cm thickness with inside dimension 28 cm diameter 40.5 cm height. The absolute detection efficiency of the HPGe detector was determined by using three well-known reference materials obtained from the International Atomic Energy Agency for U, Th and K activity measurements: RGU-1, RGTh-1 and RGK-1 [IAEA, 1987, Anjos *et al.*, 2005]. The sample containers were placed on top of the detector for counting. The same geometry and size were used for both the samples and the reference

materials [Pekala et al., 2010]. The primordial ²³⁸U is the most abundant isotope of U (99.27%) and the initial member of the ²³⁸U-decay chain with a long half-life time (4.4683 Ga). It decays to ²³⁴Th with the emission of the α - particle. Through two consecutive β - transitions, ²³⁴Th decays to ²³⁴Pa (half-lives of 24.10 days and 6.69 h, respectively) and to ²³⁴U, with the half-life time of 245,250 years, which decays to ²³⁰Th [Pekala et al., 2010]. Uranium-238 activity was determined indirectly from the gamma rays emitted by its daughter products (²³⁴Th and ^{234m}Pa) whose activities are determined from the 63.3 (3.9%) and 1001(0.7%) keV photopeaks, respectively. The gamma-ray transitions of ²²⁸Ac (338.4 (12.3%), 911 (29%)) KeV, ²¹²Bi (727.3 KeV (7%)) and ²⁰⁸Tl (583.1 KeV (30%)) were used to evaluate the specific activity of ²³²Th [Technical Reports Series, 1989]. ²²⁶Ra activity concentration was measured from 186.1 KeV (3.29 %) after the subtraction of the 185.7 KeV (54 %) of ²³⁵U. The concentrations of ²¹⁴Pb and ²¹⁴Bi were measured from (295.1(18.7%), 351.9 (35.8%)) KeV and (609.3 (45%), 1120.3(14.9%),1238.1(5.96%), 1764.5(16.07%)) KeV. For the actinium series gamma energies of 143.8 KeV (10.5 %), 163.4 KeV (4.8 %), 185.7 KeV (54 %) and 205.3 KeV (4.7%) were taken to represent the ²³⁵U concentrations. 40 K was determined directly from the 1460 KeV (10.7%) peak energy. 234 U activity was determined directly from the gamma rays emitted from this nuclide at energies of 53.2 (0.123%) keV and 120.9 (0.034%) keV. For the measurement of the ²³⁰Th activity, the γ -ray emission at 67.7 (0.37%) keV is used [Technical Reports Series, 1989].

RESULT AND DISCUSSION

The measured activity concentrations of 238 U, 234 U, 235 U, 230 Th, 226 Ra, 232 Th and 40 K are shown in table (1). These data represent three localities and four rock types. The sandy dolomite K9 from Wadi Nasab records the highest measurements of 238 U, 234 U, 235 U, 230 Th and 226 Ra and the lowest 232 Th and 40 K. The siltstone K10 from Wadi Nasab also record the lowest measurements of 238 U, 234 U, 234 U, 234 U, 234 U, 235 U, 230 Th and 226 Ra table (1).

The three different locations indicate that the rocks contain significant specific activities and concentrations of ²³⁸U and its progenies. It is clear from (Fig. 2) that the activity concentrations of ²³⁸U and ²²⁶Ra for all the samples are more higher than the typical world average value of 33 and 32 Bq/Kg, respectively [UNSCEAR, 2010]. For ²³²Th (Fig.3) six samples of Wadi Nasab are higher than the permissible level 45 Bq/Kg (K4, K5, K6, K7, K12 and K14) [UNSCEAR, 2010]. All the samples of Wadi Sad El Banat are higher than the permissible level 45 Bq/Kg, except one sample K17. All the samples of Wadi Um Hamd are higher than the permissible level 45 Bq/Kg. Also the results show the activity concentrations of 40 K (Fig.4) for Wadi Nasab are less than the permissible level 412 Bg/Kg [UNSCEAR, 2010], except five samples K5, K6, K7, K12 and K14. All the samples of Wadi Sad El Banat are higher than the permissible level except two samples K15 and K17. Also the samples of Um Hamd are higher than the permissible level.

