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In many practical situations, reliability data are generated in the form of counts, also called failure 
counts, which record the number of times that a component fails in a specified period of time. Such 
data may arise because of limitation of the data capture system or the way the data are reported. For 
example, a system may keep track of the monthly number of failures and repair them. In this paper, 
an attempt has been made to model such type of data using Poisson distribution in Bayesian 
paradigm using two different prior distributions. Moreover, for the purpose of Bayesian modelling, 
two important techniques, that is, approximate EM algorithm and MCMC method are implemented 
using R and JAGS software packages, respectively. Approximate EM algorithm is implemented 
using R functions for approximating the posterior densities of model parameters. Whereas, JAGS is 
used to approximate the posterior parameters using Gibbs sampling and the Metropolis algorithm. R 
and JAGS code are developed and provided. A real data set is used for the purpose of illustrations. 

 
 

 
  

  
 
 

 
 

 
 

 

 
 

 
 

 
 

 
 
 
 
 
 

 
 

 
 

 
 
 

 
 

 
 

  
 
 
 

INTRODUCTION 
 

In many practical situations, reliability data are generated in the 
form of counts, also called failure counts, which record the 
number of times that a component fails in a specified period of 
time. Such data may arise because of limitation of the data 
capture system or the way the data are reported. For example, a 
system may keep track of the monthly number of failures and 
repair them (Hamada et al., 2008). Experimenter wants to asses 
such types of reliability data. For modelling such type of data 
the Poisson model  is used, and is appropriate when the 
probability of events occurring in disjoint time interval is 
independent and when the probability of events occurring in 
short time of interval is small (Hamada et al., 2008). In this 
paper an attempt has been made to model failure count data in 
Bayesian paradigm using different prior distributions like 
Student-t prior and weakly informative conjugate prior 
distributions. In many cases it has been seen that non-Bayesian 
analysis of failure count data is not an easy task, whereas it can 
be implemented in principle in Bayesian paradigm, provided 
simulation tools are used (Akhtar and Khan, 2014a; Akhtar and 
Khan, 2014b, Khan et al., 2016). Consequently, for the purpose 
of Bayesian modelling, two important techniques, that is, 
approximate EM algorithm and MCMC method are 
implemented using R (R Core Team, 2017) and JAGS 
(Plummer, 2003) software packages, respectively, from within 

R. Approximate EM algorithm is implemented using arm 
package of R for approximating the posterior densities of 
model parameters. Whereas, JAGS approximates the posterior 
parameters using Gibbs sampling (Geman and Geman, 1984:, 
Gelfand and Smith, 1990; Casella and George, 1992) and the 
Metropolis algorithm (Metropolis et al., 1953) to generate a 
Markov chain by sampling from full conditional distributions. 
A real data set is used in subsequent analysis for the purpose of 
illustrations. Thus, the Bayesian analysis of Poisson reliability 
model has been made with the objectives: first to define a 
Bayesian model, that is, specification of likelihood and prior 
distribution, second to write down R and JAGS code for 
approximating the posterior densities using approximate EM 
algorithm and simulation tools, and finally to illustrate numeric 
as well as graphic summaries of the posterior densities. 
 

The Poisson Reliability Model 
 

The Model and Likelihood: Assume that we have a set of 
discrete reliability data generated in the form of counts y� 
which follows Poisson distribution with mean θ. Algebraically,  
 

y�	~	Poisson	(θt) = 	
(θ�)�	��θ�

�!
,i = 0, 1, 2, … n, θ > 0              (1) 

 

where y�	(i = 0, 1, 2, …n) is the observed number of failures,  θ 
is the mean number of failure per unit time, and � is the length 
of the specified time period. Note that equal mean and variance 
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(here θt) is the most limiting characteristic of the Poisson 
distribution (Hamada et al., 2008). 
 

For the Poisson model, the parameter of interest is the Poisson 
rate �, which we wish to estimate. Therefore, the likelihood as 
a function of � given the observed failure count � is given by, 
 

�(�|�) = 		∏
�����	(���)

��

��!

