

*Corresponding author: Kanagalakshmi S
Department of Computer Applications, Manonmaniam Sundaranar University, Tirunelveli

ISSN: 0976-3031

Research Article

DESIGNING A NOVEL DATABASE ENGINE FOR HYBRID WORKLOADS

Kanagalakshmi S*1 and Ramar K2

1Department of Computer Applications, Manonmaniam Sundaranar University, Tirunelveli
2Einstein College of Engineering, Sir C.V. Raman Nagar, Tirunelveli

DOI: http://dx.doi.org/10.24327/ijrsr.2017.0812.1269

ARTICLE INFO ABSTRACT

Database systems were mainly used for online transaction processing in which queries for On-Line
Transaction Processing (OLTP) systems that typically access only a small portion of a database,
Online Analytical Processing (OLAP) queries may need to aggregate large portions of a database
which often leads to performance issues. In this paper, a proposed BatchDB new memory database
engine is designed and implemented in hybrid OLTP and OLAP workloads for distributed system.
This method is chosen because of high level of data freshness and minimizes load interaction
between the transactional and analytical engines. It facilitates real time analysis over fresh data
under fixed SLAs for both OLTP and OLAP workloads and it dependent on replication, workload
type (OLTP and OLAP) and a light-weight propagation of transactional updates. The experimental
results are carried out on standard benchmarks of TPC-C and TPC-H, it is observed that the
proposed BatchDB achieves better throughput and latency for the corresponding transactional and
analytical workloads.

INTRODUCTION

The workload database engines need to efficiently handle both
Transactional (OLTP) and Analytical (OLAP) workloads with
assurances for throughput, latency and data freshness. At
present the running analytics on the data, must not fit for OLTP
performance which is bound by severe SLAs for response time
and throughput. The OLAP does not handle the small set of
house users without requirement for guaranteed performance. It
is necessary to implement the hybrid OLAP-OLTP as a service
to large number of users with SLAs on data-freshness and
performance for various applications such as business.

The OLTP and OLAP workloads is difficult to manage because
they require different algorithms and data structures for
implementation. A common approach for handling the
workloads is proposed to keep a separate data warehouse for
OLAP which is isolated from the OLTP system. Data
warehouse systems are optimized for read only analytical
workloads and which are periodically refreshed through a batch
of job containing the latest data updates. This provides efficient
performance for both the workloads and the ability to tune each
system independently.

Several researchers had done lot of implementations in this
domain and several alternatives have been recently introduced

for some techniques such as SAP HANA [17], HyPer [28],
SQL Server [31], MemSQL [12], Oracle [29], etc. However, it
shows limitations on performance impacted of database
workloads. This paper presents Batch DB, an alternative design
of a database engine architecture, which handles hybrid
workloads with efficient performance in terms of data
freshness, consistency, and elasticity.

To accommodate both OLAP and OLTP, BatchDB primarily
relies on replication, trading off space for performance
isolation, with a replica for both OLTP and OLAP workloads.
This allows for workload specific optimizations for every
replica and physical isolation of resources dedicated for each
workload. To efficiently maintain the replica up-to-date
without affecting OLTP and OLAP performance, BatchDB
relies on lightweight update extraction and isolated execution
of queries and updates at the OLAP replica. This process can
be achieved by incoming OLAP queries first queued and then
scheduled in batches, one batch-at-time. Execution of each
batch of queries is shared and done as part of a single read-only
transaction on the latest version of the data.

Propagated OLTP updates are also first queued and then
efficiently executed in-between two batches of queries. This
enables version agnostic scan processing at the OLAP replica
and logical isolation between the query processor and update

Available Online at http://www.recentscientific.com
 International Journal of

Recent Scientific

 Research International Journal of Recent Scientific Research
Vol. 8, Issue, 12, pp. 22456-22465, December, 2017

Copyright © Kanagalakshmi S and Ramar K, 2017, this is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the
original work is properly cited.

DOI: 10.24327/IJRSR

CODEN: IJRSFP (USA)

Article History:

Received 10th September, 2017
Received in revised form 14th
October, 2017
Accepted 08th November, 2017
Published online 28th December, 2017

Key Words:

Database, Workload, Replication, OLTP
and OLAP

Kanagalakshmi S and Ramar K., Designing A Novel Database Engine For Hybrid Workloads

22457 | P a g e

propagation. The BatchDB uses an efficient way of extracting,
propagating and applying updates both within one and across
multiple machines using Remote Direct Memory Access
(RDMA) over InfiniBand. All these features help BatchDB
achieve performance isolation for hybrid workloads with
efficient throughput and response times. The experimental
results, based on a hybrid Transaction Process Control (TPC)
TPC-C and TPC-H workload [11], show that BatchDB
achieves good performance isolation between the hybrid
workloads, having a negligible ten percent overhead on each
other’s performance. Moreover, the replication mechanism is
capable of propagating and applying the updates at the
analytical replica at a rate higher than any TPC-C throughput
achieved to date and can thus be integrated with other
transactional engines. Finally, the system has competitive
performance for individual OLTP and OLAP workloads and is
superior to existing systems designed for hybrid workloads in
terms of overall throughput.

