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In this paper, we present a fixed point theorem for a generalised contraction in cone metric space. 
We also present an application to first-order ordinary differential equations with periodic boundary 
value problem and obtain the existence and uniqueness of a lower solution. 
 
 
 
 
 
 
 
 
 
 
 
 

  

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

INTRODUCTION 
 

Huang and Zhang [7] have introduced the concept of cone 
metric space by replacing the set of real numbers by an ordered 
Banach space and proved many fixed point theorems of 
contractive type mappings in cone metric space. Subsequently, 
many authors in [1], [15], [3],[9],[5],[6] have generalised the 
results of Huang and Zhang and have studied fixed point 
theorems for normal and non-normal cones.  Fixed point theory 
has now evolved rapidly in cone metric space equipped with 
partial ordering. In [4], some results regarding partially ordered 
sets in cone metric spaces have been proved. In [11], [2] some 
results on the existence of fixed points for non-increasing 
function in cone metric space as well as an application to 
ordinary differential equations were found. In [12], some 
results on existence of a unique fixed point theorem for non-
decreasing mappings are applied to obtain a unique solution for 
differential equation with boundary value problem. In this 
paper, we prove fixed point theorem for non-decreasing 
function satisfying generalised condition in cone metric space 
and also an application to ordinary differential equation was 
given. 
 
 
 
 

Preliminaries 
 

Definition  
 

Let E be a real Banach space. A subset P of E is called a cone if 
and only if 
 

1. P is closed, nonempty and P≠ {0} 
2.  a,b	∈ R,a,b≥ ݕ,ݔ,0 ∈P implies aݔ +bݕ ∈P 
3. p∩(−p)={0} 

 

Given a cone P ⊆	E, we define a partial ordering ≤ with 
respect to P by ݔ ≤ ݕ implies ݕ − ݔ	 ∈P. A cone P is called 
normal if there is a number k> 0 such that for all ݕ,ݔ ∈	E, 
0≤ ݔ ≤y implies ‖ݔ‖ ≤  .‖ݕ‖݇
 

The least positive number satisfying the above inequality is 
called normal constant of P, while ݔ ≪ ݕstands for ݕ − ݔ ∈ int 
P(interior of P). 
 

Definition  
 

Let X be a nonempty set.Suppose that the mapping d:ܺ ×
ܺ →E satisfying  

 

1. 0≤d(ݕ,ݔ)	for all ݔ, ݕ ∈ 	ܺ and d(ݔ, (ݕ = 0 if and only if 
ݔ =  ݕ

2. d(ݕ,ݔ) =d(ݔ,ݕ) for all ݔ, ݕ ∈ 	ܺ 
3. d(ݕ,ݔ) ≤d(ݔ, (ݖ + d(ݖ, ,ݕ,ݔ for all(ݕ ݖ ∈ 	ܺ 
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Then d is called a cone metric in ܺ and (ܺ,d) is called a cone 
metric space.The concept of a cone metric space is more 
general than that of a metric space. 
 
Definition  
 
Let (X,d) be a cone metric space. We say that {ݔ} is 
 

1. A Cauchy Sequence if for every c in E with c≫ 0, there 
is N such that for all n,m> ܰ, d(ݔ  )≪cݔ,

2. A Convergent Sequence if for every c in E with c≫
0,there is N such that for all n> ܰ, d(ݔ (ݔ, ≪c  for 
some fixed ݔ		in ܺ. 

 
A cone metric space ܺ is said to be complete if every Cauchy 
sequence in ܺ is convergent in ܺ.It is known that  {ݔ} 
convergent to 	ݔ in ܺ if and only if d(ݔ (ݔ, → ݊	ݏܽ	0 → ∞.The 
limit of a convergent sequence is unique provided P is a normal 
cone with normal constant k. 
 

In this paper, we consider a special case of the following 
periodic boundary value problem 
 

u′(t)	= ݂൫ݐ, ݐ	݂݅																		൯(ݐ)ݑ ∈ ܫ = [0,ܶ].     (1) 
 

u(0)=u(T). 
 

where T>0 and  f : I× ܴ → ܴ is a continuous function. 
 

Definition  
 

A  lower solution for  (1) is a function ߚ ∈  such that  (ܴ,ܫ)ܥ
≥ (t)′ ߚ ݂൫(ݐ)ߚ,ݐ൯	݂ݎ	ݐ ∈ (0)ߚ	,ܫ ≤  .(ܶ)ߚ
The following lemmas are used in main results. 
 

Lemma 1. 
 

