

*Corresponding author: Vanithamani P
Department of Computer Science, Dr.N.G.P. College of Arts and Science, Bharathiar University, Coimbatore, Tamil Nadu, India

ISSN: 0976-3031

Research Article

SOFTWARE DEFECT PREDICTION USING ENHANCED RELEVANCE
VECTOR MACHINE

Vanithamani P* and Jaiganesh V

Department of Computer Science, Dr.N.G.P. College of Arts and Science,
Bharathiar University, Coimbatore, Tamil Nadu, India

 DOI: http://dx.doi.org/10.24327/ijrsr.2018.0902.1550

ARTICLE INFO ABSTRACT

Data mining using machine learning techniques grabbed the interest of researchers in recent years.
Software defect prediction is one of the thrust research area and data mining techniques are applied
to identify the defects that are present in the datasets. In this research work an enhanced relevance
vector machine (ERVM) is used for software defect prediction. From the extensive literature study it
is observed that relevance vector machine classifier is comparably delivering better performance
than that of support vector machine. This implication is taken for the research work. Datasets are
collected from Promise software engineering repository [25] that has a collection of publicly
available datasets and tools to serve researchers in building predictive software models (PSMs) and
software engineering community at large. Two state of the art datasets namely PC1 and CM1 are
taken for estimating the efficiency of the RVM and ERVM. MATLAB is used for implementing
both RVM and ERVM. Defect prediction accuracy, sensitivity, specificity and time taken for
execution are the performance metrics chosen and the results encompasses that ERVM performs
better.

INTRODUCTION

Recently people around the world are evidently and impalpably
getting benefitted by software industry. Reliance of people on
software is propounding too many which results in necessity of
quality software. Commonly, the quality measure of the
software is perceived by uncovering the defects in it. One of
the metric to forecast / predict the software quality is software
defect density that tends to analyze the same. The defect
density of the software is computed by splitting the dimension
of the software with total number of defects in it. In several
literatures it is stated that a software defect is a product
anomaly. The software reliability of software is described as
the probability that software will not be the reason for the crash
of a system in for a particular amount of time beneath the
precise conditions. Software defect prediction is the primary
component during the development of reliable software. In
each step of software development life cycle for attaining target
defect guesstimate, it is required to predict the defect density
indicator. For the past decades several models have been
proposed for software reliability estimation and prediction. It is
noted that conventional software reliability prediction models

are not more triumphant in predicting the reliability of the
software. Also such proposed models are not user friendly and
many of such models are probabilistic based approaches. To
add up with the above said things, failure data are also not
available in the early phases of the software development life
cycle. Whilst some of them are presented in the form of expert
knowledge through certain software metrics. This paper is
organized as follows: this section introduces about software
defect prediction.

Section 2 briefly presents the related works. Section 3 portrays
the background of support vector machine. Section 4 proposes
enhanced relevance vector machine classifier for software
defect prediction. Section 5 projects the simulation results.
Section 6 emphasizes the concluding remarks of the paper.

Related Works

Building defect-related feature space is one among the primary
works in software defect classification. In order to classify the
software defect-related attributes, several approaches were
presented that depends on diverse information [1], namely code
metrics [2], process metrics [3], previous defects [4] and more

Available Online at http://www.recentscientific.com
 International Journal of

Recent Scientific

 Research International Journal of Recent Scientific Research
Vol. 9, Issue, 2(B), pp. 23860-23864, February, 2018

Copyright © Vanithamani P and Jaiganesh V, 2018, this is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the
original work is properly cited.

DOI: 10.24327/IJRSR

CODEN: IJRSFP (USA)

Article History:

Received 20th November, 2017
Received in revised form 29th
December, 2017
Accepted 30th January, 2018
Published online 28th February, 2018

Key Words:

Data mining, machine learning, support
vector machine, relevance vector machine,
software defect prediction, Promise
Software engineering repository.