Objective

The main objectives of this work

 To identify the multiple resource sharing which cause
unstable performance of OLTP and OLAP workloads
includes

 Explicit resource sharing depends on scheduling polices
of the database engine and it can be avoided by
scheduling OLTP and OLAP requests on dedicated
resources.

 Implicit resources haring (e.g., of memory bandwidth
and CPU caches)requires the need for having separate
replicas of OLTP and OLAP workloads

 To implement a logical separation for analytical and
transactional queries can be update by using a batch of
queries scheduling, single snapshot replica, and
efficient algorithms are deployed for executing the
updates.

Design Goals

The key requirements for design engines which aims to
handle Hybrid Transactional and Analytical Processing
workloads (HTAP).
Performance Isolation - The SLA required efficient Latency
and throughput which are provide by Database engines. The
performance of OLTPare unpredictable by OLAP queries in
hybrid workloads which leads to a revenue losses.
Workload Specific Optimizations- The Database engines should
influence workload specific optimizations wherever applicable
and it use datastructures to operate on dataformats for the given
workload. It is essential to implement for delivering good and
stable performance.
Update propagation & datafreshness- The OLAP queries are
employed on recent version of data and also on many serious
business decisions based on real-time analytics[15]. The low-
latency communication are required between the individual
systems for fast propagation with update mechanisms within
the components.
Consistency Guarantees–To confirm that queries would have a
consistent vision on the data analytical queries with high
consistency guarantees (i.e., snapshot isolation).

Single System Interface- Unlike using a separate system with
single interface for each workload, a single system interface
which supports both analytical queries and transactions which
provides the easiness of using system.
Elasticity-The efficient elasticity should be achieved by the
database engine by scaling dynamically with increasing
number of machines and it should take advantage of all there
sources provided by modern distributed environments

The rest of the paper is organized as follows. Section II deals
the related works about the BatchDB and OLAP process and
limitations. Section III deals with the System Architecture of
proposed method OLAP-OLTP for distributed system. Section
IV presents the process of Transactional OLTP replica and
OLAP replica. Section V, gives the result and performance
analysis. Finally, the overall proposed method concludes in
section VI.

Related Works

Currently, customers with high rates of mission critical
transactions have split their data into two separate systems, one
database for OLTP and one so-called data warehouse for
OLAP. Dehne et.al (2015) introduced CR-OLAP, a scalable
Cloud based Real-time OLAP system based on a new
distributed index structure for OLAP, the distributed PDCR
tree. CR-OLAP utilizes a scalable cloud infrastructure
consisting of multiple commodity servers (processors). With
increasing database size, CR-OLAP dynamically increases the
number of processors to maintain performance. Distributed
PDCR tree data structure supports multiple dimension
hierarchies and efficient query processing on the elaborate
dimension hierarchies which are so central to OLAP systems.

Benker et.al (2013) presented a proposal of a software
architecture that enables the integration of OLTP- and
operational OLAP-capabilities for right-time decision making.
The second contribution is the identification of concepts for the
application of non-relational technologies (NoSQL) in
enterprise application systems in order to realize benefits of
polyglot persistence. For that first step the proposed
architecture focuses on a single business process scenario.
Enterprise application systems can be categorized as OLTP and
OLAP systems. OLTP systems are used to realize the
functionality of operational business processes. OLAP systems
perform business analysis and deliver decision-relevant
information. Data extracted from operational data structures
offers a common and valuable input for those systems.

While allowing for decent transaction rates, this separation has
many disadvantages including data freshness issues due to the
delay caused by only periodically initiating the Extract
Transform Load data (ETL) staging and excessive resource
consumption due to maintaining two separate information
systems. Kemper et.al (2011) developed an efficient hybrid
system, called Hyper that can handle both OLTP and OLAP
simultaneously by using hardware-assisted replication
mechanisms to maintain consistent snapshots of the
transactional data. Hyper is a main memory database system
that guarantees the ACID properties of OLTP transactions and
executes OLAP query sessions (multiple queries) on the same,
arbitrarily current and consistent snapshot. The TPC-C
benchmark was designed to evaluate OLTP database system
performance and the TPC-H benchmark for analyzing OLAP

International Journal of Recent Scientific Research Vol. 8, Issue, 12, pp. 22456-22465, December, 2017

22458 | P a g e

query performance. The utilization of the processor-inherent
support for virtual memory management (address translation,
caching, and copy on update) yields both at the same time:
unprecedentedly high transaction rates as high as 100000 per
second and very fast OLAP query response times on a single
system executing both workloads in parallel.

Lu et.al (2016) introduced a VERTICA and SAP HANA to
implement ACID transaction functionality in a distributed
columnar database. In telecom companies, MPP columnar
database provides fast analyzing ability with built in ACID
support. By testing several optimization methods on Vertica
and SAP HANA, it is possible to enhance the OLAP
performance of MPP database. A high speed execution engine
is implemented to deal with OLAP workloads. On higher level
applications runs by different group of users share a common
interface for transactions of database to get results from it.

