

Available Online at http://www.recentscientific.com

CODEN: IJRSFP (USA)

International Journal of Recent Scientific Research Vol. 9, Issue, 2(J), pp. 24452-24455, February, 2018 International Journal of **Recent Scientific Research**

DOI: 10.24327/IJRSR

Research Article

GENERAL MULTIPLICATIVE REVAN INDICES OF POLYCYCLIC AROMATIC HYDROCARBONS AND BENZENOID SYSTEMS

Kulli V.R*

Department of Mathematics, Gulbarga University, Gulbarga, 585106, India

DOI: http://dx.doi.org/10.24327/ijrsr.2018.0902.1664

ARTICLE INFO

ABSTRACT

Article History: Received 16th November, 2017 Received in revised form 7th December, 2017

Accepted 4th January, 2018 Published online 28th February, 2018

Key Words:

Multiplicative Revan indices, multiplicative hyper Revan indices, polycyclic aromatic hydrocarbon benzenoid system.

polycyclic aromatic hydrocarbons and jagged rectangle benzenoid systems.

Copyright © Kulli V.R, 2018, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Let G be a finite, simple connected graph with vertex set V(G)and edge set E(G). Let $d_G(v)$ denote the degree of a vertex v in a graph G. Let $\Delta(G)(\delta(G))$ denote the maximum (minimum) degree among the vertices of G. The Revan vertex degree $r_G(v)$ of a vertex v in G is defined as $r_G(v) = \Delta(G) + \delta(G) - d_G(v)$. The Revan edge connecting the Revan vertices u and v will be denoted by uv. We refer to [1] for undefined term and notation.

A topological index is a numerical parameter mathematically derived from the graph structure. Several topological indices have been considered in Theoretical Chemistry.

The first and second Revan indices were introduced by Kulli in [2]. They are defined as

$$R_{1}(G) = \sum_{uv \in E(G)} [r_{G}(u) + r_{G}(v)],$$
$$R_{2}(G) = \sum_{uv \in E(G)} r_{G}(u) r_{G}(v).$$

Recently, Revan indices were studied, for example, in [3, 4, 5, 6, 7].

The first and second multiplicative Revan indices of a graph Gare respectively defined as

$$RII_{1}(G) = \prod_{uv \in E(G)} [r_{G}(u) + r_{G}(v)],$$

$$RII_{2}(G) = \prod_{uv \in E(G)} r_{G}(u)r_{G}(v).$$
(1)

These indices were introduced by Kulli in [5].

Recently multiplicative Revan indices were studied. In this paper, we introduce the general first and

second multiplicative Revan indices. Furthermore we determine the multiplicative Revan indices,

multiplicative hyper-Revan indices, general first and second multiplicative Revan indices for

The first and second multiplicative hyper-Revan indices [5] of a graph G are respectively defined as

$$HRII_{1}(G) = \prod_{uv \in E(G)} \left[r_{G}(u) + r_{G}(v) \right]^{2},$$

$$HRII_{2}(G) = \prod_{uv \in E(G)} \left[r_{G}(u) r_{G}(v) \right]^{2}.$$
(2)

We now introduce the general first and second multiplicative Revan indices of a graph G as

Department of Mathematics, Gulbarga University, Gulbarga, 585106, India

$$RII_{1}^{a}(G) = \sum_{uv \in E(G)} \left[r_{G}(u) + r_{G}(v) \right]^{a},$$

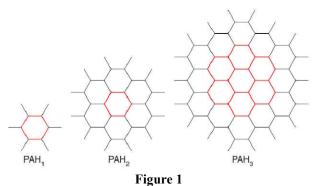
$$RII_{2}^{a}(G) = \sum_{uv \in E(G)} \left[r_{G}(u) r_{G}(v) \right]^{a}.$$
(3)

Recently many multiplicative indices were studied, for example, in [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].

In this paper, we compute the multiplicative Revan indices and the general multiplicative Revan indices for polycyclic aromatic hydrocarbons PAH_n and jagged rectangle benzenoid systems $B_{m,n}$. For more information about polycyclic aromatic hydrocarbons and jagged-rectangle benzenoid systems see [20].

Results for Polycyclic Aromatic Hydrocarbons

In this section, we focus on the molecular graph, structure of the family of polycyclic aromatic hydrocarbons, denoted PAH_n . The first three members of the family of polycyclic aromatic hydrocarbons are depicted in Figure 1.



In the following theorem, we compute the general multiplicative Revan index of PAH_n .