Vanithamani P and Jaiganesh V., Software Defect Prediction Using Enhanced Relevance Vector Machine

23861 | P a g e

[5,6]. Many literatures mentioned that LOC data performs
better in software defect prediction [7, 8]. D’Ambros et al. [9]
mentioned in their article that change coupling correlates with
defects. In [10], the authors Nagappan and Ball [10] applied
code churn and also dependency metrics in order to predict
defect-prone modules. Khoshgoftaar and Seliya [11] had
chosen 14 process metrics. Weyuker et al. [12] built a defect-
count prediction model by taking into account of certain
number of process measures along with structural measures.
Feature selection on group of metrics also implemented by
various researchers for improving the performance of the
classifier and can be found in [13, 14, 15, 16]. It is to be noted
that there exists several statistical models and machine learning
algorithms have been applied. In the literature that can be
found in [17], Olague et al. applied logistic regression to
predict defects in software. Mizuno and Kikuno [18] stated in
the literature a type of Markov model named Orthogonal
Sparse Bigrams suited best for software defect prediction. In
the literature [19] Bibi et al. implemented Regression through
Classification mechansim in software defect prediction.
Khoshgoftaar et al. [20] constructed a classification tree that is
based on TREEDISC algorithm for predicting module that was
likely to have defects which is based on software product,
process, and execution metrics. Early software defects
prediction using fuzzy logic is proposed in [21]. Software
defect prediction using Bayesian networks can be found in the
literature [22]. Combining the requirement information for
software defect estimation in design time has been
implemented in the paper [23]. Incremental updating
approximations in probabilistic rough sets under the variation
of attributes are discussed in [24].

Enhanced Relevance Vector Machine for Software Defect
Prediction

As one of the state-of-the-art tools for machine learning,
support vector machines (SVMs) produce a model function
dependent only on a subset of kernel basis functions associated
with some of the training samples, i.e., support vectors.
Although the SVM produces a sparse model, in some cases the
number of support vectors is still quite large. Relevance vector
machine (RVM) is a new supervised learning method proposed
in 2001 by Tipping[3], which can be used to solve regression
and classification problems, resulting from their sparsity and
mathematical tractability. Compared with SVM, RVM can
have probabilistic output and more sparse, and kernel function
to choose more freely and so on. The Bayesian formulation of
the RVM provides a better sparsity, as well as an automatic
estimation of hyper parameters and probabilistic outputs, while
predicting accuracy is not traded off.

The RVM can be categorized into a pruning method of the
RBF networks, using kernel function as the candidate basis

functions, i.e.,    ii xxkx , , which defines one basis

function for each example in the training set   1 i
k

ixX .

The majority of the weights are trained to be zero, while only
those “relevant vectors” corresponding non-zero weights are
selected to construct the model in Equation (1). To achieve
such a sparsity but avoid overfitting, the RVM imposes a
spherical Gaussian prior on the weights, and a Gamma

hyperprior distribution for the variance. Given an input x, the
output of the RVM is that of the form

   



k

i
ii wxwwxy

1
0: 

… (1)

The performance of the original RVM in terms of sparsity is
determined by the smoothness of the prior. However the lack of
an explicit prior structure over the weight variance means that
the sparsity actually depends on the choice of kernel functions
and/or kernel parameters. This may lead to severe overfitting or
underfitting. To control sparsity in Bayesian regression by
incorporating a flexible noise dependent smoothness prior to
replace the Gamma prior in the classic RVM, the symmlets
with smoothness prior make the RVM regression suitable for a
large variety of signals, requiring no additional kernel
parameters to be determined by cross-validation. The objective
of the E-RVM learning is to obtain the best set of the relevance
vectors in terms of goodness of fit to data, as well as the
sparsity, i.e. the least number of relevance vectors.