�
��� = 		

���
∑ ��
�
��� 		∏ (���)

�
���

��

��!
              (2) 

or,                  

�(�|�)	~		���∑ ��
�
��� 		�∑ ��

�
���                        (3) 

 

ignoring factors that do not depend on �.  
 

Bayesian Inference: In order to complete the Bayesian model, 
one must specify a prior distribution. Usually the target 
posterior distribution is not analytically tractable. In the past, 
intractability was avoided by using the conjugate prior 
distributions, which have the nice property of resulting to 
posteriors of the same distributional family (Ntzoufras, 2009). 
Furthermore, an advantage of conjugate prior is that it makes 
posterior calculation easy. Thus, to obtain posterior density for 
the Poisson model, let us consider a gamma prior for mean � 
with parameter � and � having density function, 
 

�	~	�����	(�, �) 

�(�) = 	
��

Γ�
	����	���� 	∝ 	����	����. 

 

Then the resulting posterior distribution of � by applying the 
Bayes' theorem is given as 
 

�(�|�) 	∝ 	�(�)�(�|�) ∝ 	����	���� 	× �∑ ��
�
��� 	��� ∑ ��

�
��� 	  

∝ 	���∑ ����
�
��� ���(��∑ ��

�
��� ),																							     

which implies that 
 

�|�	~	�����	(� +���

�

���

, � +���

�

���

) 

 

where � = (��, ��, ��, … , ��), and � can be interpreted as a 
prior sample size in contrast with the data sample size ∑ ��

�
���  

where � is the prior number of failures in contrast with the 
observed number of failures ∑ ��

�
��� . The posterior mean and 

variance are, respectively, 
 

�(�|�) =
� + ∑ ��

�
���

� + ∑ ��
�
���
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� + ���
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where �� is the sample mean (maximum likelihood estimator).  
 

 
 

Figure 1 It is evident from the above plot that for shape � = 0.001 and rate 
� = 0.001 the gamma distribution becomes almost uniform. 

The usually selected low informative conjugate prior is a 
gamma distribution with low and equal prior parameters such 
as � = � = 	10��. This prior is convenient since its mean is 
equal to one while the variance is given by1/α, which becomes 
large, expressing prior ignorance, for low value of � 
(Ntzoufras, 2009). This fact is evident from the Figure 1. 
 

Implementation in Bayesian Paradigm 
 

In order to implement the Bayesian analysis of Poisson model a 
super computer failure count data is taken from Hamada et al. 
(2008). Using these data different aspects of Bayesian analysis 
is discussed. For the purpose of fitting the model two different 
functions bayesglm and jags of R and JAGS, respectively, are 
used to estimate the parameter of interest, �. 
 

Supercomputer Failure Count Data 
 

The supercomputer failure count data discussed about the 
monthly number of failures of shared memory processors 
(SMPs) components of the Los Alamos National Laboratory 
Blue Mountain Supercomputer. The supercomputer consists of 
47 identical SMPs and Table 1 represents monthly number of 
failures for the first month of operation. The supercomputer 
engineers expect that there should be no more than 10 failures 
for each component in the first month of operation. 
 

Table 1 Monthly number of failures for 47 supercomputer 
components (Hamada et al., 2008). 

 

 1   5   1   4   2   3   1   3   6   4   4   4   2   3   2  2 
4   5   5   2   5   3   2   2   3   1   1   2   5   1   4   1 
1   1   2   1   3   2   5   3   5   2   5   1   1   5   2 

 

Analysis Using R 
 

In the beginning, a Bayesian analysis of Poisson model using 
the bayesglm function from arm (Gelman and Su, 2014) 
package of R is conducted. This function is a Bayesian 
alteration of classical generalized linear model that uses an 
approximate EM algorithm to update the �s at each step using 
an augmented regression to represent the prior information 
(Gelman et al., 2008). This function uses Student-t prior 
distribution for the coefficients. Since, in our case, model 
involves intercept only, therefore, the prior distribution for the 
intercept term is t-distribution with 1 degree of freedom (i.e., 
Cauchy distribution), and prior mean is 0 whereas prior scale is 
10. The main arguments of the bayesglm function are: 
bayesglm (formula, family = gaussian, 
data, ...) 
 