Table 1 The activity concentrations in (Bg/Kg) of 238 U, 234 U, 235 U, 230 Th, 226 Ra, 232 Th and 40 K

Locality	Rock Type	Sample	²³⁸ U	²³⁴ U	²³⁵ U	²³⁰ Th	²²⁶ Ra	²³² Th	⁴⁰ K
		K1	8053.55 ± 107.2	6843.91 ± 1586	371.21±7.3	7239.35±180	7637.09±21.9	30.12±3.3	211.16±11.8
		K2	6836.6 ± 94.8	6930.34 ± 583.3	318.67±6.3	5223.6±157.5	5613.8±20.1	37.499±2.3	263.85±11.2
		K3	3732.52 ± 153.7	4747.17 ± 402.5	176.62±7.4	11544.3±168.2	12040.1±36.8	28.82±2.7	342.6±20.1
	Shale	K4	8517.75 ± 98.1	8816.64 ± 479.9	416.37±7.8	6699.92±131.8	6765.07±22.3	54.02±3.1	165.44±11.2
		K5	1237.68 ± 49.9	1276.91 ± 368.5	57.141±3.5	1232.78±89.7	1242.68±12.5	67.45±4.4	537.9±14.1
		K6	1176.73 ± 53.8	1129.4 ± 298.4	54.14±3.0	1110.2±94.3	1137.57±11.4	62.168±3.8	584.04±13.1
Wadi		K7	1195.33 ± 43.4	1188.43 ± 67.1	54.794±3.1	1106.08±101	1062.92±10.2	100.26±4.2	641.84±12.5
Nasab	Sandy	K8	2855.1 ± 53.2	2872.47 ± 361.9	140.41±4.1	2512.63±73.6	2433.12±12.1	19±1.4	183.51±7.1
	dolomite	K9	15341.28±101.7	15367.42±911.2	717.4±8.1	15252.54±247.3	15164.28±29.6	4.861±1.6	146.119±11.3
		K10	371.33 ± 22.3	358.42 ± 110	17.46±1.9	414.25±49.5	447.55±6.3	30.91±1.3	239.82±7.1
	Siltstone	K11	3294.811 ± 72.8	4705.66 ± 366.7	161.4±6.5	5882.94±184.8	6127.87±23.3	12.79±1.8	119.006±9.8
		K12	1251.84 ± 52.9	1265.66 ± 263.6	58.3±3.4	1159.68±107.8	1261.84±13.1	67.12±4.1	554.58±14.4
	Claystone	K13	1501.95 ± 36.2	1308.7 ± 356.6	71.003±2.5	3687.4±119.3	6747.01±17.4	29.624±1.3	223.053±6.6
		K14	1424.39 ± 48.4	1321.51 ± 207.8	66.025±3.5	1456.42±99.8	1989.93±15.9	51.712±3.4	469.76±13.7
		K15	1041.71 ± 37.9	1233.1 ± 71.8	47.95±3.5	994.291±82.7	1215.53±10.5	106.09 ± 2.8	182.71±8.9
Wadi	Siltstone	K16	1609.9 ± 48.8	1488.53 ± 386.2	72.96±3.4	1404.27±100.2	1355.38±10.5	86.363±2.1	570.075±11.1
Sad El Banat		K17	496.32 ± 25.1	492.56 ± 40	23.997±1.9	474.11±48.1	555.98±6.9	18.81±1.3	249.52±7.4
	Sandstone	K18	454.91 ± 30.1	462.47 ± 122.2	22.038±2.2	495.73±66.1	543.01±7.2	62.42±2.1	622.83±10.9
	Variegated shale	K19	713.37 ± 33.4	673.3 ± 157.8	34.82±2.4	440.69±59.4	534.35±6.5	67.35±2.3	776.6±11.4
Wadi Um	Siltatona	K20	8579.77 ± 104	8863.57 ± 201	422.005±8.7	8584.45±244	8862±27.6	84.717±4.3	1000.46±19.6
Hamd	Shistone	K21	8630.84 ± 70.8	8550.92 ± 342.9	403.26±5.6	8640.25±155.7	10020.2±20.5	62.34±2.4	819.37±12.8

Fig 2 the Activity Concentration of ²³⁸U and ²²⁶Ra

Fig 3 the Activity Concentration of ²³²Th.

