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In this paper, Bianchi type–III dark energy model with variable equation of state (EοS) has been 
investigated in scale covariant theory of gravitation formulated by Canuto et al. (Phys. Rev. Lett. 39: 
429, 1977). Special law of Hubble parameter proposed by Bermann (Nuovo-Cimento 74; 182, 1983) 
being incorporated to obtain the solutions of field equations. Some physical properties of the model 
are also discussed. 
 
 
 
 
 
 
 
 

 

 
  

  
 
 

 
 

 
 

 
 
 
 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 
 
 
 
  

 
 

 

INTRODUCTION 
 

Although general relativity (GR) passes all present 
experimental tests with flying colors, still it is very important to 
study alternative theories of gravitation due to several 
theoretical and phenomenological reasons. One of them is that 
at large distance gravity does not behave exactly as Newton 
and Einstein predicted. Due to this, in recent years there has 
been an immense interest in alternative theories of gravitation 
[Brans-Dicke (1961), Nordt-Vedt (1970), Sen and Dunn (1971) 
and Saez-Ballester (1985)]. Canuto et al. (1977) formulated 
scale covariant theory, which is a viable alternative to GR, by 
associating the mathematical operation of scale transformation 
with physics of using different dynamical system to measure 
space-time distances. In this theory corresponding to each 
dynamical system of units, there is an arbitrary gauge function 
depending on gauge condition. The gauge condition is chosen 
so that for gravitational units the standard Einstein equations 
are recovered. This gauge condition must be imposed in such a 
way that gravitational units and atomic units derived from 
atomic dynamics must be distinct. 
 

Scale covariant theory which admits variable parameter G 
measure physical quantities in atomic units and Einstein field 
equations are valid in gravitational units. The conformal 
transformation which relates metric tensors in two systems of 
units is given by   

ij
k

ij gxg )(2  ,                       (1) 

 

where, in Latin, indices takes values 1, 2, 3 and 4. Bar denotes 
gravitational units and unbar denotes atomic quantities. The 
gauge function ϕ (0 < ϕ < ∞) in its most general formulation is 
a function of all space-time co-ordinates. Thus, using the 
conformal transformation of the type given by, Canuto et al. 
(1977) transformed the usual Einstein equation into  
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Here Rij is the Ricci tensor, R is Ricci scalar, G is the 
gravitational constant, Tij is energy momentum tensor. A 
comma and semicolon denotes partial and covariant derivative 
respectively. A particular characteristic of this theory is that no 
independent equation for ϕ exists. Gauge function ϕ can have 
possible value given by Canuto as 
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where t0 is constant and ϕ ~t1/2 is the most favored form to fit 
observations (Canuto V. M., Goldman, I., 1983). Reddy et al. 
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(2012), (2014) have studied dark energy models (DE) in 
Bianchi type-I and Kaluza-Klein universe. Singh et al. (2014) 
have studied Bianchi type-V dark energy model in a scale 
covariant theory of gravitation. Reddy (2004) also have 
obtained a higher dimensional cosmological model in a scale 
covariant theory of gravitation. Venkateshwarlu and Kumar 
(Venkateswarlu R., Kumar, K. P., 2005) have obtained higher 
dimensional string cosmologies in scale-covariant theory of 
gravitation. Reddy and Venkateshwarlu (2004) studied 
Einstein-Rosen universe in the scale covariant theory of 
gravitation.  
 

Moreover, there has been considerable interest in cosmological 
models with dark energy because of the fact that our universe is 
currently undergoing an accelerated expansion supposedly, 
driven by an exotic dark energy which has been confirmed by a 
host of observations, such as type 1a supernovae (1998). Based 
on these observations, cosmologists have accepted the idea of 
dark energy, which is a fluid with negative pressure making up 
around 70% of the present universe energy content to be 
responsible for this acceleration due to repulsive gravitation. 
These observational data also suggest that the universe is 
dominated by two dark components containing dark matter and 
dark energy. Dark matter, a matter without pressure, is mainly 
used to explain galastic curves and large scale structure 
formation, while dark energy, an exotic energy with negative 
pressure is used to explain the present cosmic accelerating 
expansion. The most interesting problem in modern 
astrophysics and cosmology is to know the behavior of dark 
energy. Several authors such as Ray et al. (2010), Saha (2005),  
Sahni, V. (2004), Singh and Chaubey (2008), Chaubey (2011), 
Tade et al. (2011), Jain et al. (2012), Samanta et al. (2013), 
Ghate et al. (2014),  Katore and Shaikh (2016), Mishra et al. 
(2017) has studied dark energy models in recent years. 
Motivated by the above works, in this paper we have 
investigated Bianchi-III dark energy cosmological model with 
variable equation of state (E0S) in scale covariant theory of 
gravitation. 
 

METRIC AND FIELD EQUATIONS 
 

We consider Bianchi type III metric in the form 
 

222222222 )()()( dztCdytBedxtAdtds hx  ,                (5) 
 

where A, B, C are function of t only and h is constant. 
 