Conn et.al (2005) discussed that advantage of the OLAP data
repository is that is has a long time horizon from which to
perform analysis and discover trends and patterns within the
business, but the disadvantage is that data may not be
(relatively) recent enough to qualify as real-time data for
business intelligence purposes. This research will be conducted
as a qualitative study by drawing on relevant literature and
other scholarly documentation to investigate any proposed
architectures or processes for integrating the OLTP and OLAP
environments.

System Architecture

The BatchDB’s [26] key principles and methodology are
presented below, to address the design goals and the flaws of
previous methods are mentioned and also includes the
assumptions and trade-off methods.

Proposed BatchDB Components

BatchDB’s architecture is based on replication and it uses a
primary replica as OLTP to handles all updating transactions
(Figure 1 left), and secondary replica is OLAP it performs
analytical queries (Figure 1 right).

Each replica system has a set of resources and it allows each
replica to be optimized for the given workload which is located
in BatchDB, either on the same shared-memory machine (on
different NUMA nodes) or multiple memory machines. (e.g.,
Both OLTP and OLAP have separate execution engines in which
OLTP is considered for pre-compiled stored actions and the
OLAP for handling the ad-hocqueries). The OLTP dispatcher
are assigned to schedules the requests and also it is responsible
for conveying requests to worker threads for the successful
transactions. Worker threads export a physical log of updates
containing information on the snapshot version for each
affected tuple to be used for propagating the updates to the
analytical replica. The OLAP dispatcher schedules OLAP
queries and makes sure that the OLAP replica operates on one-
batch-at-a-time processing with data kept in a single-snapshot-
replica from the primary replica, without negatively affecting
the OLAP queries performance. For this method, physical
storage is version-agnostic and maintains only a single data
version (batch) and removing the dealing with numerous
snapshots for Batch DB scan processing and eliminates the
overhead of logical contention and synchronization with the
transactional component for applying the updates. Figure1
shows an BatchDB’s architecture.

Addressing the Design Goals

Performance Isolation-Initially it addresses the design goal on
replication by using individual replicas for dissimilar
workloads and it allows for physical isolation of the allocated
hardware resources, either by locating the replicas on different
machines, or executed on the same machine on separate
NUMA nodes. Secondly, the main objective is to remove the
logical contention

Figure 1 System Architecture

Kanagalakshmi S and Ramar K., Designing A Novel Database Engine For Hybrid Workloads

22459 | P a g e

among the two components by executing the performance
isolation by the batch-based processing which is done by the
OLAP dispatcher.

Data freshness -Instantly the OLTP worker threads forwards
the updates to the OLAP replica to achieve an efficient data
freshness. At the end of OLTP branch execution the updates
are pushed for transactions in two ways are if OLAP dispatcher
requested for the latest snapshot version and latest updates
leads so longer than a limited(configurable) period, (which is
set to200ms). So the execution time for a transaction’s updates
of OLAP replica depends on the OLTP transactions durations
(10s of milliseconds) which is normally less than the execution
time of analytical queries, then the data freshness are observed
by the OLAP queries response time.

Workload Specific Optimizations-By design, BatchDB’s
workload specific replicas are applicable for optimization
technique for workload. In this situation the design and
implementation of both the OLAP and OLTP components are
employed to improve the workload performance manually.

Consistency Guarantees - The OLTP and OLAP requires the
snapshot isolation which is provided by BatchDB. The
transactional requests, are processed by MVCC in which the
OLAP replica uses a single snapshot to address the
analyticalqueries.

Interfaces – BatchDB disclosures the interface to users of both
workloads. There is no explicit requirement for users to
distinguish requests for the two replicas. The OLAP replicas
operate on a single snapshot version as one batch of read-only
queries at a time and it can be viewed as indexes.

Elasticity - BatchDB can scale by conveying more replicas as
the quantity of machines increments. Notwithstanding unique
replicas sorts, various cases of a similar part can be made so as
to circulate the load evenly over the entire framework. The
high bandwidth capacity of modern networks in blend with
RDMA primitives makes it conceivable to circulate updates to
countless. The design principles wan also be applied to provide
specialized replicas to other workload types (e.g., offline batch
analytics for long running queries, graph processing, and so
forth).

Trade-offs

Individual Query Latency - One trade-off in BatchDB is the
individual query latency for OLAP workloads. Specifically, the
prerequisite that all simultaneous OLAP questions must be co-
planned together to separate them from execution of OLTP
updates. The impact of this is query latency relies upon the
latency of other simultaneous OLAP queries.

Figure 2 OLTP Record Storage Format and Index Layout

Figure 3 Propagated Update Format for a Specific Table from a Single OLTP Worker Thread

International Journal of Recent Scientific Research Vol. 8, Issue, 12, pp. 22456-22465, December, 2017

22460 | P a g e

This is especially valid for a framework offering on the online
analytics on real-time information as it is normally accepted
(and frequently required because of SLAs) that all queries are
executed within couple of moments. In the event that a client
wishes to run a query that would take more time to execute, for
example minutes or hours, this query can be dealt with
diversely as an offline non- real-time query.