Considering the three random processes, x, t, j, in the RVM
training phase, the joint distribution among them can be
calculated by either of these two formulae:

       xtjpxtpxpjtxp ,||,, 

… (2)

       jxtpjxpjpjtxp ,||,,  … (3)

In the ideal scenarios, Equation (2) and Equation (3) would
return the same result, however, they are not so unless j
corresponds to the optimal set of the relevance vectors. The
breakdown of the right hand sides of Equation (2) indicates that
it is a forward pathway to obtain the solution from the known
training data and targets, whereas Equation (3) follows the
backward pathway to test the performance of current solution.

When we use  jtxptrain ,, and  jtxptest ,, to denote the

two joint probabilities of Equations (2) and (3) respectively, the
best match between them, corresponding to the popular mean
square error (MSE) and maximum likelihood(ML), can be
achieved by the minimization of the classic Kullback-Leibler
divergence:

   
 
  jtx

test

train
trainjtxtesttrain ddd

jtxp

jtxp
jtxpppKL

,,

,,
log,,| ,,

… (4)

Which can push  jtxptrain ,, to match  jtxptest ,, , such

that the solution will fit the training data most. However, the
problem with the KL-based learning is the low generalization
ability due to the lack of control on least complexity. In

Equation (4), the distribution of trainp is the fixed prior

reference distribution, and the distribution of testp is optimized

to match trainp under the KL divergence minimization. The

following negative cross entropy will be maximized to
construct the RVM:

      jtx
jtxtesttraintesttrain dddjtxpjtxppp

,,
,,log,,||H

… (5)

International Journal of Recent Scientific Research

Comparing Equations (4) and (5), we can see that

     traintesttrainestttrain pHppKLppH |||| 
indicates that the maximization of Train-Testentropy consists
of two parts, namely, the minimization of KL divergence
between Test and Training, and the maximization of entropy in
Training space. The former leads to the goodness of fit to data,
whereas the latter leads to the least complexity under some

constraints. As the training data are in the paired form

particularly the model

     xtjptxpjtxptrain ,|,,, 
with the following structures

     n

N

n n ttxx
N

txp   


1

1
,

 xtjp ,| is free

In the backward testing phrase, the “true” probability

distribution is    pxpjtxptest ,, 
corresponding to the backward testing pathway, where the
ERVM constructed by the candidate relevance vectors j is
tested whether it outputs the target t given an
denoted as

  jpjp 

which is subject to 0pj

and  jp

software defect and 0 denotes software non-defect.

RESULTS

PC-1 dataset contains 1109 records. Out of that 1109 records
1032 records doesn't contain software defects. Remaining 77
records contain software defects. CM-1 dataset contains
records. Out of those 498 records 450 records doesn't contain
software defects. Remaining 48 records contain software
defects. It is shown in Table 1. Simulation results for PC1
dataset is portrayed in Table 2. Simulation results for CM1
dataset is depicted in Table 3. In Figure 1 the prediction
accuracy is portrayed. From the simulation results it is
observed that ERVM classifier performs better in terms of
predicting software defects.

Table 1 Dataset Information

Dataset Total Records Defects Non
PC-1 1109 77

CM-1 498 48

Table 2

Algorithm
True Positive

(Correctly Classified
as Defects)

False Positive
(Incorrectly Classified

as Defects)
RVM 50 27

ERVM 73 4

Table 3

Algorithm

True Positive
(Correctly

Classified as
Defects)

False Positive
(Incorrectly
Classified as

Defects)
RVM 43 5

ERVM 44 3

ecent Scientific Research Vol. 9, Issue, 2(B), pp. 23860-23864, February, 2018

Comparing Equations (4) and (5), we can see that

traintrain p||

which

Testentropy consists
of two parts, namely, the minimization of KL divergence

ing, and the maximization of entropy in
Training space. The former leads to the goodness of fit to data,
whereas the latter leads to the least complexity under some

constraints. As the training data are in the paired form  ii tx , ,

ly the model

 is considered

 … (6)

 … (7)

In the backward testing phrase, the “true” probability

   jxtpjxp ,||
corresponding to the backward testing pathway, where the
ERVM constructed by the candidate relevance vectors j is
tested whether it outputs the target t given an input x. It is

 … (8)

1. 1 denotes the

defect.