The first argument formula requires a symbolic description 
of the model to be fitted. For example, if a model involves 
intercept only, the formula of the model will be of the form 
y~1. The argument family requires a description of the error 
distribution and link function to be used in the model. The 
default error distribution is gaussian. The data argument 
needs an optional data frame, list, or environment containing 
the variables in the model. For more details see Gelman and Su 
(2014).  
 

Data Creation 
 

Firstly, for Bayesian fitting of Poisson model for 
supercomputer data with the function bayesglm, the data are 
created  in R format as follows, 
n <- 47 
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y<-c(1,5,1,4,2,3,1,3,6,4,4,4,2,3,2,2,4,5,  
5,2,5,3,2,2,3,1,1,2,5,1,4,1,1,1,2,1,3,2,5,
3,5,2,5,1,1,5,2) 
 

where n represents the total number of SMPs, and y represents 
the monthly number of failures for the first month of 
operations. 
 

Model Specification 
 

The distribution assumed for count data is a Poisson, which 
applies when counted things are distributed independently and 
randomly. The Poisson model has a single parameter, the 
expected count �, that is often called intensity (Kery, 2010) 
and, in case of supercomputer data, represents monthly failure 
rate or mean number of failures. In contrast to the normal, the 
Poisson variance in not a free parameter but is equal to the 
mean, �. 
 

Thus, for supercomputer failure count data, where the response 
(��, ��, … , ��) is the monthly number of failures recorded for 
the SMPs, the model for these responses is  
 

��	~	�������	(�),                     	� = 0, 1, 2, … , 47. 
 

Here, count response ��	for ith SMP is distributed as a Poisson 
random variable with mean number of failure �, for the first 
month of operation (i.e., �� = 1 month). Moreover, for 
Bayesian analysis of Poisson model the function bayesglm 
uses default log-link function, that is,  
 

���(�) = ������	��������� = ��������� 
 

In this case, intercept is the only term in linear predictor. 
Therefore, after fitting the model, to get the results in original 
metric the exponential function exp is used to transform the 
results. 
 

Model Fitting 
 

Finally, to fit the above defined model, the function 
bayesglm is called to perform the analysis and put its results 
into an object called Fit. The display function of arm 
package is used to print the summary of results. This generic 
function with its detail=TRUE argument gives a clean 
printout of the fitted object, focusing on the most pertinent 
pieces of information including p-value or z-value.  
Fit<-bayesglm (y~1, family=poisson 
(link="log")) 
display (Fit, detail=TRUE) 
 

In order to get the posterior simulations of the model parameter 
theta, a generic function of arm package called sim is used. 
To get the clear picture of parameter estimates, 1000 
(n.sim=1000) independent draws are made. Moreover, to 
convert the results in original metric the function exp is used, 
and its output is reported  and discussed in the next section. 
 

set.seed (123)  
## Simulation 
Fit.sim<-sim (Fit,n.sim=1000) 
coef.Fit.sim<-coef (Fit.sim) 
exp(coef.Fit.sim) 
## Estimate 
apply(exp(coef.Fit.sim),2,mean)  
## Standard Deviation 
apply(exp(coef.Fit.sim),2,sd)  

## Quantiles 
quantile(exp(coef.Fit.sim),prob=c(0.025,0.
25,0.5,0.75,0.975)) 
 

Summarizing Output 
 

Posterior summaries and densities after being fitted the model 
with bayesglm are provided in Table 2. From this table, it is 
observed that, the estimate of theta is 2.82 with standard 
deviation 0.24, and that the 95% credible interval is [2.37, 
3.35], which is statistically significant. The plot for the 
posterior density of theta can be seen in Figure 1. 
 
