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Database systems were mainly used for online transaction processing in which queries for On-Line 
Transaction Processing (OLTP) systems that typically access only a small portion of a database, 
Online Analytical Processing (OLAP) queries may need to aggregate large portions of a database 
which often leads to performance issues. In this paper, a proposed BatchDB new memory database 
engine is designed and implemented in hybrid OLTP and OLAP workloads for distributed system. 
This method is chosen because of high level of data freshness and minimizes load interaction 
between the transactional and analytical engines. It facilitates real time analysis over fresh data 
under fixed SLAs for both OLTP and OLAP workloads and it dependent on replication, workload 
type (OLTP and OLAP) and a light-weight propagation of transactional updates. The experimental 
results are carried out on standard benchmarks of TPC-C and TPC-H, it is observed that the 
proposed BatchDB achieves better throughput and latency for the corresponding transactional and 
analytical workloads. 
 
 
  

  
 

 
 

 
 

 
 

 
 
 
 
 
 

 
 

 
 

 
 
 

 
 

 
 

 
 
 
 
 
 
  

 
 
 

INTRODUCTION 
 

The workload database engines need to efficiently handle both 
Transactional (OLTP) and Analytical (OLAP) workloads with 
assurances for throughput, latency and data freshness. At 
present the running analytics on the data, must not fit for OLTP 
performance which is bound by severe SLAs for response time 
and throughput. The OLAP does not handle the small set of 
house users without requirement for guaranteed performance. It 
is necessary to implement the hybrid OLAP-OLTP as a service 
to large number of users with SLAs on data-freshness and 
performance for various applications such as business.  
 

The OLTP and OLAP workloads is difficult to manage because 
they require different algorithms and data structures for 
implementation. A common approach for handling the 
workloads is proposed to keep a separate data warehouse for 
OLAP which is isolated from the OLTP system. Data 
warehouse systems are optimized for read only analytical 
workloads and which are periodically refreshed through a batch 
of job containing the latest data updates. This provides efficient 
performance for both the workloads and the ability to tune each 
system independently.  
 

Several researchers had done lot of implementations in this 
domain and several alternatives have been recently introduced 

for some techniques such as SAP HANA [17], HyPer [28], 
SQL Server [31], MemSQL [12], Oracle [29], etc. However, it 
shows limitations on performance impacted of database 
workloads. This paper presents Batch DB, an alternative design 
of a database engine architecture, which handles hybrid 
workloads with efficient performance in terms of data 
freshness, consistency, and elasticity.  
 

To accommodate both OLAP and OLTP, BatchDB primarily 
relies on replication, trading off space for performance 
isolation, with a replica for both OLTP and OLAP workloads. 
This allows for workload specific optimizations for every 
replica and physical isolation of resources dedicated for each 
workload. To efficiently maintain the replica up-to-date 
without affecting OLTP and OLAP performance, BatchDB 
relies on lightweight update extraction and isolated execution 
of queries and updates at the OLAP replica. This process can 
be achieved by incoming OLAP queries first queued and then 
scheduled in batches, one batch-at-time. Execution of each 
batch of queries is shared and done as part of a single read-only 
transaction on the latest version of the data.  
 

Propagated OLTP updates are also first queued and then 
efficiently executed in-between two batches of queries. This 
enables version agnostic scan processing at the OLAP replica 
and logical isolation between the query processor and update 
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propagation. The BatchDB uses an efficient way of extracting, 
propagating and applying updates both within one and across 
multiple machines using Remote Direct Memory Access 
(RDMA) over InfiniBand. All these features help BatchDB 
achieve performance isolation for hybrid workloads with 
efficient throughput and response times. The experimental 
results, based on a hybrid Transaction Process Control (TPC) 
TPC-C and TPC-H workload [11], show that BatchDB 
achieves good performance isolation between the hybrid 
workloads, having a negligible ten percent overhead on each 
other’s performance. Moreover, the replication mechanism is 
capable of propagating and applying the updates at the 
analytical replica at a rate higher than any TPC-C throughput 
achieved to date and can thus be integrated with other 
transactional engines. Finally, the system has competitive 
performance for individual OLTP and OLAP workloads and is 
superior to existing systems designed for hybrid workloads in 
terms of overall throughput. 
 

Objective 
 

The main objectives of this work 
 

 To identify the multiple resource sharing which cause 
unstable performance of OLTP and OLAP workloads 
includes 

 Explicit resource sharing depends on scheduling polices 
of the database engine and it can be avoided by 
scheduling OLTP and OLAP requests on dedicated 
resources. 

 Implicit resources haring (e.g., of memory bandwidth 
and CPU caches)requires the need for having separate 
replicas of OLTP and OLAP workloads 

 To implement a logical separation for analytical and 
transactional queries can be update by using a batch of 
queries scheduling, single snapshot replica, and 
efficient algorithms are deployed for executing the 
updates. 

