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ARTICLE INFO                                                ABSTRACT 
 
Efficient  SigFree, an online signature-free out-of-the-box application-layer method for 
blocking code-injection buffer overflow attack messages targeting at various Internet 
services such as web service. Motivated by the observation that buffer overflow attacks 
typically contain executables whereas legitimate client requests never contain executables 
in most Internet services, SigFree blocks attacks by detecting the presence of code. Unlike 
the previous code detection algorithms, SigFree uses a new data-flow analysis technique 
called code abstraction that is generic, fast, and hard for exploit code to evade. SigFree is 
signature free, thus it can block new and unknown buffer overflow attacks; SigFree is also 
immunized from most attack-side code obfuscation methods. Since SigFree is a transparent 
deployment to the servers being protected, it is good for economical Internet-wide 
deployment with very low deployment and maintenance cost. We implemented and tested 
SigFree; our experimental study shows that the dependency-degree-based SigFree could 
block all types of code-injection attack packets (above 750) tested in our experiments with 
very few false positives. Moreover, SigFree causes very small extra latency to normal 
client requests when some requests contain exploit code. 
 
     

INTRODUCTION 
 

The history of cyber security, buffer overflow is one of the 
most serious vulnerabilities in computer systems. Buffer 
overflow vulnerability is a root cause for most of the cyber 
attacks such as server breaking in, worms, zombies, and 
bonnets. A buffer overflow occurs during program execution 
when a fixed-size buffer has had too much data copied into it. 
This causes the data to overwrite into adjacent memory 
locations, and depending on what is stored there, the behavior 
of the program itself might be affected [1]. Although taking a 
broader viewpoint, buffer overflow attacks do not always carry 
binary code in the attacking requests (or packets), 1 code-
injection buffer overflow attacks such as stack smashing 
probably count for most of the buffer overflow attacks that 
have happened in the real world. Although tons of research has 
been done to tackle buffer overflow attacks, existing defenses 
are still quite limited in meeting four highly desired 
requirements: (R1) simplicity in maintenance; (R2) transparency 
to existing (legacy) server OS, application software, and 
hardware; (R3) resiliency to obfuscation; (R4) economical 
Internet-wide deployment. As a result, although several very 
secure solutions have been proposed, they are not pervasively 
deployed, and a considerable number of buffer overflow attacks 
continue to succeed on a daily basis. To see how existing 
defenses are limited in meeting these four requirements, let us 
break down the existing buffer overflow defenses into six 
classes, which we will review shortly in Section 2: (1A) 
Finding bugs in source code. (1B) Compiler extensions. (1C) 
OS modifications. (1D) Hardware modifications. (1E) 
Defense-side obfuscation [3], [4]. (1F) Capturing code running  

 

 
symptoms of buffer overflow attacks [5], [6], [7], [8]. (Note 
that the above list does not include  binary-code-analysis-based 
defenses, which we will address shortly.) We may briefly 
summarize the limitations of these defenses in terms of the 
four requirements as follows: 1) Class 1B, 1C, 1D, and 1E 
defenses may cause substantial changes to existing (legacy) 
server OSes, application software, and hardware, thus they are 
not transparent. Moreover, Class 1E defenses generally cause 
processes to be terminated. As a result, many businesses do not 
view these changes and the process termination overhead as 
economical deployment. 2) Class 1F defenses can be very 
secure, but they either suffer from significant runtime overhead 
or need special auditing or diagnosis facilities, which are not 
commonly available in commercial services. As a result, Class 
1F defenses have limited transparency and potential for 
economical deployment. 3) Class 1A defenses need source 
code, but source code is unavailable to many legacy 
applications. Besides buffer overflow defenses, worm 
signatures can be generated and used to block buffer overflow 
attack packets [9], [10], [11]. Nevertheless, they are also 
limited in meeting the four requirements, since they either 
relies on signatures, which introduce maintenance overhead, or 
are not very resilient to attack-side obfuscation. 
 
MATERIALS AND METHODS 
 

Experiments 
 
To overcome the above limitations, in this paper, we propose 
SigFree, an online buffer overflow attack blocker, to protect 
Internet services. The idea of SigFree is motivated by an 
important observation that “the nature of communication to 
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and from network services is predominantly or exclusively 
data and not executable code” [12]. In particular, as 
summarized in [12], 1) on Windows platforms, most web 
servers (port 80) accept data only; remote access services  