Theorem 1. Let PAH_n be the family of polycyclic hydrocarbons. Then

$$RII_{1}^{a}(PAH_{n}) = 4^{6an} \times 2^{(9n^{2} - 3n)a}.$$
 (4)

Proof: Let $G = PAH_n$ be the molecular graph in the family of polycyclic aromatic hydrocarbons. We see that the vertices of *G* are either of degree 1 or 3. Thus $\Delta(G)=3$ and $\delta(G)=1$ and hence $r_G(u) = \Delta(G)+\delta(G) - d_G(u) = 4 - d_G(u)$. By calculation, we obtain that *G* has $6n^2+6n$ vertices and $9n^2+3n$ edges, see [20]. In *G*, there are two types of edges based on the degree of end vertices of each edge as follows:

$$E_{13} = \{uv \in E(G) \mid d_G(u) = 1, d_G(v) = 3\}, |E_{13}| = 6n.$$

$$E_{33} = \{uv \in E(G) \mid d_G(u) = d_G(v) = 3\}, |E_{33}| = 9n^2 - 3n.$$

Hence, we obtain that G has two types of revan edges based on the revan degree of end revan vertices of each revan edge as follows:

$$RE_{31} = \{uv \in E(G) \mid d_G(u) = 3, d_G(v) = 1\}, |RE_{31}| = 6n.$$

$$RE_{11} = \{uv \in E(G) \mid r_G(u) = r_G(v) = 1\}, |RE_{11}| = 9n^2 - 3n.$$

To compute $RII_1^a (PAH_n)$ we see that

$$RII_1^a (PAH_n) = \prod_{uv \in E(G)} [r_G(u) + r_G(v)]^a = \prod_{RE_n} [r_G(u) + r_G(v)]^a \times \prod_{RE_n} [r_G(u) + r_G(v)]^a$$

$$= [(3+1)^a]^{6n} \times [(1+1)^a]^{9n^2 - 3n}$$

$$=4^{6an} \times 2^{(9n^2-3n)a}$$

We obtain the following results by Theorem 1.

Corollary: Let PAH_n be the family of polycyclic aromatic hydrocarbons. Then

$$RII_1(G) = 4^{6n} \times 2^{9n^2 - 3n}.$$

Proof: Put a = 1 in equation (4), we get the desired result.

Corollary: Let PAH_n be the family of polycyclic aromatic hydrocarbons. Then

$$HRII_1(PAH_n) = 4^{12n} \times 2^{18n^2 - 6n}.$$

Proof: Put a = 2 in equation (4), we get the desired result.

In the following theorem, we compute the general second multiplicative Revan index of PAH_n .

Theorem 2: Let PAH_n be the family of polycyclic aromatic hydrocarbons, Then

$$RII_2^a \left(PAH_n \right) = 3^{6an}. \tag{5}$$

Proof: Let $G = PAH_n$ be the molecular graph in the family of polycyclic aromatic hydrocarbons. Then from equation (3) and by cardinalities of the revan edge partition of PAH_n , we have

$$RII_{2}^{a}(PAH_{n}) = \prod_{uv \in E(G)} [r_{G}(u)r_{G}(v)]^{a} = \prod_{RE_{31}} [r_{G}(u)r_{G}(v)]^{a} \times \prod_{RE_{11}} [r_{G}(u)r_{G}(v)]^{a}$$
$$= \left[(3 \times 1)^{a} \right]^{6n} \times \left[(1 \times 1)^{a} \right]^{9n^{2} - 3n}$$
$$= 3^{6an}.$$

We obtain the following results by Theorem 2.

Corollary: Let PAH_n be the family of polycyclic aromatic hydrocarbons. Then $RII_2(PAH_n) = 3^{6n}$.

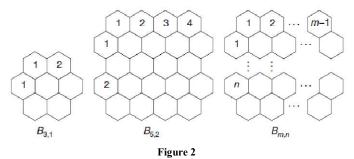
Proof: Put a = 1 in equation (5), we get the desired result.

Corollary: Let PAH_n be the family of polycyclic aromatic hydrocarbons. Then $HRII_2(PAH_n) = 3^{12n}$.

Proof: Put a = 2 in equation (5), w get the desired result.

Results for Benzenoid systems

In this section, we focus on the molecular graph structure of a jagged rectangle benzenoid system. This system is denoted by $B_{m, n}$ for all $m, n \in N$. Three molecular graphs of a jagged rectangle benzenoid system are given in Figure 2.



In the following theorem, we compute the general first multiplicative Revan index of $B_{m,n}$.

Theorem 3: Let $B_{m, n}$ be the family of a jagged rectangle benzenoid system. Then

$$RII_{1}^{a}(B_{m,n}) = 6^{a(2n+4)} \times 5^{a(4m+4n-4)} \times 4^{a(6mn+m-5n-4)}$$
(6)

Proof: Let $G = B_{m,n}$ be the molecular graph of a jagged rectangle benzenoid system. It is easy to see that the vertices of *G* are either of degree 2 or 3. Thus $\Delta(G) = 3$ and $\delta(G) = 2$. Therefore $r_G(u) = \Delta(G) + \delta(G) - d_G(u) = 5 - d_G(u)$. By calculation, we obtain that *G* has 4mn + 4m + 2n - 2 vertices and 6mn + 5m + n - 4 edges, see [20].

