
* Corresponding author: + 91
E-mail address: vetriascet@gmail.com

ISSN: 0976-3031
REVIEW ARTICLE

SIGFREE-EFFICIENT BUFFER OVERFLOW ATTACK PROTECTOR

*Vetrivendan, R., Renugadevi, N and Vignesh, B

Department of CSE, As-salam college of Engineering and Technology-Tamilnadu

ARTICLE INFO ABSTRACT

Efficient SigFree, an online signature-free out-of-the-box application-layer method for
blocking code-injection buffer overflow attack messages targeting at various Internet
services such as web service. Motivated by the observation that buffer overflow attacks
typically contain executables whereas legitimate client requests never contain executables
in most Internet services, SigFree blocks attacks by detecting the presence of code. Unlike
the previous code detection algorithms, SigFree uses a new data-flow analysis technique
called code abstraction that is generic, fast, and hard for exploit code to evade. SigFree is
signature free, thus it can block new and unknown buffer overflow attacks; SigFree is also
immunized from most attack-side code obfuscation methods. Since SigFree is a transparent
deployment to the servers being protected, it is good for economical Internet-wide
deployment with very low deployment and maintenance cost. We implemented and tested
SigFree; our experimental study shows that the dependency-degree-based SigFree could
block all types of code-injection attack packets (above 750) tested in our experiments with
very few false positives. Moreover, SigFree causes very small extra latency to normal
client requests when some requests contain exploit code.

INTRODUCTION

The history of cyber security, buffer overflow is one of the
most serious vulnerabilities in computer systems. Buffer
overflow vulnerability is a root cause for most of the cyber
attacks such as server breaking in, worms, zombies, and
bonnets. A buffer overflow occurs during program execution
when a fixed-size buffer has had too much data copied into it.
This causes the data to overwrite into adjacent memory
locations, and depending on what is stored there, the behavior
of the program itself might be affected [1]. Although taking a
broader viewpoint, buffer overflow attacks do not always carry
binary code in the attacking requests (or packets), 1 code-
injection buffer overflow attacks such as stack smashing
probably count for most of the buffer overflow attacks that
have happened in the real world. Although tons of research has
been done to tackle buffer overflow attacks, existing defenses
are still quite limited in meeting four highly desired
requirements: (R1) simplicity in maintenance; (R2) transparency
to existing (legacy) server OS, application software, and
hardware; (R3) resiliency to obfuscation; (R4) economical
Internet-wide deployment. As a result, although several very
secure solutions have been proposed, they are not pervasively
deployed, and a considerable number of buffer overflow attacks
continue to succeed on a daily basis. To see how existing
defenses are limited in meeting these four requirements, let us
break down the existing buffer overflow defenses into six
classes, which we will review shortly in Section 2: (1A)
Finding bugs in source code. (1B) Compiler extensions. (1C)
OS modifications. (1D) Hardware modifications. (1E)
Defense-side obfuscation [3], [4]. (1F) Capturing code running

symptoms of buffer overflow attacks [5], [6], [7], [8]. (Note
that the above list does not include binary-code-analysis-based
defenses, which we will address shortly.) We may briefly
summarize the limitations of these defenses in terms of the
four requirements as follows: 1) Class 1B, 1C, 1D, and 1E
defenses may cause substantial changes to existing (legacy)
server OSes, application software, and hardware, thus they are
not transparent. Moreover, Class 1E defenses generally cause
processes to be terminated. As a result, many businesses do not
view these changes and the process termination overhead as
economical deployment. 2) Class 1F defenses can be very
secure, but they either suffer from significant runtime overhead
or need special auditing or diagnosis facilities, which are not
commonly available in commercial services. As a result, Class
1F defenses have limited transparency and potential for
economical deployment. 3) Class 1A defenses need source
code, but source code is unavailable to many legacy
applications. Besides buffer overflow defenses, worm
signatures can be generated and used to block buffer overflow
attack packets [9], [10], [11]. Nevertheless, they are also
limited in meeting the four requirements, since they either
relies on signatures, which introduce maintenance overhead, or
are not very resilient to attack-side obfuscation.

MATERIALS AND METHODS

Experiments

To overcome the above limitations, in this paper, we propose
SigFree, an online buffer overflow attack blocker, to protect
Internet services. The idea of SigFree is motivated by an
important observation that “the nature of communication to

Available Online at http://www.recentscientific.com
 International Journal

of Recent Scientific
Research

International Journal of Recent Scientific Research

Vol. 3, Issue, 7, pp. 644 - 646, July, 2012

Article History:

Received 11th June, 2012
Received in revised form 20 th , June, 2012
Accepted 10th July, 2012
Published online 30th July, 2012

Key words:

Intrusion detection, buffer
overflow attacks, code-injection
attacks

 © Copy Right, IJRSR, 2012, Academic Journals. All rights reserved.

