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Data mining using machine learning techniques grabbed the interest of researchers in recent years. 
Software defect prediction is one of the thrust research area and data mining techniques are applied 
to identify the defects that are present in the datasets. In this research work an enhanced relevance 
vector machine (ERVM) is used for software defect prediction. From the extensive literature study it 
is observed that relevance vector machine classifier is comparably delivering better performance 
than that of support vector machine. This implication is taken for the research work. Datasets are 
collected from Promise software engineering repository [25] that has a collection of publicly 
available datasets and tools to serve researchers in building predictive software models (PSMs) and 
software engineering community at large. Two state of the art datasets namely PC1 and CM1 are 
taken for estimating the efficiency of the RVM and ERVM. MATLAB is used for implementing 
both RVM and ERVM. Defect prediction accuracy, sensitivity, specificity and time taken for 
execution are the performance metrics chosen and the results encompasses that ERVM performs 
better. 
 
 
  

  

  
 
 

 

 
 

 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

 
 

 
 

 
 
 
 
  

 
 
 

INTRODUCTION 
 

Recently people around the world are evidently and impalpably 
getting benefitted by software industry. Reliance of people on 
software is propounding too many which results in necessity of 
quality software. Commonly, the quality measure of the 
software is perceived by uncovering the defects in it. One of 
the metric to forecast / predict the software quality is software 
defect density that tends to analyze the same. The defect 
density of the software is computed by splitting the dimension 
of the software with total number of defects in it. In several 
literatures it is stated that a software defect is a product 
anomaly. The software reliability of software is described as 
the probability that software will not be the reason for the crash 
of a system in for a particular amount of time beneath the 
precise conditions. Software defect prediction is the primary 
component during the development of reliable software. In 
each step of software development life cycle for attaining target 
defect guesstimate, it is required to predict the defect density 
indicator. For the past decades several models have been 
proposed for software reliability estimation and prediction. It is 
noted that conventional software reliability prediction models 

are not more triumphant in predicting the reliability of the 
software. Also such proposed models are not user friendly and 
many of such models are probabilistic based approaches. To 
add up with the above said things, failure data are also not 
available in the early phases of the software development life 
cycle. Whilst some of them are presented in the form of expert 
knowledge through certain software metrics. This paper is 
organized as follows: this section introduces about software 
defect prediction.  
 

Section 2 briefly presents the related works. Section 3 portrays 
the background of support vector machine. Section 4 proposes 
enhanced relevance vector machine classifier for software 
defect prediction. Section 5 projects the simulation results. 
Section 6 emphasizes the concluding remarks of the paper. 
 

Related Works 
 

Building defect-related feature space is one among the primary 
works in software defect classification. In order to classify the 
software defect-related attributes, several approaches were 
presented that depends on diverse information [1], namely code 
metrics [2], process metrics [3], previous defects [4] and more 
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[5,6]. Many literatures mentioned that LOC data performs 
better in software defect prediction [7, 8]. D’Ambros et al. [9] 
mentioned in their article that change coupling correlates with 
defects. In [10], the authors Nagappan and Ball [10] applied 
code churn and also dependency metrics in order to predict 
defect-prone modules. Khoshgoftaar and Seliya [11] had 
chosen 14 process metrics. Weyuker et al. [12] built a defect-
count prediction  model by taking into account of certain 
number of process measures along with structural measures. 
Feature selection on group of metrics also implemented by 
various researchers for improving the performance of the 
classifier and can be found in [13, 14, 15, 16]. It is to be noted 
that there exists several statistical models and machine learning 
algorithms have been applied. In the literature that can be 
found in [17], Olague et al. applied logistic regression to 
predict defects in software. Mizuno and Kikuno [18] stated in 
the literature a type of Markov model named Orthogonal 
Sparse Bigrams suited best for software defect prediction. In 
the literature [19] Bibi et al. implemented  Regression through 
Classification mechansim in software defect prediction. 
Khoshgoftaar et al. [20] constructed a classification tree that is 
based on TREEDISC algorithm for predicting module that was 
likely to have defects which is based on software product, 
process, and execution metrics. Early software defects 
prediction using fuzzy logic is proposed in [21]. Software 
defect prediction using Bayesian networks can be found in the 
literature [22]. Combining the requirement information for 
software defect estimation in design time has been 
implemented in the paper [23]. Incremental updating 
approximations in probabilistic rough sets under the variation 
of attributes are discussed in [24]. 
 