Fig 4 the Activity Concentration of ⁴⁰K

Activity Ratios

²³⁴U and ²³⁸U have similar chemical behavior and should therefore not be fractionated by chemical weathering of minerals, several authors have shown that this assumption is not verified in nature. The reason why ²³⁴U/²³⁸U activity ratios of weathered solids are lower than unity is known as the *a*-recoil effect and is explained by the preferential leaching of ²³⁴U from *a*-recoil-damaged lattice sites in minerals. Conversely, the solid phase is enriched in ²³⁸U [Brantley *et al.*, 2008].

Table (2) shows the activity ratios of different radionuclides in different rock types. For Wadi Nasab locality; the activity ratios ²³⁴U/²³⁸U, ²³⁰Th/²³⁸U, ²³⁰Th/²³⁴U and ²²⁶Ra/²³⁸U for shale samples ranges between (0.8498-1.272), (0.764-3.093), (0.754-2.432) and (0.794-3.226) and all the samples around the unity which referred secular equilibrium except one sample K3 where all the ratios greater than unity and deviating from secular equilibrium.

	h							
T 1 ¹ /		а I	²³⁸ U	²³⁴ U	²³⁴ U	²³⁰ Th	²²⁶ Ra	²³⁰ Th
Locality	Rock Type	Sample	²³⁵ U	²³⁵ U	²³⁸ U	^{238}U	²³⁸ U	²³⁴ U
		K1	21.696	18.437	0.8498	0.899	0.948	1.058
		K2	21.454	21.748	1.014	0.764	0.821	0.754
		K3	21.133	26.878	1.272	3.093	3.226	2.432
	Shale	K4	20.457	21.175	1.035	0.787	0.794	0.759
		K5	21.660	22.347	1.032	0.996	1.004	0.965
		K6	21.734	20.859	0.959	0.943	0.967	0.983
Wadi		K7	21.815	21.689	0.994	0.925	0.889	0.931
Nasab	Sandy	K8	20.334	20.458	1.006	0.880	0.852	0.875
	Dolomite	K9	21.386	21.422	1.002	0.994	0.988	0.993
		K10	21.262	20.523	0.965	1.116	1.205	1.156
	Siltstone Claystone Siltstone	K11	20.414	29.156	1.428	1.786	1.859	1.250
		K12	21.474	21.711	1.011	0.926	1.008	0.916
		K13	21.153	18.432	0.871	2.455	4.492	2.818
Wadi Sad El Banat		K14	21.573	20.015	0.928	1.022	1.397	1.102
		K15	21.724	25.715	1.184	0.954	1.167	0.719
		K16	22.066	20.403	0.925	0.872	0.842	0.943
		K17	20.682	20.526	0.992	0.955	1.120	0.963
	Sandstone	K18	20.640	20.980	1.017	1.090	1.194	1.072
	Variegated shale	K19	20.489	19.338	0.944	0.618	0.749	0.655
Wadi Um	Siltetone	K20	20.331	21.003	1.033	1.0005	1.033	0.968
Hamd	Shistone	K21	21.403	21.205	0.991	1.001	1.161	1.0104

 Table 2 The activity ratios of different radionuclides in studied samples

The activity ratios 234 U/ 238 U, 230 Th/ 238 U, 230 Th/ 234 U and 226 Ra/ 238 U for sandy dolomite samples are around the unity which referred secular equilibrium. The activity ratios 234 U/ 238 U, 230 Th/ 238 U, 230 Th/ 234 U and 226 Ra/ 238 U for siltstone samples are around the unity which referred secular equilibrium except K11 where all the ratios greater than unity and deviating from secular equilibrium. While the activity ratios, 230 Th/ 238 U, 230 Th/ 234 U and 226 Ra/ 238 U for sample (K13 claystone) greater than unity and 234 U/ 238 U <1 which means preferential migration out/ or mobilization of 234 U, but sample (K14 claystone) referred secular equilibrium and all the ratios around the unity. For Wadi Sad El Banat; the activity ratios 234 U/ 238 U, 230 Th/ 238 U, 230 Th/ 234 U and 226 Ra/ 238 U for all the samples, are around the unity which referred secular equilibrium except two samples; (K15 siltstone and K19 variegated shale) (Fig.5). For Wadi Um Hamd; the two samples show secular equilibrium where all the ratios are around the unity. (Fig.5) demonstrates that the 230 Th/ 238 U, 230 Th/ 234 U, activity ratios for all studied samples for the three locations.