 

Design Goals  
 

The key requirements for design engines which aims to 
handle Hybrid Transactional and Analytical Processing 
workloads (HTAP). 
Performance Isolation - The SLA required efficient Latency 
and throughput which are provide by Database engines. The 
performance of OLTPare unpredictable by OLAP queries in 
hybrid workloads which leads to a revenue losses. 
Workload Specific Optimizations- The Database engines should 
influence workload specific optimizations wherever applicable 
and it use datastructures to operate on dataformats for the given 
workload. It is essential to implement for delivering good and 
stable performance. 
Update propagation & datafreshness- The OLAP queries are 
employed on recent version of data and also on many serious 
business decisions based on real-time analytics[15]. The low-
latency communication are required between the individual 
systems for fast propagation with update mechanisms within 
the components. 
Consistency Guarantees–To confirm that queries would have a 
consistent vision on the data analytical queries with high 
consistency guarantees (i.e., snapshot isolation). 

Single System Interface- Unlike using a separate system with 
single interface for each workload, a single system interface 
which supports both analytical queries and transactions which 
provides the easiness of using system. 
Elasticity-The efficient elasticity should be achieved by the 
database engine by scaling dynamically with increasing 
number of machines and it should take advantage of all there 
sources provided by modern distributed environments 
 

The rest of the paper is organized as follows. Section II deals 
the related works about the BatchDB and OLAP process and 
limitations. Section III deals with the System Architecture of 
proposed method OLAP-OLTP for distributed system. Section 
IV presents the process of Transactional OLTP replica and 
OLAP replica. Section V, gives the result and performance 
analysis. Finally, the overall proposed method concludes in 
section VI. 
 

Related Works 
 

Currently, customers with high rates of mission critical 
transactions have split their data into two separate systems, one 
database for OLTP and one so-called data warehouse for 
OLAP. Dehne et.al (2015) introduced CR-OLAP, a scalable 
Cloud based Real-time OLAP system based on a new 
distributed index structure for OLAP, the distributed PDCR 
tree. CR-OLAP utilizes a scalable cloud infrastructure 
consisting of multiple commodity servers (processors). With 
increasing database size, CR-OLAP dynamically increases the 
number of processors to maintain performance. Distributed 
PDCR tree data structure supports multiple dimension 
hierarchies and efficient query processing on the elaborate 
dimension hierarchies which are so central to OLAP systems. 
 

Benker et.al (2013) presented a proposal of a software 
architecture that enables the integration of OLTP- and 
operational OLAP-capabilities for right-time decision making. 
The second contribution is the identification of concepts for the 
application of non-relational technologies (NoSQL) in 
enterprise application systems in order to realize benefits of 
polyglot persistence. For that first step the proposed 
architecture focuses on a single business process scenario. 
Enterprise application systems can be categorized as OLTP and 
OLAP systems. OLTP systems are used to realize the 
functionality of operational business processes. OLAP systems 
perform business analysis and deliver decision-relevant 
information. Data extracted from operational data structures 
offers a common and valuable input for those systems. 
 

While allowing for decent transaction rates, this separation has 
many disadvantages including data freshness issues due to the 
delay caused by only periodically initiating the Extract 
Transform Load data (ETL) staging and excessive resource 
consumption due to maintaining two separate information 
systems. Kemper et.al (2011) developed an efficient hybrid 
system, called Hyper that can handle both OLTP and OLAP 
simultaneously by using hardware-assisted replication 
mechanisms to maintain consistent snapshots of the 
transactional data. Hyper is a main memory database system 
that guarantees the ACID properties of OLTP transactions and 
executes OLAP query sessions (multiple queries) on the same, 
arbitrarily current and consistent snapshot. The TPC-C 
benchmark was designed to evaluate OLTP database system 
performance and the TPC-H benchmark for analyzing OLAP 
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query performance. The utilization of the processor-inherent 
support for virtual memory management (address translation, 
caching, and copy on update) yields both at the same time: 
unprecedentedly high transaction rates as high as 100000 per 
second and very fast OLAP query response times on a single 
system executing both workloads in parallel. 
 

Lu et.al (2016) introduced a VERTICA and SAP HANA to 
implement ACID transaction functionality in a distributed 
columnar database. In telecom companies, MPP columnar 
database provides fast analyzing ability with built in ACID 
support. By testing several optimization methods on Vertica 
and SAP HANA, it is possible to enhance the OLAP 
performance of MPP database. A high speed execution engine 
is implemented to deal with OLAP workloads. On higher level 
applications runs by different group of users share a common 
interface for transactions of database to get results from it. 
 

Conn et.al (2005) discussed that advantage of the OLAP data 
repository is that is has a long time horizon from which to 
perform analysis and discover trends and patterns within the 
business, but the disadvantage is that data may not be 
(relatively) recent enough to qualify as real-time data for 
business intelligence purposes. This research will be conducted 
as a qualitative study by drawing on relevant literature and 
other scholarly documentation to investigate any proposed 
architectures or processes for integrating the OLTP and OLAP 
environments. 
 