 
 
 
 
 
Analysis Using JAGS 
 

Let us consider the Bayesian analysis of the same failure count 
data with JAGS using its interface of R that is R2jags (Su and 
Yajima, 2014) package of R, which includes the posterior 
simulation and convergence diagnostic of the model. For 
modelling of these data in JAGS, one must specify the model to 
run, and to load data which is created in a separate file and the 
initial values of the model parameters for a specified number of 
Markov chains (Akhtar and Khan, 2017;  Khan et al., 2017). 
The R2jags package makes use of this feature and provides 
convenient functions to call JAGS directly from within R. 
Furthermore, it is possible to work with the results after 
importing them back into R again, for example, to create a 
posterior predictive simulations, or more generally, graphical 
displays of data and posterior simulations. 
 

Data Creation 
 

The first part of modelling in JAGS is data definition, which 
must be defined in a list containing the name of each vector. In 
this case, the monthly number of failures are the response 
variable ��	(� = 0, 1, 2, … , 47). These data can be created in R 
format as: 
 

n <- 47 
y <- 
c(1,5,1,4,2,3,1,3,6,4,4,4,2,3,2,2,4,5,5,2,
5,3,2,2,3,1,1,2,5,1,4,1,1,1,2,1,3,2,5,3,5,
2,5,1,1,5,2) 
jags.data <- list("n","y") 
 

Here n is the total number of supercomputer components 
(SMPs), y is the response values of monthly number of failures, 
and these are combined in a list with object jags.data. 
 

Model Specification 
 

For modelling these data, the monthly number of failures �� is 
assumed to follow a Poisson distribution  
 

��	~	�������	(�),                     	� = 0, 1, 2, … , 47, 
 

where � is the individual monthly failure rate for the SMPs. In 
this case, the monthly failure rate � is the unknown model 
parameter which we want to estimate. It is expected that there 
should be no more than 10 failures for each component. To 
represent this, the prior information for the parameter � is 

Table 2 From this output it is evident that posterior mean 
and median are very close, which is an indication of 

symmetric posterior density 
 

Parameter Mean SD 2.5% 25% Median 75% 97.5% 
Theta 2.82 0.24 2.37 2.65 2.80 2.97 3.35 

 



Tanwir Akhtar and Athar Ali Khan., Bayesian Analysis of Poisson Reliability Model With R And JAGS  
 

21840 | P a g e  

assumed to be a conjugate gamma prior distribution with a 
mean of 5, that is, 
 

�	~	�����	(5, 1), 
It is observed that, the probability that �, exceeds 10 for 
Gamma(5, 1) prior is 0.03, which is very small (Hamada et al., 
2008).  
Thus, the specification of above defined model in JAGS 
language must be put in a separate file which is then read by 
JAGS. When working in R, this is most conveniently done 
using the cat function of R which behaves pretty much like 
paste with the exception that the results is not a character object 
but directly written to a file we specify (Akhtar and Khan, 
2017; Khan et al., 2017). Here is the JAGS code specifying the 
model using cat function to put in the file model2.jags:   
cat("model{ 
 

for(i in 1:n){ 
y[i]~dpois(theta) 
} 
theta~dgamma(5,1) 
}", file="model2.jags.txt") 
 

This model allows each observed response y to follow a 
Poisson distribution with mean theta, which is drawn from a 
gamma distribution with shape 5 and rate 1, that is, mean value 
5.  
 

Initial Values 
 

The starting values used to initialize the chain are simply called 
the initial values. Usually it is necessary to specify a starting 
value for the chains to start the MCMC simulation. In most 
cases, JAGS will however be able to generate the initial values 
itself. In order to be able to monitor convergence, we will 
normally run several chains for each parameter. The starting 
value for the chains is a named list, names are the parameters 
used in the model. Each element of the list is itself a list of 
starting values for the JAGS model, or a function creating 
(possible random) initial values. In this case, there is only one 
parameter, called theta, in the model: 
inits <- function(){list(theta = 
rlnorm(1))} 
 

Model Fitting 
 

Using the objects jags.data, inits, and 
model2.jags, we can now compile the model and run 
MCMC simulation to get estimate for theta by calling 
JAGS. For MCMC simulation 3 chains (n.chain=3) each 
with 5000 iterations (n.iter=5000) has been run, and 
parameter theta is monitored. Its results are assigned with 
object Fit, and can conveniently be printed by print(Fit), 
which prints details summary of the results and are summarized 
in the next section. 
 

