

Available Online at http://www.recentscientific.com

CODEN: IJRSFP (USA)

International Journal of Recent Scientific Research Vol. 9, Issue, 1(F), pp. 23257-23258, January, 2018 International Journal of Recent Scientific Re*r*earch

DOI: 10.24327/IJRSR

Research Article

ON THE OF NILPOTENT ELEMENTS OF \mathbb{Z}_n AS A RING AND \mathbb{Z}_d AS A MODULE OVER \mathbb{Z}_n

Saugata Purkayastha* and Hemen Bharali

Department of Mathematics, Assam Don Bosco University

DOI: http://dx.doi.org/10.24327/ijrsr.2018.0901.1431

ARTICLE INFO

ABSTRACT

Article History: Received 17th October, 2017 Received in revised form 21st November, 2017 Accepted 05th December, 2017 Published online 28th January, 2018 In this paper, we investigate the possible relationship between the nilpotent elements of \mathbb{Z}_n as a ring and \mathbb{Z}_d as a module over \mathbb{Z}_n . We provide examples of the fact that a nilpotent element in \mathbb{Z}_n may not be nilpotent in the \mathbb{Z}_n -module \mathbb{Z}_d even if d = n. We give a condition under which a nilpotent element in \mathbb{Z}_n becomes a nilpotent element in the \mathbb{Z}_n -module \mathbb{Z}_d . We also obtain a partial converse of the above fact for the special case d = n and under a certain condition.

Key Words:

Ring, Module, Nilpotent Element, Congruence

Copyright © Saugata Purkayastha and Hemen Bharali, 2018, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Let *R* be a ring. A non-zero element $a \in R$ is said to be nilpotent if there is some natural number *r* satisfying $a^r = 0$ but $a^{r-1} \neq 0$. In that case, we also say that *r* is the index of nilpotency of $a \in R$. Thus by definition, $0 \in R$ is trivially nilpotent. Almost every standard text on algebra, specifically on ring theory contains the above mentioned notion. For instance, one can go through [1], [3], [4].

In the year 2013, Groenewald and Ssiverrii introduced the notion of nilpotent elements of a module in [6]. They used the *negation* of the fact that an element $a \in R$ is not nilpotent if $a^2 = 0$ implies a = 0. Thus, an element $a \in R$ is nilpotent provided $a^2 = 0$ but $a \neq 0$. In the same spirit, a non-zero element m of a left R-module M is said to be nilpotent if $a^k m = 0$ but $a \neq 0$ for some $a \in R$ and $k \in \mathbb{N}$. By convention, we always consider $0 \in M$ to be a trivial nilpotent element. Any other nilpotent element of M is called a non-trivial nilpotent element. In the dissertation of the latter, the fact that a nilpotent element of a ring may not be the nilpotent element of the corresponding module has been exhibited. It is thus quite natural to investigate the nilpotent elements of \mathbb{Z}_n as a ring and as a module over itself and of the $\mathbb{Z}_n -$ module \mathbb{Z}_d . We note that \mathbb{Z}_d is a $\mathbb{Z}_n -$ module if d|n.

Throughout this work, we shall be concerned with elementary number theoretic results specially that of theory of congruence. For a familiarity with such results, one is referred to [2] and [5].

MAIN RESULTS

Throughout the section, \mathbb{Z}_n will be considered as a ring and \mathbb{Z}_d will be considered as a \mathbb{Z}_n module.

We begin by pointing out that a nilpotent element of a ring may not be a nilpotent element of the ring when considered as a module over itself.

Example: The element $2 \in \mathbb{Z}_4$ is nilpotent when considered as a ring, but $2 \in \mathbb{Z}_4$ is not nilpotent when considered as a module over itself.

Theorem: If $a \in \mathbb{Z}_n$ be a nilpotent element then a is a nilpotent element of the \mathbb{Z}_n -module \mathbb{Z}_d provided $a \in \mathbb{Z}_d$ and $a^2 \not\equiv 0 \pmod{d}$.

Proof: Let $a \in \mathbb{Z}_n$ be a nilpotent element. Then we have, $a^k \equiv 0 \pmod{n}$ $\Rightarrow a^k \equiv 0 \pmod{as d n}$

This gives $a^{k-1} a \equiv 0 \pmod{d}$. Also, by assumption, $a^2 = a \cdot a \neq 0$. This shows that a is a nilpotent element of \mathbb{Z}_d .

Department of Mathematics, Assam Don Bosco University

Example: $2 \in \mathbb{Z}_8$ is nilpotent as a ring element, but in the \mathbb{Z}_8 -module \mathbb{Z}_4 , 2 is not nilpotent as a module element. We observe that $2.2 \equiv 0 \pmod{4}$.

Example: $2 \in \mathbb{Z}_8$ is nilpotent as a ring element and $2 \in \mathbb{Z}_8$ is nilpotent in \mathbb{Z}_8 as a module over itself although $2^2 \not\equiv 0 \pmod{8}$.

