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ARTICLE INFO                                                ABSTRACT 
 
This work constructs the membership function of the system characteristics of a single 
server retrial queues with batch arrivals, two phase of heterogeneous service and a 
generalised vacation time under Bernouli schedule.  Here the batch-arrival rate, batch size, 
retrial rate, service time,  vacation time are all fuzzy numbers.  The α-cut approach is used 
to transform a fuzzy queue into a family of conventional crisp queues in this context.  By 
means of the membership functions of the system characteristics, a set of parametric non-
linear programs is developed to describe the family of crisp-single server batch arrival 
queues.  A numerical example is solved successfully to illustrate the validity of the 
proposed approach.  Because of the system characteristics are expressed and governed by 
the membership function, the single server fuzzy batch arrival retrial queue with 
heterogeneous service and generalised vacation are represented more accurately and the 
analytic results are more useful for system designers and practitioners. 
 
 

 

INTRODUCTION  
 

Retrial queues describe operation of many telecommunication 
networks e.g. the local and wide area networks with the 
random multiple access protocols, call centres etc.  There has 
been rapid growth in the literature on the queuing systems 
with repeated attempts which are characterised by the 
following feature:  When an arriving customer finds that all 
servers are busy and no waiting position is available the 
customers joins a virtual pool of blocked customer called 
orbit.  The detailed overviews of the related references with 
retrial queues can be found in the recent book of Falin and 
Templeton[5] and the survey papers, Artalejo[1,2]. 
 
Most of the related studies are based on traditional queuing 
theory, is that the   inter arrival times and service times are 
assumed to follow certain probability distribution.  However, 
in practice their cases that these parameters may be obtained 
subjectively [8].  The fuzzy queues are much more realistic 
than commonly used crisp queues [3,4,8]. 
 
In this paper, we focus on single server fuzzy retrial queue 
with two phase of heterogeneous service under Bernoulli 
schedule and a fuzzy vacation time, fuzzy varying batch sizes 
and fuzzy parameters.  Clearly when the arrival rate, service 
times, group size, vacation time and retrial rate are fuzzy the 
performance measure of the queue also is fuzzy as well.  The 
basic idea is to apply Zadeh’s extension principle [9,10,11], 
two pairs of mixed integer non linear programming models are 
formulated to calculate the lower and upper bounds of the α-
cut of the system performance measure.  The membership 
function of the system performance measure is derived 
analytically.  
 
 

 
 The Mathematical Model 
 
 Consider a queuing system in which customers arrive at 
single server facility in batches as a Poisson process with 
group arrival rate   , where   is fuzzy number and the two 

phases of essential services with first essential service 1S ,  

and second essential  service 2S , where 1S , 2S  are fuzzy 

numbers.  The batch size K  of arrival, and the retrial rate R  
and the server vacation time 3S are represented by fuzzy 
numbers.  Using α-cut, the trapezoidal arrival size can be 
represented by different intervals of confidence be represented 
by  1 2[ , ]t t  .  Since probability distributions for the α-cuts 
can be represented by uniform distributions, we have 
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          Similarly, for the second moment, we have  
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          Using the well-known formula 
          2 2( ) ( ) ( ( ))V t E t E t     , the variance can be 
obtained as 
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Expected length of the orbit and expected waiting time of the 
customer in the  orbit in terms of system parameters  [7] are 
given by  
 E(L)= 2 2 2

2( ( )) ( ( ) / ( ) ( ( ) 1)
2(1 ) (1 )

E X E X E X E X
R

    
 

  


 
  ........ (5) 

                  E(W)    =          E(L) / λE(X)  …….…………..(6) 
 
In steady state, it is necessary 
that 1 2 3( )( ( ) ( ) ( )) 1E X E S E S pE S     . 
 
To extend the applicability of the single server batch arrival 
retrial heterogeneous service with generalised vacation 
queuing model, we allow for fuzzy specification of system 
parameters. In this model the group arrival rate λ first essential 
service time S1, second essential service time S2, server 
vacation time S3, retrial  rate  R are represented approximately 
known and can be represented by convex fuzzy sets.   
Let ( )x   ,

1
( )S u  , 

2
( )S v  , 

3
( )S w  , ( )R r  , ( )K k   

denote the membership functions of  , 1S , 2S , 3S , R and 

K respectively.  We then have the following fuzzy sets. 
 