1 dataset contains 1109 records. Out of that 1109 records
1032 records doesn't contain software defects. Remaining 77

1 dataset contains 498
records. Out of those 498 records 450 records doesn't contain
software defects. Remaining 48 records contain software
defects. It is shown in Table 1. Simulation results for PC1
dataset is portrayed in Table 2. Simulation results for CM1

icted in Table 3. In Figure 1 the prediction
accuracy is portrayed. From the simulation results it is
observed that ERVM classifier performs better in terms of

Dataset Information

Non-Defects
1032

450

Table 4 Time Taken for Execution of RVM and ERVM for the
Datasets

 RVM
PC1 Dataset 59.06 seconds
CM1 Dataset 27.34 seconds

Fig 1 Performance Analysis

Table 2 Simulation Results for PC1 Dataset

False Positive
(Incorrectly Classified

as Defects)

True Negative
(Correctly Classified

as Non-Defects)

False Negative
(Incorrectly Classified as

Non-Defects)
Sensitivity

1000 32 60.97
1001 31 70.19

Table 3 Simulation Results for CM1 Dataset

False Positive
(Incorrectly
Classified as

Defects)

True Negative
(Correctly

Classified as
Non-Defects)

False Negative
(Incorrectly
Classified as
Non-Defects)

Sensitivity

 423 27 61.42
 431 20 68.75

Fig 2 Performance Analysis

23864, February, 2018

23862 | P a g e

Time Taken for Execution of RVM and ERVM for the
Datasets

RVM ERVM
59.06 seconds 41.33 seconds
27.34 seconds 19.04 seconds

Performance Analysis - Sensitivity

Sensitivity Specificity Accuracy

60.97 97.37 94.67
70.19 99.60 96.84

Specificity Accuracy

98.83 93.57
99.30 95.38

Performance Analysis – Specificity

Vanithamani P and Jaiganesh V

Fig 3 Performance Analysis - Accuracy

Fig 4 Performance Analysis - Time Taken for Execution

CONCLUSIONS

This research work aims to propose an enhanced relevance
vector machine classifier for software defect prediction. Two
datasets are obtained from Promise software engineering
repository. Kullback-Leibler divergence factor is included in
ERVM in order to reduce the time complexity of
Implementations are carried out using MATLAB. The obtained
results proved that the proposed ERVM consumes less time
than that of RVM and also accuracy has been improved.

References

1. M. D’Ambros, M. Lanza, R. Robbes, Evaluating defect
prediction approaches: a benchmark and an extensive
comparison, Empir. Softw. Eng. 17 (4) (2012) 531

Vanithamani P and Jaiganesh V., Software Defect Prediction Using Enhanced Relevance Vector Machine

Accuracy

Time Taken for Execution

propose an enhanced relevance
vector machine classifier for software defect prediction. Two
datasets are obtained from Promise software engineering

Leibler divergence factor is included in
ERVM in order to reduce the time complexity of the classifier.
Implementations are carried out using MATLAB. The obtained
results proved that the proposed ERVM consumes less time
than that of RVM and also accuracy has been improved.

M. D’Ambros, M. Lanza, R. Robbes, Evaluating defect
iction approaches: a benchmark and an extensive

comparison, Empir. Softw. Eng. 17 (4) (2012) 531-577.

2. N. Nagappan, T. Ball, A. Zeller, Mining metrics to
predict component failures, in: Proceedings of the 2006
International Conference on Software Engineerin
2006, pp. 452-461.