Transaction Semantics- While our framework gives snapshot
isolation certifications to OLAP queries it doesn't give full
transactional flexibility. For example, the data version on
which queries are handled is chosen by the framework when
the query (alongside different query in its cluster) begins
executing. To detach the execution of OLAP queries and OLTP
updates, the OLAP replica is updated at a coarser granularity
and clients cannot pick the correct variant of data to run their
queries on. Subsequently, interactive sessions with long
running read only transactions where clients submit queries in a
steady progression are impractical in present system.

Transactional Component (Oltp Replica)

The Transactional (OLTP) segment appeared in Figure 1,
contains the primary replica of the database motor whose
intention is to deal with both updates containing transactions
and short latency-sensitive read-only requests. Aside from
preparing updates to be spread to the OLAP replica, the plan
choices for actualizing the OLTP replica can be careless in
regards to the prerequisites of OLAP workloads. In this
manner, no compromise should be made when managing the
OLTP workloads and any OLTP particular optimizations are
appropriate.

The implementation of BatchDB’s OLTP component on
Hekaton[13], multi-version concurrency control[6]and lock-free
indexing data-structures, as opposed to partitioning to achieves
cal ability in multi-core systems. This is unlike the approaches
taken by H-Store [27], or HyPer [29], which are more suitable
for partition able workloads.

Storage Layout and Indexes – Figure 2 shows the storage
layout and indexing data-structures for a sample relation.
Basically, row-oriented storage is used as it is most productive
for the point lookups and updates, which are necessary to
transaction handling. Like Hekaton a hash-based and a tree-
based index with respect to the lock- free Bw-Tree [30]. A
simplified version of the Bw-Tree that depends on atomic
multi-word compare-and-swap updates. Moreover, the physical
records contain a twofold connected rundown for every indexes
to encourage simpler traversal into the indexes.

Transaction Execution and Concurrency Control - For
effective handling of OLTP requests for the framework locally
aggregated put away methods with customers sending their
requests in the form of stored procedure calls. To execute the
stored procedures, the OLTP part possesses a committed
arrangement of worker threads. The worker threads are
assembled on a single NUMA node to dodge high
synchronization overheads over the interconnect for delicate
parts of the design, for example, epoch management, garbage
collection, memory allocation, and so on. The present usage
gives snapshot isolation assurances to exchanges utilizing a
multi-version concurrency control.

Scheduling - The responsibility for allocation of OLTP
requests (stored procedure calls) to worker threads is appointed
to the OLTP dispatcher that, like the OLAP dispatcher, plans
operations in batches taking a shot at one cluster at any given
moment. As appeared in Figure 1, approaching OLTP requests
for are first lined up in the OLTP queue while the framework is
caught up with executing the present batch of OLTP quires. At
the point when the present batch is done, the OLTP dispatcher
de-queues all requests from the OLTP quires and enquires them
to the OLTP worker threads in a round robin form. This trade
off individual query latency to acquire benefits that emerge in
assessing many requests as a bunch. For example the logging
of updates to tough storage, the epoch management for the
lock-free data- structure, the junk gathering and the
proliferation of the updates to the OLAP replicas all benefit
from such batch based execution. In such mode, threads can
join numerous operations in a similar epoch and amortize the
cost of changing challenged atomic counters. Not yet
investigated utilizing the OLTP request for grouping for
advancing the execution of the concurrency protocol, as
proposed by BOHM [16].

Logging - For strength the OLTP dispatcher logs the successful
update transactions to a durable storage medium before the
reactions are sent to the clients. To limit the impact of logging
on execution. By utilizing snapshot isolation, the data on the
read and snapshot versions needs should be additionally logged
for correct recovery. Besides, logging is performed on a batch
premise (as gathering confer [12]) to conceal the I/O dormancy
for numerous OLTP requests. Note that as the OLAP replica
isn't moved down by a strong medium, if there should arise an
occurrence of failures it should be recouped by reading a
snapshot and catching up with new updates from the primary
replica.

Update propagation - To keep the secondary replica steady and
up-to-date, the OLTP part likewise sends out a log of updates
isolate from the durable log. Not at all like the durable log that
contains legitimate updates, have the engendered updates
contained the physical updates to singular records. This
empowers proficient application of the updates on the secondary
replica. To avoid expensive synchronization among OLTP
worker threads, each threads generates its own arrangement of
updates to be engendered. A case set of updates from a worker
threads is portrayed in Figure 3. This case contains eight
propagated updates from three committed transactions. Updates
from a single thread might be interleaved with updates from
different threads during the propagation process. For example,
in this case the updates from a transaction with version ID 2 are
a piece of the update set of an alternate threads. Each updates
contains:

The Type of the update can be either a newly inserted tuple, an
update to an existing tuple or a delete of an existing tuple; The
Row ID integer which uniquely specifies the tuple that
corresponds to this update. The RowID is equivalent to the
primary key of the relation and is used to efficiently locate the
corresponding tuple at the secondary replica; The Offset and
Size in bytes which are used to update existing tuples on finer
sub-tuple granularity; The Data which contains either the data of
the newly inserted tuple or the payload of the update to an
existing record.