We now give a couple of examples to illustrate the fact that the nilpotent element of a module may not be a nilpotent element when considered as a ring.

Example: The element $3 \in \mathbb{Z}_{12}$ is nilpotent when \mathbb{Z}_{12} is considered as a module over itself. But $3 \in \mathbb{Z}_{12}$ is not nilpotent as a ring element.

Example: The element $3 \in \mathbb{Z}_8$ is nilpotent when \mathbb{Z}_8 is considered as a module over itself. But $3 \in \mathbb{Z}_8$ is not nilpotent when \mathbb{Z}_8 is considered as a ring.

We now provide a sufficient condition that establishes a connection between a nilpotent element of a module and a nilpotent element of the corresponding ring. The following theorem may also be viewed as a partial converse of Theorem 1.

Theorem: Let $m \in \mathbb{Z}_n$ be a nilpotent element when \mathbb{Z}_n is considered as a module over itself. The corresponding

 $a \in \mathbb{Z}_n$ that makes m nilpotent is itself nilpotent in \mathbb{Z}_n when considered as a ring provided (m, n) = 1.

Proof: Let $m \in \mathbb{Z}_n$ be nilpotent. Then, there exists $a \in \mathbb{Z}_n$ such that

 $a^k m \equiv 0 \pmod{n}$ but $am \not\equiv 0 \pmod{n}$

Also, $a^k m \equiv 0 \pmod{n}$ and (m, n) = 1 together implies that $a^k \equiv 0 \pmod{n}$. To show that $a \in \mathbb{Z}_n$ is nilpotent, all we need to show is that $a^{k-1} \not\equiv 0 \pmod{n}$. Let this be not the case. Then $a^{k-1} \equiv 0 \pmod{n}$ implies $a \cdot a^{k-2} \equiv 0 \pmod{n}$ or $a^{k-2} \equiv 0 \pmod{n}$ as $a \not\equiv 0 \pmod{n}$. Repeating the above process, we may have $a^{k-3} \equiv 0 \pmod{n}$. Continuing in this way, we arrive at $a \equiv 0 \pmod{n}$. Thus, we have $am \equiv 0 \pmod{n}$ which is a contradiction to the fact that $m \in \mathbb{Z}_n$ is nilpotent. Thus, $a^{k-1} \not\equiv 0 \pmod{n}$ and the theorem follows.

Example: $3 \in \mathbb{Z}_8$ is nilpotent as there exists $2 \in \mathbb{Z}_8$ satisfying $2^3 \cdot 3 \equiv 0 \pmod{8}$ but $2 \cdot 3 \not\equiv 0 \pmod{8}$. We observe that (3, 8) = 1. Thus, by Theorem 2, $2 \in \mathbb{Z}_8$ is nilpotent when \mathbb{Z}_8 is considered as a ring.

Example: $4 \in \mathbb{Z}_9$ is nilpotent as there exists $3 \in \mathbb{Z}_9$ satisfying $3^2 \cdot 4 \equiv 0 \pmod{9}$ but $3 \cdot 4 \not\equiv 0 \pmod{9}$. We observe that (4, 9) = 1. Thus, by Theorem 2, $3 \in \mathbb{Z}_9$ is nilpotent when \mathbb{Z}_9 is considered as a ring.

Theorem 2 gives a sufficient condition for an element of the ring \mathbb{Z}_n to be nilpotent in connection with the nilpotent element of the corresponding module. However, the condition is not necessary at all.

Example: $2 \in \mathbb{Z}_8$ is nilpotent as there exists $2 \in \mathbb{Z}_8$ satisfying $2^2 \cdot 2 \equiv 0 \pmod{8}$ but $2 \cdot 2 \not\equiv 0 \pmod{8}$. We observe that $(2, 8) \neq 1$ yet, $2 \in \mathbb{Z}_8$ is nilpotent when \mathbb{Z}_8 is considered as a ring.

References

- 1. Bland P. E. (2011): *Rings and Their Modules*, De-Gruyter.
- 2. Chowdhury K. C. (2004): *A First Course in the Theory* of Numbers, Asian Books Pvt. Ltd.
- Dummit D. S., Foote R. M. (2004): Abstract Algebra (3rd ed.), John Willey & Sons.
- 4. Gray M., (1970): A Radical Approach to Algebra, Addison-Wisely, MA
- 5. Malik S. B. (2007): *Basic Number Theory (2nd ed.)*, Vikas Publishing House Pvt. Ltd.
- Ssevviiri D., Groenewald N. (2014): Generalization of Nilpotency of Ring Elements to Module Elements, 42:2, 571-577.

How to cite this article:

Saugata Purkayastha and Hemen Bharali.2018, On the of Nilpotent Elements of Z_n As A Ring And Z_d AS A Module Over Z_n. *Int J Recent Sci Res.* 9(1), pp. 23257-23258. DOI: http://dx.doi.org/10.24327/ijrsr.2018.0901.1431