Fit <- jags(jags.data, inits, 
parameter=c("theta"),n.iter=5000, 
n.chain=3, model.file="model2.jags.txt",) 
print(Fit) 
 

Summarizing Output 
 

The output of the R function jags is a list which includes 
several components, most notable are the summary of the 
inference and convergence, and a list containing the simulation 

draws of all the saved parameters. In this case, the jags call is 
assigned to the R object Fit, and so typing print(Fit) 
from the R console will display the summary of the fitted 
model shown below. The print method displays information 
on the mean, standard deviation, 95% credible interval (CI) 
estimates, the effective sample size, and potential scale 
reduction factor ��  of the Brook-Gelman-Rubin (BGR) statistics 
(Gelman and Rubin, 1992; Brooks and Gelman, 1998). The 
BGR statistics is an analysis of variance (ANOVA)-type 
diagnostic that compares within- and among-chain variance 
(Kery, 2010). Values around 1 indicate good convergence, with 
1.1 considered as acceptable limit (Gelman and Hill, 2007). 
 
 
 
 
 
 

 
The first five columns of numbers of Table 3 give inference for 
model parameter. In this case, the posterior estimate for mean 
theta is 2.86 with standard deviation 0.249 and 95% credible 
interval is [2.39, 3.36], which is statistically significant.  The 
median estimate is 2.85 and very close to mean estimate. At the 
bottom, pD shows the estimated effective number of 
parameters in the model, and DIC, the deviance information 
criterion, an estimate of predictive error. Finally, consider the 
right most columns of the output, where Rhat gives 
information about convergence of the algorithm. At 
convergence, the number at this column should be equal to 1. 
In this case, Rhat is very close to 1, indication of well mixing 
of the three chains and thus good convergence. The final 
column, n.eff is the effective sample size of the simulations.  
  

Additionally, to see the complete picture of the results, a plot 
can be generated by plot(Fit), and the resulting plot is 
depicted in Figure 1. In this plot, the left column shows a quick 
summary of inference and convergence, that is, Rhat. The 
right column shows inference for the model parameter theta. 
Finally, the posterior density plot for parameter theta is 
depicted in Figure 2.  
 

 
Figure 2 Graphical summary plot of JAGS for the Poisson model, fit to the 

supercomputer failure count data. R-hat is near to one for parameter theta, indicating 
good convergence. 

 

80% interval for each chain R-hat
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deviance
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170
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theta

2.5

3

3.5

Bugs model at "model.jags.txt", fit using jags, 3 chains, each with 5000 iterations (first 2500 discarded)

Table 3 Posterior summary of JAGS simulation after 
being fitted to the Poisson model for the supercomputer 

failure count data. 
 

Parameter Mean SD 2.5% Median 97.5% Rhat n.eff 
theta 2.86 0.249 2.39 2.85 3.36 1.001 3800 

deviance 171.61 1.507 170.57 171.04 175.77 1.001 3800 
pD 1.1 DIC 172.7 
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Figure 3 Posterior density plot of the model parameter theta. Results from 

different methods have different styles. The closeness of the two approaches 
look evident in the graphics. 

DISCUSSION AND CONCLUSION 
 

Component reliability is the foundation of reliability 
assessment and refers to the reliability of single component. In 
this paper, Bayesian approach is used to model failure count 
component reliability data for intercept model with Poisson 
distribution. The log-link function is used to relate the model 
parameter and intercept term for linear Poisson model. Two 
different prior distributions, that is, Student-t and gamma prior 
distributions are used and implemented using R and JAGS 
software packages, respectively. For modelling of failure count 
data, the complete R and JAGS code are written and provided 
with detailed description. It is observed that the results obtained 
from approximate EM algorithm and simulation method using 
different software packages are very close to each other. The 
benefits of approximate EM algorithm and simulation method 
seem clear in the plot of posterior densities. Moreover, it is 
evident from the summaries of results that the Bayesian 
approach based on different priors is simpler to implement than 
the frequentist approach. Finally, the wealth of information 
provided in these numeric as well as graphic summaries is not 
possible in classical framework. 
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