Kanagalakshmi S and Ramar K., Designing A Novel Database Engine For Hybrid Workloads

22461 | P a g e

Analytical Component (OLAP Replica)

The analytical component is shown in Figure 1, and contains
the secondary replica of the database engine.

Query scheduling - In order to avoid synchronization and
execution connection between running the OLAP queries and
applying the OLTP updates, the OLAP dispatcher executes
quires in batches. A batch is executed as a read-only
transaction on the latest snapshot version. Before executing the
following batch of quires, the dispatcher recovers from the
OLTP segment the most recent conferred snapshot form, and
applies the propagated updates on its replica up-to that version.
Moreover, as just a single batch of queries is executed at once,
the OLAP engine does not have to store more than a single
version of the data, i.e., can be form careless.

The batch scheduling of BatchDB is like the one utilized by
Crescando [29] and SharedDB [19]. The method of BatchDB
contrasts from these frameworks as it batches all simultaneous
OLAP quires in the framework to confine the OLAP quires
preparing from the up-dates spread by the primary OLTP
replica. The main adaptation of HyPer additionally gathered the
OLAP quires by session, and ensured that all quires in a session
worked on a similar snapshot version. Query execution: Since
the query scheduler executes query in batches, despite the fact
that it isn't important, by utilizing a query handling motor that
likewise takes advantage of shared execution. The OLAP
segment utilizes thoughts exhibited by earlier work on shared
scans (to share memory transmission bandwidth crosswise over
outputs and query predicate assessment); more perplexing
quires preparing (to share execution of join operations for more
productive use of CPU and DRAM bandwidth); and
scheduling optimizations [20]. Earlier trials on this segment
[16] demonstrate that, for extensive workloads, it can give
higher throughput than best in commercial engines in analytical
query processing.

‘

Update propagation - Lastly, to empower quick use of updates,
all tuples of replicated tables are clarified with a RowID integer
attribute in both replicas. The RowID is basically an essential
key trait escaped the client. As portrayed before, all propagated
updates from the OLTP replica contain the RowID trait which is

utilized at the OLAP replica to particularly recognize the tuples
alluded by the updates. Moreover, as show in Figure 1, the data
in the OLAP replica is on a horizontally (delicate) apportioned in
view of a hash estimation of the RowID quality. This empowers
both proficient (NUMA-neighborhood) scan handling and quick
utilization of OLTP updates on present day multi-center
machines. Comparable soft based partitioning has additionally
been utilized by various different frameworks.

To facilitate efficient matching of OLTP updates and tuple
locations, the OLAP component maintains a hash index of the
data on the RowID attribute. The process of applying the
propagated up-dates using the RowID and the hash indexes
consists of three steps which are illustrated in Figure 4

Step1 - It update sets from multiple OLTP threads are ordered
by the snapshot versioned (VID). This step is the fastest as it
only orders the update pointers using as can with complexity
linear in the number of new snapshot versions.

Step2- It is executed when the OLAP dispatcher obtains the
latest committed snapshot versioned to be used for the current
batch of queries. Thereafter, the updates corresponding to
snapshot versions upto and including the VID are propagated to
the corresponding partitions based on a hash value of the
RowID attribute.

Step 3 - The updates for each partition are applied using the
hash index on RowID to find the location of tuples for
operations that either update or delete a tuple. When a tuple is
deleted, the slot for that tuple is marked as empty, as a signal
for the scan process or to ignore the tuple at that location. In
case of inserts, the tuple is inserted into the next free slot of the
partition (possibly at a location where a tuple was recently
deleted) and the hash index is populated accordingly.

In case of updates, tuples are updated inplace at the granularity
of single attributes to avoid rewriting the entire tuple. The
attribute to be modified is identified using the offset and size
fields depicted in Figure3.

Figure 4 Propagated Updates from OLTP Replica into OLAP Replica

International Journal of Recent Scientific Research Vol. 8, Issue, 12, pp. 22456-22465, December, 2017

22462 | P a g e

All three steps are easily parallelizable. The most time for
consuming step is step 3, as it contains multiple random
accesses. Technically, this step resembles a hash join with the
hash index used as a hash table to join the updates with the
existing data. In general, there has been a significant work on
speeding up joins with state-of-the-art algorithms reaching
hundreds of millions of tuples per second on modern multi-
cores[3]. To put these numbers into perspective the highest
reported performance for the industry standard OLTP
benchmark (TPC-C) would correspond to about tens of
millions updated tuples per second. Therefore, this approach of
propagating updates from an OLTP to an OLAP replica can
satisfy the needs of most systems. Our algorithm optimizes for
both main-memory bandwidth and latency. Hash buckets from
the hash index a restore din a single cache line and accessed
using a grouped software prefetching technique [10] to
minimize high random main-memory access latencies. The
propagating updates with an array approach, where the RowID
is directly used as an offset in the storage of the OLAP replica.
However, it did not bring significant performance gains
compared to an optimized hash index approach, while on the
other side requires coordination among OLTP worker threads in
the use and reuse of RowID integers.