Until very recently it was assumed that the current $^{238}U/^{235}U$ activity ratio was a constant value (= 21.7) in our Solar System because uranium was thought to be too heavy to undergo significant isotope fractionation [Fujii *et al.*, 1989, Abdel Gawad and Ibrahim, 2015, and Schauble, (2006, 2007)]. The activity ratio of $^{238}U/^{235}U$ for Wadi Nasab samples ranged from 20.33 to 21.81, while for Wadi Sad El Banat samples ranged from 20.33 to 21.403. From these results the activity ratio of $^{238}U/^{235}U$ for all the samples of the three locations were varied from 20.33 to 22.07 reflect little deviation from the natural ratio 21.7 may be due to mathematical error (±) as shown in (Fig.6). Although significant variations in the $^{234}U/^{235}U$ ratio are recent discovery, much larger variations in the $^{234}U/^{235}U$

ocean, for example, contains elevated abundances of 234 U [Abdel Gawad and Ibrahim, 2015]. Specifically, the increased mobility of 234 U relative to other U isotopes reflects production from 238 U by *a*-decay and subsequent emplacement in crystal sites damaged by *a*-recoil. Aqueous weathering of materials containing U results in preferential leaching of 234 U from these *a*-damaged crystal sites [Brennecka *et al.*, 2010]. The 234 U/ 235 U ratio in Wadi Nasab samples range between 18.43 to 29.16, which showed ten samples in the normal ratio and the other four samples deviated (Fig.7)

Fig 5 Variations of 234 U/ 238 U, 230 Th/ 238 U, 230 Th/ 234 U and 226 Ra/ 238 U activity ratios in the studied samples of the three locations

Fig 6 Variations of the ²³⁸U/²³⁵U activity ratio in studied samples. The certified value of ²³⁸U/²³⁵U activity ratio is 21.7

Fig.7 Variations of the ²³⁴U/²³⁵U activity ratio in studied samples. The certified value of ²³⁴U/²³⁵U activity ratio is 21.7.

with the leaching out/in of uranium. While for Wadi Sad El Banat samples $^{234}U/^{235}U$ ratio range between 19.34 to 25.72, all the samples show normal distribution except one sample K15. The activity ratio $^{234}U/^{235}U$ in the two samples of Wadi Um Hamd location show normal distribution.

Radiological hazard indices

Radium equivalent activity (Ra eq)

Since the distribution of the natural radionuclides are not uniform in the samples under analysis ,a radiological index called radium equivalent (Ra_{eq}) activity has been defined to estimate the radiation risk associated with these radionuclides. This index is calculated by the following equation:

$$Ra_{qe} = \left(\frac{C_{Ra}}{370} + \frac{C_{Th}}{259} + \frac{C_K}{4810}\right) \times 370$$

Where C_{Ra} , C_{Th} and C_K are the activity concentrations of ²²⁶Ra,
²³²Th and ⁴⁰K in Bq/kg, respectively[El-Arabi *et al.*, 2006].
This common index is convenient for comparing the specific
activities of materials containing different concentrations of
these radionuclides.

External hazard index (H_{ex})

The external hazard index due to the emitted γ -rays of the samples is calculated according to the following criterion:

 $H_{ex} = \left(\frac{C_{Ra}}{370} + \frac{C_{Th}}{259} + \frac{C_K}{4810}\right) \leq 1$ Where C_{Ra} , C_{Th} and C_K are the activity concentration of ²²⁶Ra, ²³²Th, ⁴⁰K in Bq/kg, respectively [Bassioni *et al.*, 2012].

Radiation Level Index (I_{y})

This index can be used to estimate the level of γ -radiation hazard associated with the natural radionuclides in the samples which is given by the following equation

$$I_{\gamma} = \frac{C_{Ra}}{150} + \frac{C_{Th}}{100} + \frac{C_{K}}{1500}$$

Where C_{Ra} , C_{Th} and C_{K} were the activity cond

Where C_{Ra} , C_{Th} and C_K were the activity concentration of ²²⁶Ra, ²³²Th, ⁴⁰K in Bq/kg, respectively [Bassioni *et al.*, 2012].