International Journal of Recent Scientific Research, Vol.3, Issue, 7, pp. 644 -646 July, 2012

645

and from network services is predominantly or exclusively
data and not executable code” [12]. In particular, as
summarized in [12], 1) on Windows platforms, most web
servers (port 80) accept data only; remote access services

Fig. 1 Sig Free is an application layer blocker between the

protected server and the corresponding firewall

(ports 111, 137, 138, 139) accept data only; Microsoft SQL
Servers (port 1434), which are used to monitor Microsoft SQL
Databases, accept data only. 2) On Linux platforms, most
Apache web servers (port 80) accept data only; BIND (port 53)
accepts data only; SNMP (port 161) accepts data only; most
Mail Transport (port 25) accepts data only; Database servers
(Oracle, MySQL, PostgreSQL) at ports 1521, 3306, and 5432
accept data only. Since remote exploits are typically binary
executable code, this observation indicates that if we can
precisely distinguish (service requesting) messages containing
binary code from those containing no binary code, we can
protect most Internet services (which accept data only) from
code injection buffer overflow attacks by blocking the
messages that contain binary code. Accordingly, SigFree (Fig.
1) works as follows: SigFree is an application layer blocker
that typically stays between a service and the corresponding
firewall. When a service requesting message arrives at
SigFree, SigFree first uses a new OðNÞ algorithm, where N is
the byte length of the message, to disassemble and distill all
possible instruction sequences from the message’s payload,
where every byte in the payload is considered as a possible
starting point of the code embedded (if any). However, in this
phase, some data bytes may be mistakenly decoded as
instructions. In phase 2, SigFree uses a novel technique called
code abstraction. Code abstraction first uses data flow anomaly
to prune useless instructions in an instruction sequence, then
compares the number of useful instructions (Scheme 2) or
dependence degree (Scheme 3) to a threshold to determine if
this instruction sequence (distilled in phase 1) contains code.
Unlike the existing code detection algorithms [12], [13], [14]
that are based on signatures, rules, or control flow detection,
SigFree is generic and hard for exploit code to evade (Section
2 gives a more detailed comparison).

The merits of SigFree are summarized as follows: they show
that SigFree has taken a main step forward in meeting the four
requirements aforementioned:

 SigFree is signature free, thus it can block new and
unknown buffer overflow attacks.

 Without relying on string matching, SigFree is
immunized from most attack-side obfuscation
methods.

 SigFree uses generic code-data separation criteria
instead of limited rules. This feature separates
SigFree from [12], an independent work that tries to
detect code embedded packets.

 Transparency. SigFree is an out-of-the-box solution
that requires no server side changes.

 SigFree is an economical deployment with very low
maintenance cost, which can be well justified by the
aforementioned features.

Sigfree Overview

Basic Definitions and Notations

This section provides the definitions that will be used in the
rest of this paper. Definition 1 (instruction sequence). An
instruction sequence is a sequence of CPU instructions, which
has one and only one entry instruction and there exists at least
one execution path from the entry instruction to any other
instruction in this sequence. A fragment of a program in
machine language is an instruction sequence, but an instruction
sequence is not necessarily a fragment of a program. In fact,
we may distill instruction sequences from any binary strings.
This poses the fundamental challenge to our research goal. Fig.
2 shows four instruction sequences distilled from a substring
of a GIF file. Each instruction sequence is denoted as si in Fig.
2, where is the entry location of the instruction sequence in the
string. These four instruction sequences are not fragments of a
real program, although they may also be executed in a specific
CPU. Below, we call them random instruction sequences,
whereas use the term binary executable code to refer to a
fragment of a real program in machine language. Definition 2
(instruction flow graph). An instruction flow graph (IFG) is a
directed graph G ¼ ðV; EÞ where each node v 2 V
corresponds to an instruction and each edge e ¼ ðvi; vjÞ 2 E
corresponds to a possible transfer of control from instruction vi
to instruction vj. Unlike traditional control flow graph (CFG),
a node of an IFG corresponds to a single instruction rather than
a basic block of instructions. To completely model the control
flow of an instruction sequence, we further extend the above
definition.

Definition 3 (extended IFG). An extended IFG (EIFG) is a
directed graph G ¼ ðV; EÞ, which satisfies the following
properties: each node v 2 V corresponds to an instruction, an
illegal instruction (an “instruction” that cannot be recognized
by CPU), or an external address (a location that is beyond the
address scope of all instructions in this graph); each edge e ¼

International Journal of Recent Scientific Research, Vol.3, Issue, 7, pp. 644 -646 July, 2012

646

ðvi; vjÞ 2 E corresponds to a possible transfer of control from
instruction vi to instruction vj, to illegal instruction vj, or to an
external address vj. Accordingly, we name the types of nodes
in an EIFG instruction node, illegal instruction node, and
external address node. The reason that we define IFG and
EIFG is to model two special cases, which CFG cannot model
(the difference will be very evident in the following sections).
First, in an instruction sequence, control may be transferred
from an instruction node to an illegal instruction node. For
example, in instruction sequence s08 in Fig. 2, the transfer of
control is from instruction “lods [ds:esi]” to an illegal
instruction at address 0F. Second, control may be transferred
from an instruction node to an external address node. For
example, instruction sequence s00 in Fig. 2 has an instruction
“jmp ADAAC3C2,” which jumps to external address
ADAAC3C2.