Storage Layout and Data Transformation- The current
implementation of the OLAP component uses an uncompressed
row-oriented storage (as shown in Figure4), similar as to the
OLTP replica. Note, however, that this is not a design
requirement and as part of future workplan to optimize it using
a column-store format, which has been shown to be more
efficient for analytical workloads, and can further benefit from
compression, reduced I/O and memory costs.

Network Communication

BatchDB allows the OLAP replica to be either co-located on
the same physical machine as the primary replica, or to reside
on a different node. In the latter setup, the system makes use of
modern low-latency networks to efficiently propagate the
updates.

Remote Direct Memory Access (RDMA) [23] is used to
improve the latency of small messages and reduce the CPU
overhead for large data transfers by avoiding intermediate copy
operations in-side the network stack. RDMA has been used for
several database systems and the ideas are based on the
platforms developed for running query-at-a-time joins at large
scales.

RDMA offers one-sided and two-sided operations. When using
one-sided read or write operations, the initiat or of the request
directly manipulates a section of memory which has previously
been exposed by the remote machine. The CPU on the target
machine is not notified nor involved in the data transfer. Two-
sided operations on the other hand represent traditional
message passing semantics. The receiver has to allocate several
receive buffers an disnotified when a new message has been
placed in any of these locations. A downside of RDMA is that
the application is burdened with extra complexity of network
buffer management[18].

In BatchDB, each machine registers several RDMA receive
buffers with the network card. Small messages of less
than1024KB are directly written to these buffers using two-
sided RDMA operations. Larger messages cannot be

transmitted directly, and require a hand shake operation. During
the handshake, the sender transmits the required buffer size to
the receiver, which in turn allocates a new buffer and register sit
with the network card. The receiver responds with the buffer
address and the necessary access credentials. After this
exchange, the sender can initiate the data transfer using a one-
sided RDMA write operation. Once the transfer is complete,
the receiver is notified by the sender. To reduce the overhead of
memory allocation and registration, large RDMA-buffers are
pre-allocated and cached in a buffer pool.

In addition to a low latency, modern networks also provide high
band width, which is important for data-intensive applications.
The communication mechanisms mentioned above allow for
optimal use of the network bandwidth for both small and large
messages. Propagating updates from the primary replica to one
secondary copy does not fully saturate the through put of a
4xFDR Infini B and network. Not being limited by the network
bandwidth enables the primary node to simultaneously transmit
updates to multiple secondary copies, thus making the system
elastic and scalable.

Experimental Results

The Experimental results of proposed hybrid OLTP and OLAP
are simulated using Apache Hadoop. In the experiments,
BatchDB runs on one or two machines, and the client work
load is generated on separate machines that communicate via
a1Gbit Ether net network. The hybrid bench mark is a mix of
standard OLTP and OLAP benchmarks, namely TPC-C and
TPC-H. In particular, the OLTP part is an unmodified version
of the TPC-C benchmark, while the OLAP part contains a set
of analytical queries inspired by TPC-H. The latter are
modified to match the TPC-Cschema, plusafew missing TPC-H
relations.

Throughput

The experimental results of proposed hybrid OLTP and OLAP
are evaluated in terms of throughput with respect to clients.
The proposed method are run with 200 warehouses and 2000
clients and compared with HyPer [29] and SAP HANA [17].
Table 1 shows the throughput for proposed hybrid OLTP-
OLAP for different warehouse such as 50, 100 and 200
warehouse with respect to clients.

Table 1 Throughput for Hybrid OLTP-OLAP

Techniques Clients 50W 100W 200W

Hyper

0 0 9 15
500 9 15 23

1000 15 25 43
1500 20 35 62
2000 25 40 70

SAP HANA

0 15 20 25
500 25 45 39

1000 35 55 62

1500 42 65 69

2000 49 75 79

Proposed Hybrid
OLTP-OLAP

0 25 32 35
500 42 49 55

1000 56 62 72
1500 67 75 80
2000 79 82 85

From the table it clearly shows that the proposed Hybrid
OLTP-OLAP provides the high throughput for 200 warehouse
with 2000 clients respect to increasing clients.

Kanagalakshmi S and Ramar K., Designing A Novel Database Engine For Hybrid Workloads

22463 | P a g e

Figure 5 Throughput for HyPer

Figure 6 Throughput for SAPHANA

Figure 7 Throughput for Proposed Hybrid OLTP-OLAP

Figure 5-7 shows that throughput of HyPer, SAP HANA and
proposed Hybrid OLTP-OLAP. It is clear that the proposed
method achieve a maximum of 110 thousand TPC-C
transactions with 200 warehouses and 2000 clients when
compared to existing HyPer and SAP HANA.
Table 2 shows the transaction latencies for 200 warehouse with
respect to client for 50th percentile, 90th percentile and 99th
percentile.