Enhanced Relevance Vector Machine for Software Defect 
Prediction 
 

As one of the state-of-the-art tools for machine learning, 
support vector machines (SVMs) produce a model function 
dependent only on a subset of kernel basis functions associated 
with some of the training samples, i.e., support vectors. 
Although the SVM produces a sparse model, in some cases the 
number of support vectors is still quite large. Relevance vector 
machine (RVM) is a new supervised learning method proposed 
in 2001 by Tipping[3], which can be used to solve regression 
and classification problems, resulting from their sparsity and 
mathematical tractability. Compared with SVM, RVM can 
have probabilistic output and more sparse, and kernel function 
to choose more freely and so on. The Bayesian formulation of 
the RVM provides a better sparsity, as well as an automatic 
estimation of hyper parameters and probabilistic outputs, while 
predicting accuracy is not traded off.  
 

The RVM can be categorized into a pruning method of the 
RBF networks, using kernel function as the candidate basis 

functions, i.e.,    ii xxkx , , which defines one basis 

function for each example in the training set   1 i
k

ixX . 

The majority of the weights are trained to be zero, while only 
those “relevant vectors” corresponding non-zero weights are 
selected to construct the model in Equation (1). To achieve 
such a sparsity but avoid overfitting, the RVM imposes a 
spherical Gaussian prior on the weights, and a Gamma 

hyperprior distribution for the variance. Given an input x, the 
output of the RVM is that of the form 

   



k

i
ii wxwwxy

1
0: 

                                          

… (1) 

 

The performance of the original RVM in terms of sparsity is 
determined by the smoothness of the prior. However the lack of 
an explicit prior structure over the weight variance means that 
the sparsity actually depends on the choice of kernel functions 
and/or kernel parameters. This may lead to severe overfitting or 
underfitting. To control sparsity in Bayesian regression by 
incorporating a flexible noise dependent smoothness prior to 
replace the Gamma prior in the classic RVM, the symmlets 
with smoothness prior make the RVM regression suitable for a 
large variety of signals, requiring no additional kernel 
parameters to be determined by cross-validation. The objective 
of the E-RVM learning is to obtain the best set of the relevance 
vectors in terms of goodness of fit to data, as well as the 
sparsity, i.e. the least number of relevance vectors. 
 

Considering the three random processes, x, t, j, in the RVM 
training phase, the joint distribution among them can be 
calculated by either of these two formulae:  
 

       xtjpxtpxpjtxp ,||,, 
                               

… (2) 
 

       jxtpjxpjpjtxp ,||,,                                … (3) 
 

In the ideal scenarios, Equation (2) and Equation (3) would 
return the same result, however, they are not so unless j 
corresponds to the optimal set of the relevance vectors. The 
breakdown of the right hand sides of Equation (2) indicates that 
it is a forward pathway to obtain the solution from the known 
training data and targets, whereas Equation (3) follows the 
backward pathway to test the performance of current solution. 
 

When we use  jtxptrain ,,  and  jtxptest ,,  to denote the 

two joint probabilities of Equations (2) and (3) respectively, the 
best match between them, corresponding to the popular mean 
square error (MSE) and maximum likelihood(ML), can be 
achieved by the minimization of the classic Kullback-Leibler 
divergence: 
 

   
 
  jtx

test

train
trainjtxtesttrain ddd

jtxp

jtxp
jtxpppKL

,,

,,
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… (4) 

 

Which can push  jtxptrain ,, to match  jtxptest ,, , such 

that the solution will fit the training data most. However, the 
problem with the KL-based learning is the low generalization 
ability due to the lack of control on least complexity. In 

Equation (4), the distribution of trainp is the fixed prior 

reference distribution, and the distribution of testp is optimized 

to match trainp  under the KL divergence minimization. The 

following negative cross entropy will be maximized to 
construct the RVM: 
 

      jtx
jtxtesttraintesttrain dddjtxpjtxppp

,,
,,log,,||H

        
… (5)  
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Comparing Equations (4) and (5), we can see that 

     traintesttrainestttrain pHppKLppH |||| 
indicates that the maximization of Train-Testentropy consists 
of two parts, namely, the minimization of KL  divergence 
between Test and Training, and the maximization of entropy in 
Training space. The former leads to the goodness of fit to data, 
whereas the latter leads to the least complexity under some 

constraints. As the training data are in the paired form 

particularly the model 

     xtjptxpjtxptrain ,|,,, 
with the following structures 
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 xtjp ,|  is free                                                             
 