System Architecture 
 

The BatchDB’s [26] key principles and methodology are 
presented below, to address the design goals and the flaws of 
previous methods are mentioned and also includes the 
assumptions and trade-off methods. 
 

Proposed BatchDB Components 
 

BatchDB’s architecture is based on replication and it uses a 
primary replica as OLTP to handles all updating transactions 
(Figure 1 left), and secondary replica is OLAP it performs 
analytical queries (Figure 1 right). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Each replica system has a set of resources and  it allows each 
replica to be optimized for the given workload which is located 
in BatchDB, either on the same shared-memory machine (on 
different NUMA nodes) or multiple memory machines. (e.g., 
Both OLTP and OLAP have separate execution engines in which 
OLTP is considered for pre-compiled stored actions and the 
OLAP for handling the ad-hocqueries). The OLTP dispatcher 
are assigned to schedules the requests and also it is responsible 
for conveying requests to worker threads for the successful 
transactions. Worker threads export a physical log of updates 
containing information on the snapshot version for each 
affected tuple to be used for propagating the updates to the 
analytical replica. The OLAP dispatcher schedules OLAP 
queries and makes sure that the OLAP replica operates on one-
batch-at-a-time processing with data kept in a single-snapshot-
replica from the primary replica, without negatively affecting 
the OLAP queries performance. For this method, physical 
storage is version-agnostic and maintains only a single data 
version (batch) and removing the dealing with numerous 
snapshots for Batch DB scan processing and eliminates the 
overhead of logical contention and synchronization with the 
transactional component for applying the updates. Figure1 
shows an BatchDB’s architecture. 
 

Addressing the Design Goals 
 

Performance Isolation-Initially it addresses the design goal on 
replication by using individual replicas for dissimilar 
workloads and it allows for physical isolation of the allocated 
hardware resources, either by locating the replicas on different 
machines, or executed on the same machine on separate 
NUMA nodes. Secondly, the main objective is to remove the 
logical contention  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1 System Architecture 
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among the two components by executing the performance 
isolation by the batch-based processing which is done by the 
OLAP dispatcher. 
 

Data freshness -Instantly the OLTP worker threads forwards 
the updates to the OLAP replica to achieve an efficient data 
freshness. At the end of OLTP branch execution the updates 
are pushed for transactions in two ways are if OLAP dispatcher 
requested for the latest snapshot version and latest updates 
leads so longer than a limited(configurable) period, (which is 
set to200ms). So the execution time for a transaction’s updates 
of OLAP replica depends on the OLTP transactions durations 
(10s of milliseconds) which is normally less than the execution 
time of analytical queries, then the data freshness are observed 
by the OLAP queries response time. 
 

Workload Specific Optimizations-By design, BatchDB’s 
workload specific replicas are applicable for optimization 
technique for workload. In this situation the design and 
implementation of both the OLAP and OLTP components are 
employed to improve the workload performance manually. 
 

Consistency Guarantees - The OLTP and OLAP requires the 
snapshot isolation which is provided by BatchDB. The 
transactional requests, are processed by MVCC in which the 
OLAP replica uses a single snapshot to address the 
analyticalqueries. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Interfaces – BatchDB disclosures the interface to users of both 
workloads. There is no explicit requirement for users to 
distinguish requests for the two replicas. The OLAP replicas 
operate on a single snapshot version as one batch of read-only 
queries at a time and it can be viewed as indexes. 
 

Elasticity - BatchDB can scale by conveying more replicas as 
the quantity of machines increments. Notwithstanding unique 
replicas sorts, various cases of a similar part can be made so as 
to circulate the load evenly over the entire framework. The 
high bandwidth capacity of modern networks in blend with 
RDMA primitives makes it conceivable to circulate updates to 
countless. The design principles wan also be applied to provide 
specialized replicas to other workload types (e.g., offline batch 
analytics for long running queries, graph processing, and so 
forth). 
 

Trade-offs 
 

Individual Query Latency - One trade-off in BatchDB is the 
individual query latency for OLAP workloads. Specifically, the 
prerequisite that all simultaneous OLAP questions must be co-
planned together to separate them from execution of OLTP 
updates. The impact of this is query latency relies upon the 
latency of other simultaneous OLAP queries.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 OLTP Record Storage Format and Index Layout 

 
 

Figure 3 Propagated Update Format for a Specific Table from a Single OLTP Worker Thread 
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This is especially valid for a framework offering on the online 
analytics on real-time information as it is normally accepted 
(and frequently required because of SLAs) that all queries are 
executed within couple of moments. In the event that a client 
wishes to run a query that would take more time to execute, for 
example minutes or hours, this query can be dealt with 
diversely as an offline non- real-time query. 
 

Transaction Semantics- While our framework gives snapshot 
isolation certifications to OLAP queries it doesn't give full 
transactional flexibility. For example, the data version on 
which queries are handled is chosen by the framework when 
the query (alongside different query in its cluster) begins 
executing. To detach the execution of OLAP queries and OLTP 
updates, the OLAP replica is updated at a coarser granularity 
and clients cannot pick the correct variant of data to run their 
queries on. Subsequently, interactive sessions with long 
running read only transactions where clients submit queries in a 
steady progression are impractical in present system. 
 