Table 2 Transaction Latency

Techniques Clients 50th 90th 99th

HyPer

200 20 25 30
500 25 29 40

1000 32 40 45
2000 40 50 55

SAP HANA

200 15 10 15
500 15 20 23

1000 20 35 39

2000 25 40 45

Proposed
Hybrid OLTP-

OLAP

200 11 15 18
500 15 25 25

1000 22 29 30
2000 30 35 40

Figure 8 Transaction Latency for Hyper

Figure 9Transaction Latency for SAP HANA

Figure 10 Transaction Latency for Proposed Hybrid OLTP-OLAP

Figure 8-10 shows the impact of batching queries on
transaction latencies of proposed Hybrid OLTP-OLAP. It is
noted that when maximum throughput is reached, the 99th
percentile shows 40ms, which is well below the 5 second limit

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000

T
h

ro
u

g
h

p
u

t(
%

)

Clients

50W 100W 200W

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000

T
h

ro
u

gh
p

u
t

(%
)

Clients

50W 100W 200W

0

10

20

30

40

50

60

70

80

90

0 500 1000 1500 2000

T
h

ro
u

gh
p

u
t

(%
)

Clients

50W 100W 200W

0

10

20

30

40

50

60

200 500 1000 2000R
es

p
o

n
se

 T
im

e
(m

s)

Latency

50th 90th 99th

0

10

20

30

40

50

200 500 1000 2000

R
es

p
o

ns
e

T
im

e
(m

s)

Clients

50th 90th 99th

0

5

10

15

20

25

30

35

40

45

200 500 1000 2000

R
es

p
on

se
 T

im
e

(m
s)

Clients

50th 90th 99th

International Journal of Recent Scientific Research Vol. 8, Issue, 12, pp. 22456-22465, December, 2017

22464 | P a g e

for 90th percentile as per the TPC-C specification. The
proposed method shows efficient transaction latency when
compared to other techniques.

CONCLUSION

In this paper a BatchDB, system that efficiently handles hybrid
OLTP and OLAP workloads with strong performance isolation
is implemented. BatchDB relies on primary-secondary form of
replication with the primary replica handling OLTP workloads
and updates propagated to a secondary replica that handles
OLAP workloads. To enable query processing on latest data
with snapshot isolation guarantees and minimum impact on
query performance, the queries and updates at the OLAP
replica are queued and scheduled in batches with the system
working on one batch at-a-time. Furthermore, updates are
extracted and applied from the OLTP replica at the OLAP
replica efficiently, incurring a small overhead to overall
execution time. Updates can also be propagated to a remote
replica via RDMA over InfiniBand for added scalability and
isolation of performance. The results confirm that, unlike
existing systems, BatchDB is able provide high performance
isolation between the workloads leading to predictable
performance.

References

1. J. Arulraj, A. Pavlo, and P. Menon. Bridging the
Archipelago Between Row-Stores and Column-Stores
for Hybrid Workloads. SIGMOD, pages 583-598, 2016.

2. S. Arumugam, A. Dobra, C. M. Jermaine, N. Pansare,
and L. Perez. The DataPath System: A Data-centric
Analytic Processing Engine for Large Data Warehouses.
In SIGMOD, pages 519-530, 2010.

3. C. Balkesen, J. Teubner, G. Alonso, and M. T. Özsu.
Main-memory hash joins on multi-core CPUs: Tuning to
the underlying hardware. In ICDE, pages 362-373, 2013.

4. C. Barthels, S. Loesing, G. Alonso, and D. Kossmann.
Rack-Scale In-Memory Join Processing using RDMA.
In SIGMOD, pages 1463-1475, 2015.

5. C. Barthels, I. Müller, T. Schneider, G. Alonso, and T.
Hoefler.Distributed join algorithms on thousands of
cores. PVLDB, 10(5):517-528, 2017.

6. P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database
Systems. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1987.

7. L. Braun, T. Etter, G. Gasparis, M. Kaufmann, D.
Kossmann, D. Widmer, A. Avitzur, A. Iliopoulos, E.
Levy, and N. Liang. Analytics in Motion: High
Performance Event-Processing AND Real-Time
Analytics in the Same Database. In SIGMOD, pages
251-264, 2015.

8. G. Candea, N. Polyzotis, and R. Vingralek. A Scalable,
Predictable Join Operator for Highly Concurrent Data
Warehouses. VLDB, pages 277-288, 2009.

9. G. Candea, N. Polyzotis, and R. Vingralek. Predictable
Performance and High Query Concurrency for Data
Analytics. VLDBJ, pages 227-248, 2011.

10. S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry.
Improving Hash Join Performance Through Prefetching.
In Proc. ICDE 2004, pages 116-, 2004.

11. R. Cole, F. Funke, L. Giakoumakis, W. Guy, A.
Kemper,S. Krompass, H. Kuno, R. Nambiar, T.
Neumann, M. Poess, K.-U. Sattler, M. Seibold, E.
Simon, and F. Waas. The Mixed Workload CH-
benCHmark. In DBTest, pages 8:1-8:6, 2011.