In the backward testing phrase, the “true” probability 

distribution is     pxpjtxptest ,, 
corresponding to the backward testing pathway, where the 
ERVM constructed by the candidate relevance vectors j is 
tested whether it outputs the target t given an 
denoted as  
 

  jpjp                                                                        
 

which is subject to 0pj
 
and  jp

software defect and 0 denotes software non-defect. 
 

RESULTS 
 

PC-1 dataset contains 1109 records. Out of that 1109 records 
1032 records doesn't contain software defects. Remaining 77 
records contain software defects. CM-1 dataset contains 
records. Out of those 498 records 450 records doesn't contain 
software defects. Remaining 48 records contain software 
defects. It is shown in Table 1. Simulation results for PC1 
dataset is portrayed in Table 2. Simulation results for CM1 
dataset is depicted in Table 3. In Figure 1 the prediction 
accuracy   is portrayed. From the simulation results it is 
observed that ERVM classifier performs better in terms of 
predicting software defects. 
 

Table 1 Dataset Information
 

Dataset Total Records Defects Non
PC-1 1109 77 

CM-1 498 48 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 

Algorithm 
True Positive 

(Correctly Classified 
as Defects) 

False Positive
(Incorrectly Classified 

as Defects)
RVM 50 27 

ERVM 73 4 

Table 3 

Algorithm 

True Positive 
(Correctly 

Classified as 
Defects) 

False Positive
(Incorrectly 
Classified as 

Defects)
RVM 43 5 

ERVM 44 3 
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1.  1 denotes the 

defect.  

1 dataset contains 1109 records. Out of that 1109 records 
1032 records doesn't contain software defects. Remaining 77 

1 dataset contains 498 
records. Out of those 498 records 450 records doesn't contain 
software defects. Remaining 48 records contain software 
defects. It is shown in Table 1. Simulation results for PC1 
dataset is portrayed in Table 2. Simulation results for CM1 

icted in Table 3. In Figure 1 the prediction 
accuracy   is portrayed. From the simulation results it is 
observed that ERVM classifier performs better in terms of 

Dataset Information 

Non-Defects 
1032 

450 

Table 4 Time Taken for Execution of RVM and ERVM for the 
Datasets

 RVM
PC1 Dataset 59.06 seconds
CM1 Dataset 27.34 seconds

Fig 1 Performance Analysis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2 Simulation Results for PC1 Dataset 
 

False Positive 
(Incorrectly Classified 

as Defects) 

True Negative 
(Correctly Classified 

as Non-Defects) 

False Negative 
(Incorrectly Classified as 

Non-Defects) 
Sensitivity

1000 32 60.97
1001 31 70.19

 

Table 3 Simulation Results for CM1 Dataset 
 

False Positive 
(Incorrectly 
Classified as 

Defects) 

True Negative 
(Correctly 

Classified as 
Non-Defects) 

False Negative 
(Incorrectly 
Classified as 
Non-Defects) 

Sensitivity 

 423 27 61.42 
 431 20 68.75 

 

Fig 2 Performance Analysis 
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Time Taken for Execution of RVM and ERVM for the 
Datasets 

RVM ERVM 
59.06 seconds 41.33 seconds 
27.34 seconds 19.04 seconds 

 
 

Performance Analysis - Sensitivity 

Sensitivity Specificity Accuracy 

60.97 97.37 94.67 
70.19 99.60 96.84 

Specificity Accuracy 

98.83 93.57 
99.30 95.38 

 
Performance Analysis – Specificity 
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Fig 3 Performance Analysis - Accuracy
 

Fig 4 Performance Analysis - Time Taken for Execution
 

CONCLUSIONS 
 

This research work aims to propose an enhanced relevance 
vector machine classifier for software defect prediction. Two 
datasets are obtained from Promise software engineering 
repository. Kullback-Leibler divergence factor is included in 
ERVM in order to reduce the time complexity of
Implementations are carried out using MATLAB. The obtained 
results proved that the proposed ERVM consumes less time 
than that of RVM and also accuracy has been improved.
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