Transactional Component (Oltp Replica) 
 

The Transactional (OLTP) segment appeared in Figure 1, 
contains the primary replica of the database motor whose 
intention is to deal with both updates containing transactions 
and short latency-sensitive read-only requests. Aside from 
preparing updates to be spread to the OLAP replica, the plan 
choices for actualizing the OLTP replica can be careless in 
regards to the prerequisites of OLAP workloads. In this 
manner, no compromise should be made when managing the 
OLTP workloads and any OLTP particular optimizations are 
appropriate. 
 

The implementation of BatchDB’s OLTP component on 
Hekaton[13], multi-version concurrency control[6]and lock-free 
indexing data-structures, as opposed to partitioning to achieves 
cal ability in multi-core systems. This is unlike the approaches 
taken by H-Store [27], or HyPer [29], which are more suitable 
for partition able workloads. 
 

Storage Layout and Indexes – Figure 2 shows the storage 
layout and indexing data-structures for a sample relation. 
Basically, row-oriented storage is used as it is most productive 
for the point lookups and updates, which are necessary to 
transaction handling. Like Hekaton a hash-based and a tree-
based index with respect to the lock- free Bw-Tree [30]. A 
simplified version of the Bw-Tree that depends on atomic 
multi-word compare-and-swap updates. Moreover, the physical 
records contain a twofold connected rundown for every indexes 
to encourage simpler traversal into the indexes. 

Transaction Execution and Concurrency Control - For 
effective handling of OLTP requests for the framework locally 
aggregated put away methods with customers sending their 
requests in the form of stored procedure calls. To execute the 
stored procedures, the OLTP part possesses a committed 
arrangement of worker threads. The worker threads are 
assembled on a single NUMA node to dodge high 
synchronization overheads over the interconnect for delicate 
parts of the design, for example, epoch management, garbage 
collection, memory allocation, and so on. The present usage 
gives snapshot isolation assurances to exchanges utilizing a 
multi-version concurrency control. 
 

Scheduling - The responsibility for allocation of OLTP 
requests (stored procedure calls) to worker threads is appointed 
to the OLTP dispatcher that, like the OLAP dispatcher, plans 
operations in batches taking a shot at one cluster at any given 
moment. As appeared in Figure 1, approaching OLTP requests 
for are first lined up in the OLTP queue while the framework is 
caught up with executing the present batch of OLTP quires. At 
the point when the present batch is done, the OLTP dispatcher 
de-queues all requests from the OLTP quires and enquires them 
to the OLTP worker threads in a round robin form. This trade 
off individual query latency to acquire benefits that emerge in 
assessing many requests as a bunch. For example the logging 
of updates to tough storage, the epoch management for the 
lock-free data- structure, the junk gathering and the 
proliferation of the updates to the OLAP replicas all benefit 
from such batch based execution. In such mode, threads can 
join numerous operations in a similar epoch and amortize the 
cost of changing challenged atomic counters.  Not yet 
investigated utilizing the OLTP request for grouping for 
advancing the execution of the concurrency protocol, as 
proposed by BOHM [16]. 
 
Logging - For strength the OLTP dispatcher logs the successful 
update transactions to a durable storage medium before the 
reactions are sent to the clients. To limit the impact of logging 
on execution. By utilizing snapshot isolation, the data on the 
read and snapshot versions needs should be additionally logged 
for correct recovery. Besides, logging is performed on a batch 
premise (as gathering confer [12]) to conceal the I/O dormancy 
for numerous OLTP requests. Note that as the OLAP replica 
isn't moved down by a strong medium, if there should arise an 
occurrence of failures it should be recouped by reading a 
snapshot and catching up with new updates from the primary 
replica.  
 

Update propagation - To keep the secondary replica steady and 
up-to-date, the OLTP part likewise sends out a log of updates 
isolate from the durable log. Not at all like the durable log that 
contains legitimate updates, have the engendered updates 
contained the physical updates to singular records. This 
empowers proficient application of the updates on the secondary 
replica. To avoid expensive synchronization among OLTP 
worker threads, each threads generates its own arrangement of 
updates to be engendered. A case set of updates from a worker 
threads is portrayed in Figure 3. This case contains eight 
propagated updates from three committed transactions. Updates 
from a single thread might be interleaved with updates from 
different threads during the propagation process. For example, 
in this case the updates from a transaction with version ID 2 are 
a piece of the update set of an alternate threads. Each updates 
contains: 
 

The Type of the update can be either a newly inserted tuple, an 
update to an existing tuple or a delete of an existing tuple; The 
Row ID integer which uniquely specifies the tuple that 
corresponds to this update. The RowID is equivalent to the 
primary key of the relation and is used to efficiently locate the 
corresponding tuple at the secondary replica; The Offset and 
Size in bytes which are used to update existing tuples on finer 
sub-tuple granularity; The Data which contains either the data of 
the newly inserted tuple or the payload of the update to an 
existing record. 
 