Algorithm 1

Distill all instruction sequences from a request initialize EISG
G and instruction array A to empty for each address i of the
request do add instruction node i to G i the start address of the
request while i <¼ the end address of the request do inst
decode an instruction at I if inst is illegal then A½i_ illegal
instruction inst set type of node i “illegal node” in G else A½i_
instruction inst if inst is a control transfer instruction then for
each possible target t of inst do if target t is an external address
then add external address node t to G add edge eðnode i; node
tÞ to G else add edge eðnode i; node i þ inst:lengthÞ to G

CONCLUSION

We have proposed SigFree, an online signature-free out-of -
the- box blocker that can filter code-injection buffer overflow
attack messages, one of the most serious cyber security threats.
SigFree does not require any signatures, thus it can block new
unknown attacks. SigFree is immunized from most attack-side
code obfuscation methods and good for economical Internet-
wide deployment with little maintenance cost and low
performance overhead

References

1. B.A. Kuperman, C.E. Brodley, H. Ozdoganoglu, T.N.
Vijaykumar, and A. Jalote, “Detecting and Prevention
of Stack Buffer OverflowAttacks,” Comm. ACM,
vol. 48, no. 11, 2005.

2. J. Pincus and B. Baker, “Beyond Stack Smashing:
Recent Advances in Exploiting Buffer Overruns,”
IEEE Security and Privacy, vol. 2, no. 4, 2004.

3. G. Kc, A. Keromytis, and V. Prevelakis, “Countering
Code- Injection Attacks with Instruction-Set
Randomization,” Proc. 10thACM Conf. Computer and
Comm. Security (CCS ’03), Oct. 2003.

4. E. Barrantes, D. Ackley, T. Palmer, D. Stefanovic,
and D. Zovi, “Randomized Instruction Set Emulation
to Disrupt Binary Code Injection Attacks,” Proc. 10th
ACM Conf. Computer and Comm. Security (CCS
’03), Oct. 2003.

5. J. Newsome and D. Song, “Dynamic Taint Analysis
for Automatic Detection, Analysis, and Signature
Generation of Exploits on Commodity Software,”
Proc. 12th Ann. Network and Distributed System
Security Symp. (NDSS), 2005.

6. M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L.
Zhou, L. Zhang, and P. Barham, “Vigilante: End-to-
End Containment of Internet

7. Worms,” Proc. 20thACMSymp. Operating Systems
Principles (SOSP), 2005.

8. Z. Liang and R. Sekar, “Fast and Automated
Generation of Attack Signatures: A Basis for Building
Self-Protecting Servers,” Proc. 12th ACM Conf.
Computer and Comm. Security (CCS), 2005.

9. J. Xu, P. Ning, C. Kil, Y. Zhai, and C. Bookholt,
“Automatic Diagnosis and Response to Memory
Corruption Vulnerabilities,” Proc. 12th ACM Conf.
Computer and Comm. Security (CCS), 2005.

10. S. Singh, C. Estan, G. Varghese, and S. Savage, “The
Earlybird System for Real-Time Detection of
Unknown Worms,” technical report, Univ. of
California, San Diego, 2003.

11. H.-A. Kim and B. Karp, “Autograph: Toward
Automated,

12. Distributed Worm Signature Detection,” Proc. 13th
USENIX Security Symp. (Security), 2004.

13. J. Newsome, B. Karp, and D. Song, “Polygraph:
Automatic Signature Generation for Polymorphic
Worms,” Proc. IEEE Symp. Security and Privacy
(S&P), 2005.

14. R. Chinchani and E.V.D. Berg, “A Fast Static
Analysis Approach to Detect Exploit Code inside
Network Flows,” Proc. Eighth Int’l Symp. Recent
Advances in Intrusion Detection (RAID), 2005.

15. T. Toth and C. Kruegel, “Accurate Buffer Overflow
Detection via Abstract Payload Execution,” Proc.
Fifth Int’l Symp. Recent Advances in Intrusion
Detection (RAID), 2002.

16. C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G.
Vigna,

17. “Polymorphic Worm Detection Using Structural
Information of Executables,” Proc. Eighth Int’l Symp.
Recent Advances in Intrusion Detection (RAID),
2005.