Let P be a cone and {ܽ} be a sequence in X. If c	∈
ߠ	݀݊ܽ	ܲ	ݐ݊݅ ≤ ܽ → ݊	ݏܽ)	ߠ	 → ∞), then there exists N such 
that for all n> ܽ	݁ݒℎܽ	݁ݓ,ܰ ≪ ܿ. 
 

Lemma 2. 
 

Let 	ݕ,ݔ, ݖ ∈ ܺ, ݔ	݂݅ ≪ 	ݕ	݀݊ܽ	ݕ ≪ ,ݖ 	ݔ	ℎ݁݊ݐ ≪  .ݖ
 

Lemma 3. 
 

Let P be a cone and ߠ ≤ ݑ ≪ c for each c ∈  .ߠ	=then u ,ܲ	ݐ݊݅
 

Main results 
 

Theorem  
 

Let (X,݀) be a complete cone metric space. Let T: X → ܺ be a 
increasing function satisfying the contractive condition  
 

 d(Tݕܶ,ݔ) 	≤a(d(ݔ, ((ݕ + (ݔܶ,ݔ)݀]ܾ + [(ݕܶ,ݕ)݀ +
(ݕܶ,ݔ)݀]ܿ +  [(ݔܶ,ݕ)݀
 

for ݔ, ݕ ∈ ܺ and the constants  a,b,c	∈ [0,1)	ܽ݊݀ܽ + ܾ + ܿ	 <
1.		ܶℎ݁݊	ܶ	ℎܽݏ	ܽ	݁ݑݍ݅݊ݑ	݀݁ݔ݂݅	ݐ݊݅	݅݊	ܺ. 
 

Proof 
 

Let ݔ ∈ ܺ. Consider {ݔ} where ݔ = ≤ିଵ ; nݔܶ 1, ାଵݔ	 =
 ,. From contractionݔܶ
 d(ݔାଵ,ݔ) =  (	ିଵݔܶ,	ݔܶ)݀
≤a((d(ݔ ((	ିଵݔ, + ݔ)݀]ܾ (ݔܶ, + 	ିଵݔ)݀ [(	ିଵݔܶ, +
ݔ)݀]ܿ (	ିଵݔܶ, +  [(ݔܶ,	ିଵݔ)݀

≤a(d(ݔ ((	ିଵݔ, + ݔ)݀]ܾ (	ାଵݔ, + ,	ିଵݔ)݀ [(	ݔ +
ݔ)݀]ܿ (ݔ, + 	ିଵݔ)݀  [(	ାଵݔ,
≤a(d(ݔ ((	ିଵݔ, + ݔ)݀]ܾ (	ାଵݔ, + ,	ିଵݔ)݀ [(	ݔ +
	ିଵݔ)݀]ܿ (ݔ, + ݔ)݀  [(	ାଵݔ,
∴	d(ݔାଵ,ݔ)(1− ܾ − ܿ) ≤ ݔ)݀  )(a+b+c)	ିଵݔ,
⇨ d(ݔାଵ,ݔ) 	≤ ݔ)݀ (	ିଵݔ,

(ୟାୠାୡ)
(ଵିି) 

Substituting =
(a+b+c)

(1−ܾ−ܿ)
 and as 0	≤ ≤ 1. 

∴	d(ݔାଵ,ݔ) 	≤ ݔ)݀ (	ିଵݔ, ≤ ≤ d(ݔଵ,ݔ) 
For any m≥ 1,  ≥ 1,	 it follows that 
 

d(ݔା (ݔ, 	≤ ݀൫ݔା ൯	ାିଵݔ, + 	݀൫ݔାିଵ,ݔ	൯ 
≤ ݀൫ݔା, +൯	ାିଵݔ 	ାିଵݔ)݀  (	ݔ,	ାିଶݔ))+d	ାିଶݔ,
≤
݀൫ݔା, ൯	ାିଵݔ + 	ାିଵݔ)݀  (	ାିଷݔ,	ାିଶݔ))+d	ାିଶݔ,
+….+d(ݔାଶ ,ݔାଵ)+d(ݔାଵ ,ݔ) 
≤ ାିଵd(ݔଵ,ݔ)+ 

ାିଶd(ݔଵ,ݔ)+ ାିଷd(ݔଵ,ݔ)+⋯	 ାଵd(ݔଵ,ݔ)+ 

d(ݔଵ,ݔ) 
≤ ( ାିଵ + ାିଶ+ ାିଷ +⋯	 ାଵ+ )d(ݔଵ,ݔ) 

≤
శభ

൫ଵି ൯
d(ݔଵ,ݔ) + 	 d(ݔଵ,ݔ) 

 