Kanagalakshmi S and Ramar K., Designing A Novel Database Engine For Hybrid Workloads 

 

22461 | P a g e  

Analytical Component (OLAP Replica) 
 

The analytical component is shown in Figure 1, and contains 
the secondary replica of the database engine. 
 

Query scheduling - In order to avoid synchronization and 
execution connection between running the OLAP queries and 
applying the OLTP updates, the OLAP dispatcher executes 
quires in batches. A batch is executed as a read-only 
transaction on the latest snapshot version. Before executing the 
following batch of quires, the dispatcher recovers from the 
OLTP segment the most recent conferred snapshot form, and 
applies the propagated updates on its replica  up-to that version. 
Moreover, as just a single batch of queries is executed at once, 
the OLAP engine does not have to store more than a single 
version of the data, i.e., can be form careless. 
 

The batch scheduling of BatchDB is like the one utilized by 
Crescando [29] and SharedDB [19]. The method of BatchDB 
contrasts from these frameworks as it batches all simultaneous 
OLAP quires in the framework to confine the OLAP quires 
preparing from the up-dates spread by the primary OLTP 
replica. The main adaptation of HyPer additionally gathered the 
OLAP quires by session, and ensured that all quires in a session 
worked on a similar snapshot version. Query execution: Since 
the query scheduler executes query in batches, despite the fact 
that it isn't important, by utilizing a query handling motor that 
likewise takes advantage of shared execution. The OLAP 
segment utilizes thoughts exhibited by earlier work on shared 
scans (to share memory transmission bandwidth crosswise over 
outputs and query predicate assessment); more perplexing 
quires preparing (to share execution of join operations for more 
productive use of CPU and DRAM  bandwidth); and 
scheduling optimizations [20]. Earlier trials on this segment 
[16] demonstrate that, for extensive workloads, it can give 
higher throughput than best in commercial engines in analytical 
query processing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
‘ 
 
Update propagation - Lastly, to empower quick use of updates, 
all tuples of replicated tables are clarified with a RowID integer 
attribute in both replicas. The RowID is basically an essential 
key trait escaped the client. As portrayed before, all propagated  
updates from the OLTP replica contain the RowID trait which is 

utilized at the OLAP replica  to particularly recognize the tuples 
alluded by the updates. Moreover, as show in Figure 1, the data 
in the OLAP replica is on a horizontally (delicate) apportioned in 
view of a hash estimation of the RowID quality. This empowers 
both proficient (NUMA-neighborhood) scan handling and quick 
utilization of OLTP updates on present day multi-center 
machines. Comparable soft based partitioning has additionally 
been utilized by various different frameworks. 
 

To facilitate efficient matching of OLTP updates and tuple 
locations, the OLAP component maintains a hash index of the 
data on the RowID attribute. The process of applying the 
propagated up-dates using the RowID and the hash indexes 
consists of three steps which are illustrated in Figure 4 
 

Step1 - It update sets from multiple OLTP threads are ordered 
by the snapshot versioned (VID). This step is the fastest as it 
only orders the update pointers using as can with complexity 
linear in the number of new snapshot versions. 
 

Step2- It is executed when the OLAP dispatcher obtains the 
latest committed snapshot versioned to be used for the current 
batch of queries. Thereafter, the updates corresponding to 
snapshot versions upto and including the VID are propagated to 
the corresponding partitions based on a hash value of the 
RowID attribute. 
 

Step 3 - The updates for each partition are applied using the 
hash index on RowID to find the location of tuples for 
operations that either update or delete a tuple. When a tuple is 
deleted, the slot for that tuple is marked as empty, as a signal 
for the scan process or to ignore the tuple at that location. In 
case of inserts, the tuple is inserted into the next free slot of the 
partition (possibly at a location where a tuple was recently 
deleted) and the hash index is populated accordingly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In case of updates, tuples are updated inplace at the granularity 
of single attributes to avoid rewriting the entire tuple. The 
attribute to be modified is identified using the offset and size 
fields depicted in Figure3. 

 
Figure 4 Propagated Updates from OLTP Replica into OLAP Replica 
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All three steps are easily parallelizable. The most time for 
consuming step is step 3, as it contains multiple random 
accesses. Technically, this step resembles a hash join with the 
hash index used as a hash table to join the updates with the 
existing data. In general, there has been a significant work on 
speeding up joins with state-of-the-art algorithms reaching 
hundreds of millions of tuples per second on modern multi-
cores[3]. To put these numbers into perspective the highest 
reported performance for the industry standard OLTP 
benchmark (TPC-C) would correspond to about tens of 
millions updated tuples per second. Therefore, this approach of 
propagating updates from an OLTP to an OLAP replica can 
satisfy the needs of most systems. Our algorithm optimizes for 
both main-memory bandwidth and latency. Hash buckets from 
the hash index a restore din a single cache line and accessed 
using a grouped software prefetching technique [10] to 
minimize high random main-memory access latencies. The 
propagating updates with an array approach, where the RowID 
is directly used as an offset in the storage of the OLAP replica. 
However, it did not bring significant performance gains 
compared to an optimized hash index approach, while on the 
other side requires coordination among OLTP worker threads in 
the use and reuse of RowID integers. 
 