…………………………(7a)

11 {( , ( )) / }SS u u u U 
  ………………………….….(7b) 

22 {( , ( )) / }SS v v v V 
  ………………………....….. (7c) 

33 {( , ( )) / }SS w w w W 
   ………………….…….... (7d) 

{( , ( )) / }RR r r r R 
  ……………………………… (7e) 

{ , ( ) / }KK k k k K 
  …………………………….… (7f) 

 
Where X,U,V,W,R,K are the crisp arrival sets of batch arrival, 
hetergenous service, vacation time, retrial rate and group size 
respectively.  
Let f(x,u,v,w,r,k) denote the system characteristic of interest.  

Since  , 1S , 2S , 3S , R and K  are fuzzy numbers f( , 

1S , 2S , 3S , R , K ) is also a fuzzy number.  Following 
Zadeh’s extension principle (yager[9] and zadeh[10]), the 

membership function of the system characteristic f( , 1S , 

2S , 3S , R , K ) is defined as   

1 2 3( , , , , , ) ( )f S S S R K z         
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Assume that the system characteristic of interest is the 
expected number of customers in the orbit.  It follows from (5) 
that 
f(x,u,v,w,r,k)= 2 2 2
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  The membership function for the expected number of 
customers in the orbit is 

                   ( ) ( )E L z   
sup min

, , , , , , 1x X u U v V w w r R k K 


      

1 32{ ( ), ( ), ( ), ( ), ( ), ( ) /R KS S Sx u v w r k        

( , , , , , )}z f x u v w r k ….. …………………………..(10)
  

Unfortunately, the membership function is not expressed in 
the usual form, making it very difficult to imagine its shape.  
In this paper we approach the representation problem using a 
mathematical programming technique.  Parametric non linear 
programs are developed to find the α-cuts of f( , 1S , 2S , 

3S , R , K ) based on the extension principle.  
 
 Parametric Non Linear Programming 
 

To re express the membership function ( ) ( )E L z   of E( L ) in 

an understandable and usable form, we adopt Zadeh’s 
approach which relies on α-cuts of L .  Definitions of α-cuts 

of   , 1S , 2S , 3S , R and K  as crisp intervals as follows: 
min max

( ) [ , ] [ { / ( ) }, { / ( ) }]L Ux x x x x x
x X x X           
  

  ..(11a) 
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 …… (11b) 

2 22
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S SS v v v v v v
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   …. (11c) 

3 33

min max
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w W w W        
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 .... (11d) 

min max
( ) [ , ] [ { / ( ) }, { / ( ) }]L U

R RR r r r r r r
r R r R        
 

  .…. (11e) 

min max
( ) [ , ] [ { / ( ) }, { / ( ) }]L U

K KK k k k k k k
k K k K        
 

  ... (11f)  

The arrival rate, service time, vacation time ,retrial rate, and 
group size are shown as intervals when the membership 
functions are no less than a given possibility level for α.  As a 
result, the bounds of these intervals can be described as 
functions of α and can be obtained as: 
           

1 1min ( ), max ( )L Ux x         …………….… (12a) 

1 1

1 1min ( ), max ( )L U
S Su u        …………...…. (12b) 

2 2

1 1min ( ), max ( )L U
S Sv v          .....……..….... (12c) 

3 3

1 1min ( ), max ( )L U
S Sw w          ……….. .… (12d) 

1 1min ( ), max ( )L U
R Rr r        ……...………   (12e) 

1 1min ( ), max ( )L U
K Kk k        ……………... (12f) 

Therefore, we can use the α-cuts of ( )E L  to construct its 
membership function since the membership function defined 
in (10) is parameterised by α 

{( , ( )) / }x x x X  

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Using Zadeh’s extension principle, ( ) ( )E L z   
is the minimum 

of 
1 32( ), ( ), ( ), ( ), ( ), ( )R KS S Sx u v w r k         .  To derive 

the membership function of  ( ) ( )E L z  , we need at least one 

of the following cases to hold such that 
 
  Z= 2 2 2

2( ( )) ( ( )) / ( ) ( ( ) 1)
2(1 ) (1 )

x E k E k E k x E k
r

  
 
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 
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( ) ( )E L z  =α: 

Case1:    

1 2 3
( ( ) , ( ) , ( ) , ( ) , ( ) , ( ) )R KS S Sx u v w r k                   

Case2:     
1 2 3
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Case3:     

1 2 3
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Case4:     

1 2 3
( ( ) , ( ) , ( ) , ( ) , ( ) , ( ) )R KS S Sx u v w r k                   

Case5:      