Table 3 The values of Radium equivalent activity, Radioactivity

 level index, External hazard index and Internal hazard index for

 three localities

Locality	Rock Type	Sample	Raeq	Ιγ	Hex
		K1	7696.42	51.36	20.8
		K2	5687.74	37.98	15.37
		K3	12107.7	80.78	32.72
	Shale	K4	6855.06	45.75	18.53
		K5	1380.55	9.318	3.731
		K6	1271.44	8.595	3.436
Wadi		K7	1255.71	8.517	3.393
Nasab	Sandy	K8	2474.42	16.53	6.688
	Dolomite	K9	15182.5	101.2	41.03
		K10	510.217	3.453	1.379
	Siltstone	K11	6155.32	41.06	16.64
		K12	1400.52	9.453	3.785
	Claystone	K13	6806.55	45.43	18.4
		K14	2100.05	14.1	5.676
		K15	1381.31	9.286	3.733
Wadi Sad El Banat		K16	1522.77	10.28	4.115
		K17	602.091	4.061	1.627
	Sandstone	K18	680.229	4.659	1.838
	Variegated shale	K19	690.459	4.754	1.866
Wadi Um	C:14-4	K20	9060.18	60.59	24.49
Hamd	Sinstone	K21	10172.4	67.97	27.49

Table (5) gives the radium equivalent (Ka_{eq}) in Bq/Kg, external hazard index (H_{ex}) and radioactivity level index (I γ) in the three studied locations. The ranges of Ra_{eq} , I γ and H_{ex} are (510.217 -15182.5) Bq/Kg, (3.453- 101.2) and (1.379-41.03), respectively for Wadi Nasab location. For Wadi Sad El Banat are (602.09 -1522.77) Bq/Kg, (4.06- 10.28) and (1.63-4.12), respectively. while for Wadi Um Hamd Ra_{eq}, I γ and H_{ex} appear higher than the internationally recommended values, and the highest values present in the sample K21, which are 10172.4 Bq/Kg, 67.97, 27.49 and 63.83, respectively. The results of the three studied locations points to dangerous effect in that region for human health, and are higher than the recommended limit of Ra_{eq} 370 Bq/Kg ant higher than unity for I γ and H_{ex} given as UNSCEAR (2010).

Absorbed dose rate (D)

The absorbed dose rate D in outdoor air at 1m above the ground level was assessed from the natural activities of 226 Ra, 232 Th and 40 K supposed to be equally distributed in ground. For the conversion of γ -radiation originating from 226 Ra, 232 Th and 40 K, the factors of 0.436 nGy h⁻¹ Bq⁻¹ kg⁻¹ for 226 Ra, 0.599 nGy h⁻¹ Bq⁻¹ kg⁻¹ for 232 Th and 0.0417 nGy h⁻¹ Bq⁻¹ kg⁻¹ for 40 K were used for calculating the (D) by the following equation [Ajayi and Kuforiji, 2001; El-Arabi *et al.*, 2006].

$$D_{out} = 0.436 C_{Ra} + 0.599 C_{Th} + 0.0417 C_{K} (nGyh^{-1})$$

This factor is very important to evaluate the annual effective dose in an outdoor environment, AED can be given by the following relation:

$$AED = D_{out} (nGyh^{-1}) \times 20\% of 8760 h \times 0.7 (Sv Gy^{-1})$$

$$AED = D_{out} \times 1.226 \mu Sv$$

Excess lifetime cancer risk (ELCR)

Based upon calculated values of annual effective dose, the

excess lifetime cancer risk (ELCR) was calculated using the following equation;

 $ELCR = AED \times 66 \times 0.05$

Where the 66 is the life expectancy (66years) and 0.05 is the fatal risk factor per Sievert, [Qureshi *et al.*, 2014].

Table 4 The values of absorbed doses rate D, the annual effective doses AED and excess lifetime cancer risk ELCR for the samples of the studied localities

Locality	Dools Tyme	Sample	D	AED	ELCR
Locality	коск туре		(nGyh ⁻¹)	(mSvy ⁻¹)	$\times 10^{-3}$
		K1	3356.6	4.12	13.6
		K2	2481.1	3.04	10
		K3	5281	6.47	21.4
	Shale	K4	2988.8	3.66	12.1
		K5	604.64	0.74	2.45
		K6	557.57	0.68	2.26
Wadi		K7	550.25	0.67	2.23
Nasab	Sandy	K8	1079.9	1.32	4.37
	Dolomite	K9	6620.6	8.12	26.8
		K10	223.65	0.27	0.9
	Siltstone Claystone	K11	2684.4	3.29	10.9
		K12	613.49	0.75	2.48
		K13	2968.7	3.64	12
		K14	918.17	1.13	3.71
		K15	601.14	0.74	2.43
Wadi	Siltstone	K16	666.45	0.82	2.7
Sad		K17	264.08	0.32	1.07
El Banat	Sandstone	K18	300.11	0.37	1.21
	Variegated shale	K19	305.7	0.37	1.24
Wadi Um	Siltatona	K20	3956.3	4.85	16
Hamd	Sitistone	K21	4440.3	5.44	18