Storage Layout and Data Transformation- The current 
implementation of the OLAP component uses an uncompressed 
row-oriented storage (as shown in Figure4), similar as to the 
OLTP replica. Note, however, that this is not a design 
requirement and as part of future workplan to optimize it using 
a column-store format, which has been shown to be more 
efficient for analytical workloads, and can further benefit from 
compression, reduced I/O and memory costs. 
 

Network Communication 
 

BatchDB allows the OLAP replica to be either co-located on 
the same physical machine as the primary replica, or to reside 
on a different node. In the latter setup, the system makes use of 
modern low-latency networks to efficiently propagate the 
updates. 
 

Remote Direct Memory Access (RDMA) [23] is used to 
improve the latency of small messages and reduce the CPU 
overhead for large data transfers by avoiding intermediate copy 
operations in-side the network stack. RDMA has been used for 
several database systems and the ideas are based on the 
platforms developed for running query-at-a-time joins at large 
scales. 
 

RDMA offers one-sided and two-sided operations. When using 
one-sided read or write operations, the initiat or of the request 
directly manipulates a section of memory which has previously 
been exposed by the remote machine. The CPU on the target 
machine is not notified nor involved in the data transfer. Two-
sided operations on the other hand represent traditional 
message passing semantics. The receiver has to allocate several 
receive buffers an disnotified when a new message has been 
placed in any of these locations.  A downside of RDMA is that 
the application is burdened with extra complexity of network 
buffer management[18]. 
 

In BatchDB, each machine registers several RDMA receive 
buffers with the network card. Small messages of less 
than1024KB are directly written to these buffers using two-
sided RDMA operations. Larger messages cannot be 

transmitted directly, and require a hand shake operation. During 
the handshake, the sender transmits the required buffer size to 
the receiver, which in turn allocates a new buffer and register sit 
with the network card. The receiver responds with the buffer 
address and the necessary access credentials. After this 
exchange, the sender can initiate the data transfer using a one-
sided RDMA write operation. Once the transfer is complete, 
the receiver is notified by the sender. To reduce the overhead of 
memory allocation and registration, large RDMA-buffers are 
pre-allocated and cached in a buffer pool. 
 

In addition to a low latency, modern networks also provide high 
band width, which is important for data-intensive applications. 
The communication mechanisms mentioned above allow for 
optimal use of the network bandwidth for both small and large 
messages. Propagating updates from the primary replica to one 
secondary copy does not fully saturate the through put of a 
4xFDR Infini B and network. Not being limited by the network 
bandwidth enables the primary node to simultaneously transmit 
updates to multiple secondary copies, thus making the system 
elastic and scalable. 
 

Experimental Results 
 

The Experimental results of proposed hybrid OLTP and OLAP 
are simulated using Apache Hadoop. In the experiments, 
BatchDB runs on one or two machines, and the client work 
load is generated on separate machines that communicate via 
a1Gbit Ether net network. The hybrid bench mark is a mix of 
standard OLTP and OLAP benchmarks, namely TPC-C and 
TPC-H. In particular, the OLTP part is an unmodified version 
of the TPC-C benchmark, while the OLAP part contains a set 
of analytical queries inspired by TPC-H. The latter are 
modified to match the TPC-Cschema, plusafew missing TPC-H 
relations. 
 

Throughput 
 

The experimental results of proposed hybrid OLTP and OLAP 
are evaluated in terms of throughput with respect to clients. 
The proposed method are run with 200 warehouses and 2000 
clients and compared with HyPer [29] and SAP HANA [17]. 
Table 1 shows the throughput for proposed hybrid OLTP-
OLAP for different warehouse such as 50, 100 and 200 
warehouse with respect to clients. 
 

Table 1 Throughput for Hybrid OLTP-OLAP 
 

Techniques Clients 50W 100W 200W 

Hyper 

0 0 9 15 
500 9 15 23 

1000 15 25 43 
1500 20 35 62 
2000 25 40 70 

SAP HANA 

0 15 20 25 
500 25 45 39 

1000 35 55 62 

1500 42 65 69 

2000 49 75 79 

Proposed Hybrid 
OLTP-OLAP 

0 25 32 35 
500 42 49 55 

1000 56 62 72 
1500 67 75 80 
2000 79 82 85 

 
From the table it clearly shows that the proposed Hybrid 
OLTP-OLAP provides the high throughput for 200 warehouse 
with 2000 clients respect to increasing clients. 
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Figure 5 Throughput for HyPer 
 

 
 

Figure 6 Throughput for SAPHANA 
 

 
 

Figure 7 Throughput for Proposed Hybrid OLTP-OLAP 

 
Figure 5-7 shows that throughput of HyPer, SAP HANA and 
proposed Hybrid OLTP-OLAP. It is clear that the proposed 
method achieve a maximum of 110 thousand TPC-C 
transactions with 200 warehouses and 2000 clients when 
compared to existing HyPer and SAP HANA. 
Table 2 shows the transaction latencies for 200 warehouse with 
respect to client for 50th percentile, 90th percentile and 99th 
percentile. 