In G, there are three types of edges based on the degree of end vertices of each edge as follows:

$$\begin{split} &E_{22} = \{uv \in E(G) \mid d_G(u) = d_G(v) = 2\}, \ |E_{22}| = 2n + 4. \\ &E_{23} = \{uv \in E(G) \mid d_G(u) = 2, \ d_G(v) = 3\}, |E_{23}| = 4m + 4n - 4. \\ &E_{33} = \{uv \in E(G) \mid d_G(u) = d_G(v) = 3\}, \ |E_{33}| = 6mn + m - 5n - 4. \end{split}$$

Thus G has three types of Revan edges based on the revan degree of end revan vertices of each revan edge as follows:

 $\begin{aligned} RE_{33} &= \{uv \in E(G) \mid r_G(u) = r_G(v) = 3\}, |RE_{33}| = 2n + 4. \\ RE_{32} &= \{uv \in E(G) \mid r_G(u) = 3, r_G(v) = 2\}, |RE_{32}| = 4m + 4n - 4. \\ RE_{22} &= \{uv \in E(G) \mid r_G(u) = r_G(v) = 2\}, \quad |RE_{22}| = 6mn + m - 5n - 4. \\ \text{To compute } RII_1^a \left(B_{m,n}\right), \text{ we see that} \end{aligned}$

$$RII_{1}^{a}(B_{m,n}) = \prod_{uv \in E(G)} [r_{G}(u) + r_{G}(v)]^{a}$$

=
$$\prod_{RE_{33}} [r_{G}(u) + r_{G}(v)]^{a} \times \prod_{RE_{32}} [r_{G}(u) + r_{G}(v)]^{a} \times \prod_{RE_{22}} [r_{G}(u) + r_{G}(v)]^{a}$$

=
$$[(3+3)^{a}]^{2n+4} \times [(3+2)^{a}]^{4m+2n-4} \times [(2+2)^{a}]^{6mn+m-5n-4}$$

$$= 6^{a(2n+4)} \times 5^{a(4m+4n-4)} \times 4^{a(6mn+m-5n-4)}.$$

We obtain the following results by Theorem 3.

Corollary: Let $B_{m, n}$ be the family of a jagged rectangle benzenoid system. Then

 $RII_1(B_{m,n}) = 6^{2n+4} \times 5^{4m+4n-4} \times 4^{6mn+m-5n-4}.$

Proof: Put *a*=1 in equation (6), we get the desired result.

Corollary: Let $B_{m,n}$ be the family of a jagged rectangle benzenoid system. Then

$$HRII_1(B_{m,n}) = 6^{2(2n+4)} \times 5^{2(4m+4n-4)} \times 4^{2(6mn+m-5n-4)}$$

Proof: Put *a*=2 in equation (6), we get the desired result.

Theorem 4: Let $B_{m, n}$ be the family of a jagged rectangle benzenoid system. Then

$$RII_{2}^{a}(B_{m,n}) = 9^{a(2n+4)} \times 6^{a(4m+4n-4)} \times 4^{a(6mn+m-5n-4)}.$$
 (7)

Proof: Let $G = B_{m, n}$ be the molecular graph of a jagged rectangle benzenoid system. Then from equation (3) and by cardinalities of the revan edge partition of $B_{m, n}$, we have

$$RII_{2}^{a}(B_{m,n}) = \prod_{uv \in E(G)} \left[r_{G}(u) r_{G}(v) \right]^{a}$$

$$=\prod_{RE_{33}}\left[r_{G}(u)r_{G}(v)\right]^{a}\times\prod_{RE_{32}}\left[r_{G}(u)r_{G}(v)\right]^{a}\times\prod_{RE_{22}}\left[r_{G}(u)r_{G}(v)\right]^{a}$$

$$= \left[\left(3 \times 3 \right)^{a} \right]^{2n+4} \times \left[\left(3 \times 2 \right)^{a} \right]^{4m+2n-4} \times \left[\left(2 \times 2 \right)^{a} \right]^{6mn+m-5n-4}$$
$$= 9^{a(2n+4)} \times 6^{a(4m+4n-4)} \times 4^{a(6mn+m-5n-4)}.$$

We obtain the following results by Theorem 4.