For Wadi Nasab location the values of D, AED and ELCR (Table 4) ranged from (223.65 to 6620.6) nGyh⁻¹, (0.27 to 8.12) mSvy⁻¹ and (0.9×10^{-3} to 26.8×10^{-3} .), respectively. While for Wadi Sad El Banat the values ranged from (264.08 to 666.45) nGyh⁻¹, (0.32 to 0.82) mSvy⁻¹ and (1.07×10^{-3} to 2.7×10^{-3}), respectively. Finally for Wadi Um Hamd the highest values

present in the sample K21, which are 4440.3 nGyh⁻¹, 5.44 mSvy⁻¹ and 18 respectively. The results of the three studied locations are higher than the world average of absorbed dose rate D in an outdoor air , Annual effective dose AED in outdoor air and excess lifetime cancer risk ELCR which are 59 nGyh⁻¹, 0.07 mSvy⁻¹ and 0.29 \times 10⁻³, respectively as [UNSCEAR, 2010 and Qureshi *et al.*, 2014] as shown in table(4).

CONCLUSIONS

This study appears the sedimentary rocks of the three locations contain high activity concentrations of ²³⁸U and its progenies, while ²³²Th and ⁴⁰K occur in small activities and their contributions to natural radioactivity are relatively low. The activity concentrations of ²³⁸U, ²²⁶Ra, ²³²Th and ⁴⁰K in the three locations are higher than the world's average.

The activity ratios in different rock types are guide for what happened in these rock varieties. The different physicochemical conditions affecting ²³⁸U and ²³⁴U resulted in their fractionation and, thus, the respective activity ratios will therefore be greater or less than unity. The activity ratios $^{234}U/^{238}U$, $^{230}Th/^{238}U$, $^{230}Th/^{234}U$ and $^{226}Ra/^{238}U$ for all studied samples are around the secular equilibrium. The activity ratio $^{238}U/^{235}U$ for all the samples of the three locations were varied from 20.33 to 22.07 which reflect little deviation from the natural ratio 21.7 within the error and the $^{234}U/^{235}U$ ratios is ranging between 18.43 and 29.16.

 Ra_{eq} , $I\gamma$ and H_{ex} , have been calculated where found higher than the recommended limit which points to dangerous effect in that region for human health. The absorbed dose rate in outdoor air, the annual effective dose in outdoor environment and the excess lifetime cancer risk were higher than the world's average which represent radiological risk for people who work in these locations to protect against high radioactivity.

Finally, this study can be used as a baseline for future investigations and the data obtained in this study may be useful for natural radioactivity mapping.

References

- Abdel Gawad Ahmed E. and Ibrahim Eman M., (2015): "Activity Ratios as a Tool for Studying Uranium Mobility at El Sela Shear Zone, Southeastern Desert, Egypt", J *Radioanal Nucl Chem*, DOI 10.1007/s10967-015-4374-0.
- Ajayi. I. R and Kuforiji. O. O., (2001): "Natural Radioactivity Measurements in Rock Samples of Ondo and Ekiti states in Nigeria", *Radiation Measurements*, Vol. 33 (1), P. 13-16.
- Anjos, R.M.; Veiga, R.; Soares, T.; Santos, A.M.A.; Aguiar J.G.; Frascá, M.H.B.O.; Brage, J.A.P.; Uzêda, D.; Mangia, L.; Facure, A.; Mosquera, B.; Carvalho, C. and Gomes, P.R.S., (2005): "Natural Radionuclide Distribution in Brazilian Commercial Granites", *Radiation Measurements*, V.39, PP.245-253.
- Bassioni Ghada, Abdulla Fareed, Morsy Zeinab and El-Faramawy Nabil., (2012): "Evaluation of Naturally Occurring Radioactive Materials (NORMs) in Inorganic and Organic Oilfield Scales from the Middle East",

Archives of Environmental Contamination and Toxicology. Volume 62, Issue 3, pp 361-368.