 

Table 2 Transaction Latency 
 

Techniques Clients 50th 90th 99th 

HyPer 

200 20 25 30 
500 25 29 40 

1000 32 40 45 
2000 40 50 55 

SAP HANA 

200 15 10 15 
500 15 20 23 

1000 20 35 39 

2000 25 40 45 

Proposed 
Hybrid OLTP-

OLAP 

200 11 15 18 
500 15 25 25 

1000 22 29 30 
2000 30 35 40 

 

 
 

Figure 8 Transaction Latency for Hyper 
 

 
 

Figure 9Transaction Latency for SAP HANA 
 

 
 

Figure 10 Transaction Latency for Proposed Hybrid OLTP-OLAP 

Figure 8-10 shows the impact of batching queries on 
transaction latencies of proposed Hybrid OLTP-OLAP. It is 
noted that when maximum throughput is reached, the 99th 
percentile shows 40ms, which is well below the 5 second limit 
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for 90th percentile as per the TPC-C specification. The 
proposed method shows efficient transaction latency when 
compared to other techniques. 
 

CONCLUSION 
 

In this paper a BatchDB, system that efficiently handles hybrid 
OLTP and OLAP workloads with strong performance isolation 
is implemented. BatchDB relies on primary-secondary form of 
replication with the primary replica handling OLTP workloads 
and updates propagated to a secondary replica that handles 
OLAP workloads. To enable query processing on latest data 
with snapshot isolation guarantees and minimum impact on 
query performance, the queries and updates at the OLAP 
replica are queued and scheduled in batches with the system 
working on one batch at-a-time. Furthermore, updates are 
extracted and applied from the OLTP replica at the OLAP 
replica efficiently, incurring a small overhead to overall 
execution time. Updates can also be propagated to a remote 
replica via RDMA over InfiniBand for added scalability and 
isolation of performance. The results confirm that, unlike 
existing systems, BatchDB is able provide high performance 
isolation between the workloads leading to predictable 
performance. 
 

References 
 

1. J. Arulraj, A. Pavlo, and P. Menon. Bridging the 
Archipelago Between Row-Stores and Column-Stores 
for Hybrid Workloads. SIGMOD, pages 583-598, 2016. 

2. S. Arumugam, A. Dobra, C. M. Jermaine, N. Pansare, 
and L. Perez. The DataPath System: A Data-centric 
Analytic Processing Engine for Large Data Warehouses. 
In SIGMOD, pages 519-530, 2010. 

3. C. Balkesen, J. Teubner, G. Alonso, and M. T. Özsu. 
Main-memory hash joins on multi-core CPUs: Tuning to 
the underlying hardware. In ICDE, pages 362-373, 2013. 

4. C. Barthels, S. Loesing, G. Alonso, and D. Kossmann. 
Rack-Scale In-Memory Join Processing using RDMA. 
In SIGMOD, pages 1463-1475, 2015. 

5. C. Barthels, I. Müller, T. Schneider, G. Alonso, and T. 
Hoefler.Distributed join algorithms on thousands of 
cores. PVLDB, 10(5):517-528, 2017. 

6. P. A. Bernstein, V. Hadzilacos, and N. Goodman. 
Concurrency Control and Recovery in Database 
Systems. Addison-Wesley Longman Publishing Co., 
Inc., Boston, MA, USA, 1987. 

7. L. Braun, T. Etter, G. Gasparis, M. Kaufmann, D. 
Kossmann, D. Widmer, A. Avitzur, A. Iliopoulos, E. 
Levy, and N. Liang. Analytics in Motion: High 
Performance Event-Processing AND Real-Time 
Analytics in the Same Database. In SIGMOD, pages 
251-264, 2015. 

8. G. Candea, N. Polyzotis, and R. Vingralek. A Scalable, 
Predictable Join Operator for Highly Concurrent Data 
Warehouses. VLDB, pages 277-288, 2009. 

9. G. Candea, N. Polyzotis, and R. Vingralek. Predictable 
Performance and High Query Concurrency for Data 
Analytics. VLDBJ, pages 227-248, 2011. 

10. S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry. 
Improving Hash Join Performance Through Prefetching. 
In Proc. ICDE 2004, pages 116-, 2004. 

11. R. Cole, F. Funke, L. Giakoumakis, W. Guy, A. 
Kemper,S. Krompass, H. Kuno, R. Nambiar, T. 
Neumann, M. Poess, K.-U. Sattler, M. Seibold, E. 
Simon, and F. Waas. The Mixed Workload CH-
benCHmark. In DBTest, pages 8:1-8:6, 2011. 