The simplest generalization of equation of state (EoS) 
parameter of perfect fluid may be used to determine the EoS 
parameter separately on each spatial axis by preserving the 
diagonal form of the energy momentum tensor in a way 
consistent with the considered metric. Therefore, the energy 
momentum tensor of the fluid is taken as  
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One can parameterize this as follows: 
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where ρ is energy density of the fluid and px,   py,  pz are the 
pressures along x, y, and z axes respectively. Here ωx, ωy, ωz 
are the E0S parameters in the directions of x, y, and z axes 

respectively and ω is the deviation free EoS parameter of the 
fluid. By setting ωx= ω, we have parameterized the deviation 
from isotropy and then introduce skewness parameters δ and γ 
which are the deviations from ω on y and z axes respectively. 

In the co-moving coordinate system the field equations (2)-(3) 
for the metric (Equation (5)) with the help of Equation (7) can 
be written as 
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Integrating equation (12), we get  
AB  , 

where μ is a constant of integration which can be taken to unity 
without loss of generality, so that we have  
 

AB  .                                                                                  (13) 
 

Using equation (13) in equations (8) and (9), we obtained 
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Now, using equation (13) and (14), field equations (8)-(11) 
reduces to  
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where overhead dots represent differentiation with respect to t.  
The spatial volume V and the average scale factor a for the 
metric (5) are defined as 
 

CAaV 23  , 3 2 CAa  .                                 (18) 
 

The constant deceleration parameter for the models of the 
universe is defined as    
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The generalized mean Hubble parameter H is given by  
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parameters in the directions of x, y and z 
Using equation (18) and (20), we obtained  
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The expansion scalar θ and shear scalar σ are
given by 
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Also, the average anisotropic parameter is defined as
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SOLUTIONS OF THE FIELD EQUATIONS
 

The field equations (15)-(17) are three independent equations 
in five unknowns B, C, ω, γ, ρ. Hence to solve this system of 
highly nonlinear equations, we need two more conditions: 
 

1. We assume that scalar expansion θ 
shear scalar σ, which gives (Collins et. al

mAC  ,  
       where m > 1 is a constant. 

2. The E0S parameter ω is proportional to skewness 
parameter γ (mathematical condition) such that 
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Now integrating equation (19), we get  
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where c ≠ o and d are constants of integration. Further on 
solving field equations (15)-(17) by using equations (18) and 
(27) with the choice of suitable constants and coordinates
obtained the expression for metric coefficient as:
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where α= (q+1) and β= (m+2).  

So the metric (5), in view of (28) and (29), can be written as 
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Equation (30) represents Bianchi-III radiating cosmological 
model in presence of dark energy with negative constant 
deceleration parameter in scale covariant theory.
 

SOME PHYSICAL PROPERTIES 
 

Spatial volume by using equation (18) is, 
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The expansion scalar θ and shear scalar σ are respectively 
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Also, the average anisotropic parameter is defined as 
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Figure 1: The plot of volume (

From the figure 1, it is observed that at an initial epoch, spacial 
volume is zero and increases with increase in 
which shows that universe start evolving with zero volume and 
expands with cosmic time 
expansion of the universe. 

Hubble parameter is 
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whose variation with respect to time 
follows: 

Figure 2: The plot of Hubble parameter (

Expansion scalar is, 
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Figure 3: The plot of Expansion scalar (

From the figure 3, it is observed that Expansion scalar at an 
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The plot of volume (V) verses time (t), α=1 
 

it is observed that at an initial epoch, spacial 
volume is zero and increases with increase in cosmic time t, 
which shows that universe start evolving with zero volume and 

 t showing late time accelerated 

                                                         (32) 

whose variation with respect to time t is shown in figure 2 as 

 

 
 

The plot of Hubble parameter (H) verses time (t), α=1 
 

                                                                                

 
 

The plot of Expansion scalar (θ) verses time (t) 

 

it is observed that Expansion scalar at an 
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initial epoch diverges. Cosmic time t increases gradually, 
expansion scalar decreases and finally vanishes when 
which shows that it possess initial singularity. Further model 
has non-zero expansion rate i.e. universe start with an infinite 
rate of expansion. This behaves like big bang model of the 
universe. 
 

Finaly, shear scalar is 
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Figure 4: The plot of Shear scalar (σ) verses time 
 

From the figure 4, it is observed that Shear scalar has initial 
singularity at t = 0 and it dies out for large value of 

Also, the anisotropic parameter is, 
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The mean anisotropy parameter is uniform throughout the 
evolution of the universe, as it does not depend on the cosmic 
time t. 

The energy density for the model is 
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The EoS and skewness parameters in the model are
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Also, the ratio of anisotropy is 
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As this ratio of anisotropy is not equal to zero which means that 
the model does not attain isotropy at large time 
 

CONCLUSION 
 

In this paper, we have investigated dark energy model with 
Bianchi type -III metric in scale covariant theory with the help 
of special law of Hubble parameter. Dark energy model plays a 
vital role in the discussion of accelerated model of the universe. 
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ratio of anisotropy is not equal to zero which means that 
the model does not attain isotropy at large time t. 

In this paper, we have investigated dark energy model with 
III metric in scale covariant theory with the help 

l law of Hubble parameter. Dark energy model plays a 
vital role in the discussion of accelerated model of the universe. 

It is observed that at an initial epoch, model has no singularity 
and all the physical parameter
with increase in time. Further, the model is expanding and 
accelerating and does not attain isotropy for large value of 
i.e. the model remains anisotropic throughout the evolution. 
We hope that the model we investigated in this work will be 
useful for better understanding of dark energy concept in scale 
covariant theory of gravitation. 
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