3. A.E. Hassan, Predicting faults using the complexity of
code changes, in: Proceedings of the 2009 International
Conference on Software Engineering, 2009, pp. 78

4. S. Kim, T. Zimmermann, E. Whitehead Jr, A. Zeller,
Predicting faults from cached history, in: Proceedings of
the 2007 International Conference on Software
Engineering, 2007, pp. 489

5. E. Arisholm, L.C. Briand, M.J. Fuglerud, Data mining
techniques for building faultproneness models in
telecom java software, in: Proceedin
International Symposium on Software Reliability
Engineering, 2007, pp. 215

6. T.J. Ostrand, E.J. Weyuker, How to measure success of
fault prediction models, in: Proceedings of the Fourth
InternationalWorkshop on Software Quality Assur
in Conjunction with the 6th ESEC/FSE Joint Meeting,
2007, pp. 25-30.

7. H.Y. Zhang, An investigation of the relationships
between lines of code and defects, in: Proceedings of
2009 IEEE International Conference on Software
Maintainance, 2009, pp. 274

8. Y.M. Zhou, B.W. Xu, H. Leung, On the ability of
complexity metrics to predict faultprone classes in
object-oriented systems,
660-674.

9. M. D’Ambros, M. Lanza, R. Robbes, On the relationship
between change coupling and softw
Proceedings of the 16thWorking Conference on Reverse
Engineering, 2009, pp. 135

10. N. Nagappan, T. Ball, Using software dependencies and
churn metrics to predict field failures: An empirical case
study, in: Proceedings of First Internati
on Empirical Software Engineering and Measurement,
2007, pp. 364-373.

11. T.M. Khoshgoftaar, N. Seliya, Analogy
classification rules for software quality estimation,
Empir. Softw. Eng. 8 (4) (2003) 325

12. E.J. Weyuker, T.J. Ost
information as a factor for fault prediction, in:
Proceedings of the 3rd International Workshop on
Predictor Models in Software Engineering, 2007, pp. 1
7.

13. C. Bird, N. Nagappan, H. Gall, B. Murphy, P. Devanbu,
Putting it all together: using socio
predict failures, in: Proceedings of the 20th International
Symposium on Software Reliability Engineering, 2009,
pp. 109-119.

14. T.M. Khoshgoftaar, K. Gao, N. Seliya, Attribute
selection and imbalanced data: probl
defect prediction, in: Proceedings of the 22nd IEEE
International Conference on Tools with Artificial
Intelligence, 1, 2010, pp. 137

15. M.X. Liu, L.S.Miao, D.Q. Zhang, Two
sensitive learning for software defect prediction, IEEE
T. Reliab. 63 (2) (2014) 676

Software Defect Prediction Using Enhanced Relevance Vector Machine

23863 | P a g e

N. Nagappan, T. Ball, A. Zeller, Mining metrics to
predict component failures, in: Proceedings of the 2006
International Conference on Software Engineering,

A.E. Hassan, Predicting faults using the complexity of
code changes, in: Proceedings of the 2009 International
Conference on Software Engineering, 2009, pp. 78-88.
S. Kim, T. Zimmermann, E. Whitehead Jr, A. Zeller,

from cached history, in: Proceedings of
the 2007 International Conference on Software
Engineering, 2007, pp. 489-498.
E. Arisholm, L.C. Briand, M.J. Fuglerud, Data mining
techniques for building faultproneness models in
telecom java software, in: Proceedings of the 18th IEEE
International Symposium on Software Reliability
Engineering, 2007, pp. 215-224.
T.J. Ostrand, E.J. Weyuker, How to measure success of
fault prediction models, in: Proceedings of the Fourth
InternationalWorkshop on Software Quality Assurance:
in Conjunction with the 6th ESEC/FSE Joint Meeting,

H.Y. Zhang, An investigation of the relationships
between lines of code and defects, in: Proceedings of
2009 IEEE International Conference on Software
Maintainance, 2009, pp. 274-283.
Y.M. Zhou, B.W. Xu, H. Leung, On the ability of
complexity metrics to predict faultprone classes in

oriented systems, J. Syst. Software 83 (4) (2010)