- Brantley SL, Kubicki JD and White AF (2008): "Kinetics of Water-Rock Interaction". Springer Science? Business Media, LLC, New York 833.
- Brennecka G.A, Borg L.E, Hutcheon I.D, Sharp M.A and Anbar A.D (2010): "Natural Variations in Uranium Isotope Ratios of Uranium Ore Concentrates: Understanding the ²³⁸U/²³⁵U Fractionation Mechanism". *Earth Planet Sci Lett* 291:228-233.
- El Aassy I.E, Botros N.H, Abdel Razik A, Sherif H, Al Moafy A, Aita S, El Terb R and Al Shami A.S., (1986): "Report on the Prospection and Proving of Some Radioactive Occurrences in West Central Sinai, Egypt", *Internal Report, Nuclear Materials Authority*, Cairo.
- El-Arabi. A. M, Abbady. A. E and Hussein. A. S., (2006): "Gamma-Ray Measurements of Natural Radioactivity in Sedimentary Rocks from Egypt", *Nuclear Science and Techniques*, Vol. 17 (2), P. 123-128.
- Fujii Y, Nomura M, Onitsuka H and Takeda K (1989): "Anomalous Isotope Fractionation in Uranium Enrichment Process". J Nucl Sci Technol 26:1061-1064.
- Huy N. Q. and Luyen T. V., (2006): "Study on External Exposure Doses from Terrestrial Radioactivity in Southern Vietnam", *Radiat.Prot. dosimetry*. Vol. 118, P. 331-336.
- IAEA, "International Atomic Energy Agency". (1987): " Preparation and Certification of IAEA Gamma Spectrometry Reference Materials, RGU-1, RGTh-1 and RGK-1". *International Atomic Energy Agency*. Report-IAEA/RL/148.
- Keser R., Korkmaz Görür F., Alp İ. and Okumusoglu N.T. (2013): " Determination of radioactivity levels and hazards of sediment and rock samples in İkizdere and Kaptanpasa Valley, Turkey", *International Journal of Radiation Research*, vol. 11, No. 3, pp. 155-165,
- Pekala M, Kramers JD and Waber HN (2010): "²³⁴U/²³⁸U Activity Ratio Disequilibrium Technique for Studying Uranium Mobility in the Opalinus Clay at Mont Terri, Switzerland". *Appl Radiat Isot* 68:984-992.
- Qureshi Aziz Ahmed, Tariq Shahina, Ud Din Kamal, Manzoor Shahid, Calligaris Chiara and Waheed Abdul., (2014): "Evaluation of excessive lifetime cancer risk due to natural radioactivity in the rivers sediments of Northern Pakistan", Journal of Radiation Research and Applied Sciences, Issue 7, pp 438-447.
- Ramasamy, V., Paramasivan, K., Suresh, G. and Jose, M.T., (2014): "Role of sediment characteristics on natural level of the Vaigai river sediment, Tamilnadu, India". J. Environ. Radioact. 127, 64-74.
- Schauble EA (2006): "Equilibrium Uranium Isotope Fractionation by Nuclear Volume and Mass-Dependent Processes". Eos 87, December Supplement, abs. V21B-0570.
- Schauble EA (2007): "Role of Nuclear Volume in Driving Equilibrium Stable Isotope Fractionation of Mercury, Thallium, and Other Very Heavy Elements". *Geochim Cosmochim Acta* 71:2170-2189.
- Taskin, H., Karavus, M., A, P., Topuzoglu, A., Hindiroglu, S. and Karahan, G., (2009): "Radionuclide concentrations in soil and lifetime cancer risk due to the gamma

radioactivity in Kirklareli, Turkey". J. Environ. Radioact. 100, 49-53.

Technical Reports Series No.295, (1989): "Measurement of Radionuclides in Food and the Environment", A Guidebook, IAEA, Vienna-Austria.

UNSCEAR, United Nations Scientific Committee on the Effect of Atomic Radiation, (2010): "Sources and Effects of Ionizing Radiation". Report to General Assembly with Scientific Annexes, United Nations, New York.

How to cite this article:

Abd El-Halim E.S *et al.*2017, Assessment of Radioactivity Levels And Hazards For Some Sedimentary Rock Samples In Different Localities Southwestern, Sinai, Egypt. *Int J Recent Sci Res.* 8(11), pp. 21916-21922. DOI: http://dx.doi.org/10.24327/ijrsr.2017.0811.1164