Corollary: Let $B_{m,n}$ be the family of a jagged rectangle benzenoid system. Then

$$RII_2(B_{m,n}) = 9^{2n+4} \times 6^{4m+4n-4} \times 4^{6mn+m-5n-4}$$

Proof: Put a=1 in equation (7), we get the desired result. **Corollary:** Let $B_{m, n}$ be the family of a jagged rectangle benzenoid system. Then

$$HRII_{2}(B_{m,n}) = 9^{2(2n+4)} \times 6^{2(4m+4n-4)} \times 4^{2(6mn+m-5n-4)}.$$

Proof: Put a = 2 in equation (7), we get the desired result.

References

- 1. V.R.Kulli, *College Graph Theory*, Vishwa International Publications, Gulbarga, India (2012).
- V.R. Kulli, Revan indices of oxide and honeycomb networks, *International Journal of Mathematics and its Applications*, 5(4-E) (2017) 663-667.
- 3. V.R. Kulli, The sum connectivity Revan index of silicate and hexagonal networks, *Annals of Pure and Applied Mathematics*, 14(3) (2017) 401-406. DOI: http://dx.doi.org/10.22457/apam.v14n3a6.
- 4. V.R. Kulli, On the product connectivity Revan index of certain nanotubes, *Journal of Computer and Mathematical Sciences*, 8(10) (2017) 562-567.
- V.R. Kulli, Multiplicative Revan and multiplicative hyper-Revan indices of certain networks, *Journal of Computer and Mathematical Sciences*, 8(12) (2017) 750-757.
- 6. V.R. Kulli, Revan indices and their polynomials of certain rhombus networks, submitted.
- 7. V.R. Kulli, Hyper-Revan indices and their polynomials of silicate networks, submitted.
- 8. V.R. Kulli, On multiplicative *K*-Banhatti and multiplicative *K* hyper-Banhatti indices of *V*-Phenylenic nanotubes and nanotorus, *Annals of Pure and Applied Mathematics*, 11(2) (2016) 145-150.
- V.R. Kulli, Multiplicative K hyper-Banhatti indices and coindices of graphs, *International Journal of Mathematical Archive*, 7(6) (2016) 60-65.
- V.R.Kulli, Multiplicative connectivity indices of certain nanotubes, *Annals of Pure and Applied Mathematics*, 12(2) (2016) 169-176.
- 11. V.R. Kulli, General multiplicative Zagreb indices of $TUC_4C_8[m, n]$ and $TUC_4[m, n]$ nanotubes, *International Journal of Fuzzy Mathematical Archive*, 11(1) (2016) 39-43.
- 12. V.R. Kulli, Multiplicative connectivity indices of $TUC_4C_8[m,n]$ and $TUC_4[m,n]$ nanotubes, *Journal of Computer and Mathematical Sciences*, 7(11) (2016) 599-605.
- V.R.Kulli, Multiplicative connectivity indices of nanostructures, *Journal of Ultra Scientist of Physical Sciences*, A 29(1) (2017) 1-10. DOI:http://dx.doiorg/10.22147/jusps.A/290101.
- 14. V.R.Kulli, Two new multiplicative atom bond connectivity indices, Annals of Pure and Applied

Mathematics, 13(1) (2017) 1-7. DOI:http://dx.doi.org/10.22457/apam.vl3nlal.

- V.R.Kulli, Some new multiplicative geometricarithmetic indices, *Journal of Ultra Scientist of Physical Sciencs*, A, 29(2) (2017) 52-57. DOI: http://dx.doi.org/10.22147/jusps.A/290201.
- V.R.Kulli, A new multiplicative arithmetic-geometric index, *International Journal of Fuzzy Mathematical Archive*, 12(2) (2017) 49-53. DOI: http://dx.doi.org/10.22457/ijfma.v12n2a1.
- V.R.Kulli, New multiplicative arithmetic-geometric indices, *Journal of Ultra Scientist of Physical Sciences*, A, 29(6) (2017) 205-211. DOI: http:// dx.doi.org/10.22147/jusps-A/290601.
- 18. V.R.Kulli, New multiplicative inverse sum indeg index of certain benzoid systems, *Journal of Global Research in Mathematical Archieves*, 4(10) (2017) 15-19.
- 19. V.R.Kulli, Edge version of multiplicative connectivity indices of some nanotubes and nanotorus, *International Journal of Current Research in Science and Technology*, 3(11) (2017) 7-15.
- V.R.Kulli, B. Stone, S. Wang and B.Wei, Generalized multiplicative indices of polycyclic aromatic hydrocarbons and benzenoid systems, *Z. Naturforsch*, 72(6) a (2017) 573-576.

How to cite this article:

Kulli V.R.2018, General Multiplicative Revan Indices of Polycyclic Aromatic Hydrocarbons And Benzenoid Systems. Int J Recent Sci Res. 9(2), pp. 24452-24455. DOI: http://dx.doi.org/10.24327/ijrsr.2018.0902.1664