12. D. J. DeWitt, R. H. Katz, F. Olken, L. D. Shapiro, M. R.
Stonebraker, and D. A. Wood. Implementation
techniques for main memory database systems. In
Proceedings of the 1984 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’84,
pages 1-8, New York, NY, USA, 1984. ACM.

13. C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P.
Mittal,R. Stonecipher, N. Verma, and M. Zwilling.
Hekaton: SQL Server’s Memory-optimized OLTP
Engine. In SIGMOD, pages 1243-1254, 2013.

14. J. Dittrich and A. Jindal. Towards a One Size Fits All
Database Architecture. In CIDR, 2011.

15. Elmore, J. Duggan, M. Stonebraker, M. Balazinska,U.
Cetintemel, V. Gadepally, J. Heer, B. Howe, J. Kepner,
T. Kraska,S. Madden, D. Maier, T. Mattson, S.
Papadopoulos, J. Parkhurst,N. Tatbul, M. Vartak, and S.
Zdonik. A Demonstration of the BigDAWGPolystore
System. PVLDB, 8(12):1908-1911, Aug. 2015.

16. J. M. Faleiro and D. J. Abadi. Rethinking Serializable
Multiversion Concurrency Control. PVLDB,
8(11):1190-1201, July 2015.

17. F. Färber, N. May, W. Lehner, P. Große, I. Müller, H.
Rauhe, and J. Dees. The SAP HANA Database – An
Architecture Overview. IEEE Data Eng. Bull., 35(1):28-
33, 2012.

18. P. W. Frey and G. Alonso. Minimizing the hidden cost
of RDMA. In ICDCS, pages 553-560, 2009.

19. G. Giannikis, G. Alonso, and D. Kossmann. SharedDB:
Killing One Thousand Queries with One Stone. VLDB,
pages 526-537, 2012.

20. J. Giceva, G. Alonso, T. Roscoe, and T. Harris.
Deployment of Query Plans on Multicores. PVLDB,
8(3):233-244, 2014.

21. K. Goel, J. Pound, N. Auch, P. Bumbulis, S. MacLean,
F. Färber,F. Gropengiesser, C. Mathis, T. Bodner, and
W. Lehner. Towards Scalable Real-time Analytics: An
Architecture for Scale-out of OLxP Workloads. PVLDB,
8(12):1716-1727, Aug. 2015.

22. M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-
Mauroux, and S. Madden. HYRISE: A Main Memory
Hybrid Storage Engine. PVLDB, 4(2):105–116, 2010.

23. J. Hilland, P. Cully, J. Pinkerton, and R. Recio. RDMA
Protocol Verbs Specification (Version 1.0). Technical
report, RDMA Consortium, 04 2003.

24. C. Hong, D. Zhou, M. Yang, C. Kuo, L. Zhang, and L.
Zhou. KuaFu: Closing the parallelism gap in database
replication. In Proc. ICDE 2013, pages 1186-1195,
2013.

25. R. Jiménez-Peris, M. Patiño Martínez, and G. Alonso.
Non-Intrusive, Parallel Recovery of Replicated Data. In
SRDS ’02, pages 150-, 2002.

26. D. Makreshanski, J. Giceva, Claude Barthels, and
Gustavo Alonso. BatchDB: Efficient Isolated Execution
of Hybrid OLTP+OLAP Workloads for Interactive
Applications. In Proceedings of the 2017 ACM
International Conference on Management of Data

Kanagalakshmi S and Ramar K., Designing A Novel Database Engine For Hybrid Workloads

22465 | P a g e

(SIGMOD '17). ACM, New York, NY, USA, 37-50,
2017.

27. R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,
S. Zdonik,. P. C. Jones, S. Madden, M. Stonebraker, Y.
Zhang, J. Hugg, andD. J. Abadi. H-store: A High-
performance, Distributed Main Memory Transaction
Processing System. PVLDB, 1(2):1496-1499, Aug.
2008.

28. B. Kemme, A. Bartoli, and O. Babaoglu. Online
reconfiguration in replicated databases based on group
communication. In DSN ’01, pages 117-126, July 2001.

29. Kemper and T. Neumann. HyPer: A hybrid OLTP &
OLAP main memory database system based on virtual
memory snapshots. In ICDE, pages 195-206, 2011.

30. S. Muthulingam, V. Raja, M. Roth, E. Soylemez, and M.
Zait. Oracle Database In-Memory: A dual format in-
memory database. In ICDE, pages 1253-1258, April
2015.

31. P.-A. Larson, A. Birka, E. N. Hanson, W. Huang, M.
Nowakiewicz, and V. Papadimos. Real-time Analytical
Processing with SQL Server. PVLDB, 8(12):1740-1751,
2015.

How to cite this article:

Kanagalakshmi S and Ramar K.2017, Designing A Novel Database Engine For Hybrid Workloads. Int J Recent Sci Res. 8(12),
pp. 22456-22465. DOI: http://dx.doi.org/10.24327/ijrsr.2017.0812.1269