12. D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R. 
Stonebraker, and D. A. Wood. Implementation 
techniques for main memory database systems. In 
Proceedings of the 1984 ACM SIGMOD International 
Conference on Management of Data, SIGMOD ’84, 
pages 1-8, New York, NY, USA, 1984. ACM. 

13. C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. 
Mittal,R. Stonecipher, N. Verma, and M. Zwilling. 
Hekaton: SQL Server’s Memory-optimized OLTP 
Engine. In SIGMOD, pages 1243-1254, 2013. 

14. J. Dittrich and A. Jindal. Towards a One Size Fits All 
Database Architecture. In CIDR, 2011. 

15. Elmore, J. Duggan, M. Stonebraker, M. Balazinska,U. 
Cetintemel, V. Gadepally, J. Heer, B. Howe, J. Kepner, 
T. Kraska,S. Madden, D. Maier, T. Mattson, S. 
Papadopoulos, J. Parkhurst,N. Tatbul, M. Vartak, and S. 
Zdonik. A Demonstration of the BigDAWGPolystore 
System. PVLDB, 8(12):1908-1911, Aug. 2015. 

16. J. M. Faleiro and D. J. Abadi. Rethinking Serializable 
Multiversion Concurrency Control. PVLDB, 
8(11):1190-1201, July 2015. 

17. F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. 
Rauhe, and J. Dees. The SAP HANA Database – An 
Architecture Overview. IEEE Data Eng. Bull., 35(1):28-
33, 2012. 

18. P. W. Frey and G. Alonso. Minimizing the hidden cost 
of RDMA. In ICDCS, pages 553-560, 2009. 

19. G. Giannikis, G. Alonso, and D. Kossmann. SharedDB: 
Killing One Thousand Queries with One Stone. VLDB, 
pages 526-537, 2012. 

20. J. Giceva, G. Alonso, T. Roscoe, and T. Harris. 
Deployment of Query Plans on Multicores. PVLDB, 
8(3):233-244, 2014. 

21. K. Goel, J. Pound, N. Auch, P. Bumbulis, S. MacLean, 
F. Färber,F. Gropengiesser, C. Mathis, T. Bodner, and 
W. Lehner. Towards Scalable Real-time Analytics: An 
Architecture for Scale-out of OLxP Workloads. PVLDB, 
8(12):1716-1727, Aug. 2015. 

22. M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-
Mauroux, and S. Madden. HYRISE: A Main Memory 
Hybrid Storage Engine. PVLDB, 4(2):105–116, 2010. 

23. J. Hilland, P. Cully, J. Pinkerton, and R. Recio. RDMA 
Protocol Verbs Specification (Version 1.0). Technical 
report, RDMA Consortium, 04 2003. 

24. C. Hong, D. Zhou, M. Yang, C. Kuo, L. Zhang, and L. 
Zhou. KuaFu: Closing the parallelism gap in database 
replication. In Proc. ICDE 2013, pages 1186-1195, 
2013. 

25. R. Jiménez-Peris, M. Patiño Martínez, and G. Alonso. 
Non-Intrusive, Parallel Recovery of Replicated Data. In 
SRDS ’02, pages 150-, 2002. 

26. D. Makreshanski, J. Giceva, Claude Barthels, and 
Gustavo Alonso. BatchDB: Efficient Isolated Execution 
of Hybrid OLTP+OLAP Workloads for Interactive 
Applications. In Proceedings of the 2017 ACM 
International Conference on Management of Data 



Kanagalakshmi S and Ramar K., Designing A Novel Database Engine For Hybrid Workloads 

 

22465 | P a g e  

(SIGMOD '17). ACM, New York, NY, USA, 37-50, 
2017. 

27. R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, 
S. Zdonik,. P. C. Jones, S. Madden, M. Stonebraker, Y. 
Zhang, J. Hugg, andD. J. Abadi. H-store: A High-
performance, Distributed Main Memory Transaction 
Processing System. PVLDB, 1(2):1496-1499, Aug. 
2008. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

28. B. Kemme, A. Bartoli, and O. Babaoglu. Online 
reconfiguration in replicated databases based on group 
communication. In DSN ’01, pages 117-126, July 2001. 

29. Kemper and T. Neumann. HyPer: A hybrid OLTP & 
OLAP main memory database system based on virtual 
memory snapshots. In ICDE, pages 195-206, 2011. 

30. S. Muthulingam, V. Raja, M. Roth, E. Soylemez, and M. 
Zait. Oracle Database In-Memory: A dual format in-
memory database. In ICDE, pages 1253-1258, April 
2015. 

31. P.-A. Larson, A. Birka, E. N. Hanson, W. Huang, M. 
Nowakiewicz, and V. Papadimos. Real-time Analytical 
Processing with SQL Server. PVLDB, 8(12):1740-1751, 
2015. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

******* 

How to cite this article:  
 

Kanagalakshmi S and Ramar K.2017, Designing A Novel Database Engine For Hybrid Workloads. Int J Recent Sci Res. 8(12), 
pp. 22456-22465. DOI: http://dx.doi.org/10.24327/ijrsr.2017.0812.1269 