 
Fig. 1 Sig Free is an application layer blocker between the 

protected server and the corresponding firewall 
 
(ports 111, 137, 138, 139) accept data only; Microsoft SQL 
Servers (port 1434), which are used to monitor Microsoft SQL 
Databases, accept data only. 2) On Linux platforms, most 
Apache web servers (port 80) accept data only; BIND (port 53) 
accepts data only; SNMP (port 161) accepts data only; most 
Mail Transport (port 25) accepts data only; Database servers 
(Oracle, MySQL, PostgreSQL) at ports 1521, 3306, and 5432 
accept data only. Since remote exploits are typically binary 
executable code, this observation indicates that if we can 
precisely distinguish (service requesting) messages containing 
binary code from those containing no binary code, we can 
protect most Internet services (which accept data only) from 
code injection buffer overflow attacks by blocking the 
messages that contain binary code. Accordingly, SigFree (Fig. 
1) works as follows: SigFree is an application layer blocker 
that typically stays between a service and the corresponding 
firewall. When a service requesting message arrives at 
SigFree, SigFree first uses a new OðNÞ algorithm, where N is 
the byte length of the message, to disassemble and distill all 
possible instruction sequences from the message’s payload, 
where every byte in the payload is considered as a possible 
starting point of the code embedded (if any). However, in this 
phase, some data bytes may be mistakenly decoded as 
instructions. In phase 2, SigFree uses a novel technique called 
code abstraction. Code abstraction first uses data flow anomaly 
to prune useless instructions in an instruction sequence, then 
compares the number of useful instructions (Scheme 2) or 
dependence degree (Scheme 3) to a threshold to determine if 
this instruction sequence (distilled in phase 1) contains code. 
Unlike the existing code detection algorithms [12], [13], [14] 
that are based on signatures, rules, or control flow detection, 
SigFree is generic and hard for exploit code to evade (Section 
2 gives a more detailed comparison). 
 
The merits of SigFree are summarized as follows: they show 
that SigFree has taken a main step forward in meeting the four 
requirements aforementioned: 
 

 SigFree is signature free, thus it can block new and 
unknown buffer overflow attacks. 

 Without relying on string matching, SigFree is 
immunized from most attack-side obfuscation 
methods. 

 SigFree uses generic code-data separation criteria 
instead of limited rules. This feature separates 
SigFree from [12], an independent work that tries to 
detect code embedded packets. 

 Transparency. SigFree is an out-of-the-box solution 
that requires no server side changes. 

 SigFree is an economical deployment with very low 
maintenance cost, which can be well justified by the 
aforementioned features. 
 

Sigfree Overview 
 
Basic Definitions and Notations 
 

This section provides the definitions that will be used in the 
rest of this paper. Definition 1 (instruction sequence). An 
instruction sequence is a sequence of CPU instructions, which 
has one and only one entry instruction and there exists at least 
one execution path from the entry instruction to any other 
instruction in this sequence. A fragment of a program in 
machine language is an instruction sequence, but an instruction 
sequence is not necessarily a fragment of a program. In fact, 
we may distill instruction sequences from any binary strings. 
This poses the fundamental challenge to our research goal. Fig. 
2 shows four instruction sequences distilled from a substring 
of a GIF file. Each instruction sequence is denoted as si in Fig. 
2, where is the entry location of the instruction sequence in the 
string. These four instruction sequences are not fragments of a 
real program, although they may also be executed in a specific 
CPU. Below, we call them random instruction sequences, 
whereas use the term binary executable code to refer to a 
fragment of a real program in machine language. Definition 2 
(instruction flow graph). An instruction flow graph (IFG) is a 
directed graph G ¼ ðV; EÞ where each node v 2 V 
corresponds to an instruction and each edge e ¼ ðvi; vjÞ 2 E 
corresponds to a possible transfer of control from instruction vi 
to instruction vj. Unlike traditional control flow graph (CFG), 
a node of an IFG corresponds to a single instruction rather than 
a basic block of instructions. To completely model the control 
flow of an instruction sequence, we further extend the above 
definition. 

 
 
Definition 3 (extended IFG). An extended IFG (EIFG) is a 
directed graph G ¼ ðV; EÞ, which satisfies the following 
properties: each node v 2 V corresponds to an instruction, an 
illegal instruction (an “instruction” that cannot be recognized 
by CPU), or an external address (a location that is beyond the 
address scope of all instructions in this graph); each edge e ¼ 
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ðvi; vjÞ 2 E corresponds to a possible transfer of control from 
instruction vi to instruction vj, to illegal instruction vj, or to an 
external address vj. Accordingly, we name the types of nodes 
in an EIFG instruction node, illegal instruction node, and 
external address node. The reason that we define IFG and 
EIFG is to model two special cases, which CFG cannot model 
(the difference will be very evident in the following sections). 
First, in an instruction sequence, control may be transferred 
from an instruction node to an illegal instruction node. For 
example, in instruction sequence s08 in Fig. 2, the transfer of 
control is from instruction “lods [ds:esi]” to an illegal 
instruction at address 0F. Second, control may be transferred 
from an instruction node to an external address node. For 
example, instruction sequence s00 in Fig. 2 has an instruction 
“jmp ADAAC3C2,” which jumps to external address 
ADAAC3C2. 
 

Algorithm 1  
 

Distill all instruction sequences from a request initialize EISG 
G and instruction array A to empty for each address i of the 
request do add instruction node i to G i the start address of the 
request while i <¼ the end address of the request do inst 
decode an instruction at I if inst is illegal then A½i_ illegal 
instruction inst set type of node i “illegal node” in G else A½i_ 
instruction inst if inst is a control transfer instruction then for 
each possible target t of inst do if target t is an external address 
then add external address node t to G add edge eðnode i; node 
tÞ to G else add edge eðnode i; node i þ inst:lengthÞ to G 
 

CONCLUSION 
 
We have proposed SigFree, an online signature-free out-of -
the- box blocker that can filter code-injection buffer overflow 
attack messages, one of the most serious cyber security threats. 
SigFree does not require any signatures, thus it can block new 
unknown attacks. SigFree is immunized from most attack-side 
code obfuscation methods and good for economical Internet-
wide deployment with little maintenance cost and low 
performance overhead 
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