M. D’Ambros, M. Lanza, R. Robbes, On the relationship
between change coupling and software defects, in:
Proceedings of the 16thWorking Conference on Reverse
Engineering, 2009, pp. 135-144.
N. Nagappan, T. Ball, Using software dependencies and
churn metrics to predict field failures: An empirical case
study, in: Proceedings of First International Symposium
on Empirical Software Engineering and Measurement,

T.M. Khoshgoftaar, N. Seliya, Analogy-based practical
classification rules for software quality estimation,
Empir. Softw. Eng. 8 (4) (2003) 325-350.
E.J. Weyuker, T.J. Ostrand, R.M. Bell, Using developer
information as a factor for fault prediction, in:
Proceedings of the 3rd International Workshop on
Predictor Models in Software Engineering, 2007, pp. 1-

C. Bird, N. Nagappan, H. Gall, B. Murphy, P. Devanbu,
l together: using socio-technical networks to

predict failures, in: Proceedings of the 20th International
Symposium on Software Reliability Engineering, 2009,

T.M. Khoshgoftaar, K. Gao, N. Seliya, Attribute
selection and imbalanced data: problems in software
defect prediction, in: Proceedings of the 22nd IEEE
International Conference on Tools with Artificial
Intelligence, 1, 2010, pp. 137-144.
M.X. Liu, L.S.Miao, D.Q. Zhang, Two-stage cost-
sensitive learning for software defect prediction, IEEE
T. Reliab. 63 (2) (2014) 676-686.

International Journal of Recent Scientific Research Vol. 9, Issue, 2(B), pp. 23860-23864, February, 2018

23864 | P a g e

16. S. Shivaji, E.J. Whitehead Jr, R. Akella, S. Kim,
Reducing features to improve code change-based bug
prediction, IEEE T. Softw. Eng. 39 (4) (2013) 552-569.

17. H.M. Olague, L.H. Etzkorn, S. Gholston, S.
Quattlebaum, Empirical validation of three software
metrics suites to predict fault-roneness of object-oriented
classes developed using highly iterative or agile software
development processes, IEEE T. Softw. Eng. 33 (6)
(2007) 402-419.

18. O. Mizuno, T. Kikuno, Training on errors experiment to
detect fault-prone software modules by spam filter, in:
Proceedings of the 6th joint meeting of the European
software engineering conference and the ACM
SIGSOFT symposium on The foundations of software
engineering, 2007, pp. 405-414.

19. S. Bibi, G. Tsoumakas, I. Stamelos, I.P. Vlahavas,
Software defect prediction using regression via
classification, in: Proceedings of IEEE International
Conference on Computer Systems and Applications,
2006, pp. 330-336.

20. T.M. Khoshgoftaar, X.J. Yuan, E.B. Allen, W.D. Jones,
J.P. Hudepohl, Uncertain classification of fault-prone
software modules, Empir. Softw. Eng. 7 (4) (2002) 297-
318.

21. D.K. Yadav, S.K. Charurvedi, R.B. Mishra, Early
software defects prediction using fuzzy logic, Int. J.
Performability Eng. 8 (4) (2012) 399-408.

22. Okutan, O.T. Yildiz, Software defect prediction using
Bayesian networks, Empirical Softw. Eng. 19 (1) (2014)
154-181.

23. Y. Maa, S. Zhua, K. Qin, G. Luo, Combining the
requirement information for software defect estimation
in design time, Inform. Process. Lett. 114 (9) (2014)
469-474.

24. D. Liu, T.R. Li, J.B. Zhang, Incremental updating
approximations in probabilistic rough sets under the
variation of attributes, Knowl-Based Syst. 73 (2015) 81-
96.

25. PC1 and CM1 dataset - http://promise.site.uottawa.ca/
SERepository

How to cite this article:

Vanithamani P and Jaiganesh V.2018, Software Defect Prediction Using Enhanced Relevance Vector Machine. Int J Recent Sci
Res. 9(2), pp. 23860-23864. DOI: http://dx.doi.org/10.24327/ijrsr.2018.0902.1550