For ߠ ≪ c,  
శభ

൫ଵି ൯
d(ݔଵ,ݔ) + 	 d(ݔଵ,ݔ)	→ ݉	ݏܽ,ߠ	 → ∞ 

From Lemma 2.5, we find  ݉ ∈ ܰ,  such that 
శభ

൫ଵି ൯
d(ݔଵ,ݔ) + 	 d(ݔଵ,ݔ)	≪ c 

For each m> ݉. Hence, 

d(ݔା ,ݔ)	≤
శభ

൫ଵି ൯
d(ݔଵ,ݔ) + 	 d(ݔଵ,ݔ)	≪ c 

 

for all m> ݉ and any p. So by lemma {ݔ} is a Cauchy 
sequence in (X,d). Since (X,d) is a complete cone metric space, 
there exist ݔ∗ ∈ ܺ, such that ݔ →  .∗ݔ
 

Let k ≫ ݔ be arbitrary. Since ߠ	 →  there exists N such that ∗ݔ
d(ݔ ≫	(∗ݔ, 	

൫ ାଵ൯
݊	݈݈ܽ	ݎ݂		 > ܰ 

d(ݔ ≫	(∗ݔ, 	

ቀ(శౘశౙ)
(భష್ష)ାଵቁ

 =୩(ଵିି)	
ିଵ

 for ݈݈ܽ	݊ > ܰ 

d(ݔ ≫	(∗ݔ, ݇ 
 

Next we claim that ݔ∗ is a fixed point of T. 
d(Tݔ,∗ݔ∗) 	≤ (ݔܶ,∗ݔܶ)݀ + ݔܶ)݀  (∗ݔ,
(ݔܶ,∗ݔܶ)݀	=                      + ,ାଵݔ)݀  (∗ݔ
d(Tݔ,∗ݔ∗) ≤a(d(ݔ,∗ݔ	)) + (∗ݔܶ,∗ݔ)݀]ܾ + 	ݔ)݀ [(	ݔܶ, +
(	ݔܶ,∗ݔ)݀]ܿ +  (∗ݔ,ାଵݔ)d+[(∗ݔܶ,	ݔ)݀
≤a(d(ݔ,∗ݔ	)) + (∗ݔܶ,∗ݔ)݀]ܾ + ,	ݔ)݀ [(ାଵݔ +
,∗ݔ)݀]ܿ (ାଵݔ +  (∗ݔ,ାଵݔ)d+[(∗ݔܶ,	ݔ)݀
≤a(d(ݔ,∗ݔ	)) + (∗ݔܶ,∗ݔ)݀]ܾ + ,	ݔ)݀ (∗ݔ + [(ାଵݔ,∗ݔ)݀ +
,∗ݔ)݀]ܿ (ାଵݔ + (∗ݔ,	ݔ)݀ + ,ାଵݔ)d+[(∗ݔܶ,∗ݔ)݀  .(∗ݔ
⇨d(Tݔ∗ −1)	(∗ݔ, ܾ − ܿ) 	≤d(ݔ∗ ܽ)(	ݔ, + ܾ + ܿ) +
,∗ݔ)݀ ାଵ)(1ݔ + ܾ + ܿ) 
⇨d(Tݔ∗ (∗ݔ, 	≤ ୢ(௫∗,௫	)(ାା)ାௗ(௫∗,௫శభ)(ଵାା)

ଵିି
 

≪ ݇. 
 

From  Lemma 3,  d(Tݔ∗ (∗ݔ, =  is a fixed ∗ݔ which implies  ,ߠ	
point of T. Finally we need to prove the uniqueness of fixed 
point. 
 

If there is another fixed point ݕ∗, then 
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d(ݕ,∗ݔ∗) =d(ܶݕܶ,∗ݔ∗) 
≤a (d(ݕ,∗ݔ∗)) + (∗ݔܶ,∗ݔ)݀]ܾ +  [(∗ݕܶ,∗ݕ)݀

(∗ݕܶ,∗ݔ)݀]ܿ+ +  [(∗ݔܶ,∗ݕ)݀
≤ d(ݕ,∗ݔ∗)(ܽ + 2ܿ) 
		≤ d(ݕ,∗ݔ∗)(1 − ܽ − 2ܿ) < 1 
⇨d(ݕ,∗ݔ∗) < 1. 
Hence from Lemma 3,  ݔ∗ =  .∗ݕ
Therefore, the proof is completed. 
 

Application to ordinary differential equations 
 

We consider here a special case of the following periodic 
boundary value problem 
 

u′(t)	= ݂൫ݐ, ݐ	݂݅																		൯(ݐ)ݑ ∈ ܫ = [0,ܶ].    (1) 
 

 u(0)=u(T). 
where T>0 and  f : I × ܴ → ܴ is a continuous function  and 
suppose that there exists 0<ߚ such that for ݕ,ݔ ∈ ݕ	ℎݐ݅ݓ	ܴ ≥  ݔ
ݔ)ܽ}ߚ− − (ݕ + ݔ)]ܾ − (ݔܶ + ݕ) − [(ݕܶ

+ ݔ)]ܿ − (ݕܶ + ݕ) − {[(ݔܶ
≤ (ݕ,ݐ)݂] + −[ݕߚ ,ݐ)݂] (ݔ + [(ݔߚ ≤ 0 

 

Then the existence of lower solution ߙ ∈  such that (ܴ,ܫ)ܥ
≥	(t)′ ߙ ∋for all t  ((ݐ)ߙ,ݐ)݂ (0)ߙܫ 	≤  (ܶ)ߙ
 

for (1)  provides the existence of the unique solution to the 
problem. 
 

Proof 
 

The problem can be written in integral equation as 
u(t)=∫ ,ݐ)ܩ ((ݏ)ݑ,ݏ)݂](ݏ +்

  ݏ݀[(ݏ)ݑߚ	
 

where   ݐ)ܩ, (ݏ = 	 ቐ
ഁ(శೞష)

(ഁషభ) 	 , 0 ≤ ݏ ≤ ݐ ≤ ܶ
ഁ(ೞష)

(ഁషభ) 	 , 0 ≤ ݐ ≤ ݏ ≤ ܶ
ቑ 

We consider the complete cone metric space X=C(I,R) with the 
distanceܺ =   ,݁ܿ݊ܽݐݏ݅݀	ℎ݁ݐ	ℎݐ݅ݓ	(ܴ,ܫ)ܥ
,ݔ)݀	 (ݕ = −(ݐ)ݔ|ݑݏ ݕ,ݔ,|(ݐ)ݕ ∈  .(ܴ,ܫ)ܥ
 

We define the following order relation in, M=C(I,R) by                                    
,ݔ ݕ ∈ ,(ܴ,ܫ)ܥ ݔ ≤ (ݐ)ݔ	݂݅	ݕ݈݊	݀݊ܽ	݂݅		ݕ ≤  for all ,	(ݐ)ݕ
ݐ ∈  .ܫ
 

We define H:C(I,R)→C(I,R) by 
[Hu](t)=∫ ,ݐ)ܩ ,ݏ)݂](ݏ ((ݏ)ݑ +்

  ݏ݀[(ݏ)ݑߚ	
If u∈ ,ܪ	݂	ݐ݊݅	݀݁ݔ݂݅	ܽ	ݏ݅	(ܴ,ܫ)ܥ ݑ	ℎ݁݊ݐ ∈  is a (R,ܫ)ଵܥ
solution of (1) for u≥  ,ݒ
 

[Hu](t)=∫ ,ݐ)ܩ ,ݏ)݂](ݏ ((ݏ)ݑ +்
  ݏ݀[(ݏ)ݑߚ	

≥ නݐ)ܩ, ,ݏ)݂](ݏ ((ݏ)ݑ +
்



 ݏ݀[(ݏ)ݒߚ	

=[Hv](t) 
Therefore H is increasing. For u≥  ݐ݁݃	݁ݓ,ݒ
d(Hu,Hv)=sup|(ݑܪ)(ݐ) −  |(ݐ)(ݒܪ)

≤ ((ݏ)ݑ,ݏ)݂}](ݏ,ݐ)ܩනݑݏ +
்



−{(ݏ)ݑߚ	 ,ݏ)݂} (ݏ)ݒ +  ݏ݀[{(ݏ)ݒߚ

≤ නݐ)ܩ, (ݏ
்

௧∈ூ

௦௨

(ݒ,ݑ)݀ܽ]ߚ + (ݑܶ,ݑ)݀)ܾ + (ݒܶ,ݒ)݀

+ (ݒܶ,ݑ)݀)ܿ +  ((ݑܶ,ݒ)݀

≤ (ݒ,ݑ)݀ܽ]ߚ	 + ܾ൫݀(ݑܶ,ݑ) + ൯(ݒܶ,ݒ)݀ + (ݒܶ,ݑ)݀)ܿ

+ [(ݑܶ,ݒ)݀ ×
݁(ఉ்ିଵ)

 (ఉ்ିଵ)݁ߚ

 and a lower solution to the problem is such that (ݐ)ߚ ≤
∋t ,(ݐ)[(ߚ)ܪ]  .ܫ
 

From theorem, finally H has a unique fixed point. 
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