1 2 3
( ( ) , ( ) , ( ) , ( ) , ( ) , ( ) )R KS S Sx u v w r k                   

Case6:     
1 2 3

( ( ) , ( ) , ( ) , ( ) , ( ) , ( ) )R KS S Sx u v w r k                   
 

 
This can be accomplished using parametric NLP techniques.  
The NLP to find the lower and upper bounds of the α-cut of 

( ) ( )E L z   for case 1 are: 

1

2 2 2
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  
 

  
 
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5

2 2 2
2( ( )) ( ( )) / ( ) ( ( ) 1)( ( )) max( )
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U x E k E k E k x E kE L
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 
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For case 6 are 
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2( ( )) ( ( )) / ( ) ( ( ) 1)( ( )) min( )
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L x E k E k E k x E kE L
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  
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From the definitions of  ( ),   1( ),S   2( ),S   3( ),S   

( )R   and  ( )K   in (12)  ( )x   , 1( )u S  , 

2( )v S  , 3( )w S  , r R , and k K  can be 

replaced by [ , ]L Ux x x   , [ , ]L Uu u u   , [ , ]L Uv v v   , 

[ , ]L Uw w w   ,  [ , ]L Ur r r   and [ , ]L Uk k k  .  The α-
cuts form  a nested structure with respect to α (Kaufman[5] 
and Zimmermann[11]); i.e. given 2 10 1     we have 

1 1 2 2
[ , ] [ , ]L U L Ux x x x     , 

1 1 2 2
[ , ] [ , ]L U L Uu u u u     , 

1 1 2 2
[ , ] [ , ]L U L Uv v v v     , 

1 1 2 2
[ , ] [ , ]L U L Uw w w w     , 

1 1 2 2
[ , ] [ , ]L U L Ur r r r     , 

1 1 2 2
[ , ] [ , ]L U L Uk k k k    .  Therefore, 

(12a), (12c), (12e), (12g), (12i), (12k) have the same smallest 
element and ( 
12b), (12d), (12f), (12h), (12j), (12l) have the same largest 
element.  To find the membership function ( ) ( )E L z  , it 

suffices to find the left and right shape function of 
[( ( )) ,( ( )) ]L UE L E L  , which is equlivalent to finding the 

lower bound ( ( ))LE L   and upper bound  ( ( ))UE L   of the α-

cuts of  ( )E L , which can be rewritten as: 
2 2 2

2( ( )) ( ( )) / ( ) ( ( ) 1)min( )
( ( )) 2(1 ) (1 )

. . , , , , ,

L

L U L U L U L U L U L U

x E k E k E k x E k
E L r

st x x x u u u v v v w w w r r r k k k


           

  
 

  


  
           

 … (13a) 

2 2 2
2( ( )) ( ( ))/ ( ) ( ( ) 1)max( )

( ( )) 2(1 ) (1 )
. . , , , , ,

U

L U L U L U L U L U L U

x Ek E k Ek x Ek
EL r

st x x x u u u v v v w w w r r r k k k


           

  
 

  


  
           

…(13b) 

Atleast one of x,u,v.w,r,k must hit the boundaries of their α-
cuts to satisfy ( ) ( )E L z  =α.  This model is a set of 

mathematical programs with boundary constraints and lends 
itself to the systematic study of how the optimal solutions 
change with Lx  , Ux , Lu , Uu , Lv , Uv , Lw , Uw , Lr , 

Ur , Lk , Uk  as α varies over (0,1].  The crisp interval 

[( ( )) ,( ( )) ]L UE L E L   obtained from (13) represents the α-

cuts of ( )E L .  Again by applying the results of Kaufmann 

[5] and Zimmermann [11], where 2 10 1    .  In other 

words ( ( ))LE L   increases and ( ( ))UE L   decreases as α 

increases.  Consequently, the membership function ( ) ( )E L z   

can be found from (13).  If both ( ( ))LE L   and   ( ( ))UE L   in 
(13) are invertible with respect to α, then the left shape 
function L(z) = 1[( ( )) ]LE L 

  and the right shape function 

R(z) = 1[( ( )) ]LE L 
  can be derived, from which the 

membership function ( ) ( )E L z   is constructed:               
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L U
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L z E L z E L
z E L z E L

R z E L z E L

 

 

 


 

 

 

  
  
  


      ………(14) 

In most cases, the values of ( ( ))LE L   and   ( ( ))UE L   cannot 
be solved analytically.  Consequently, a closed form 
membership function for ( ) ( )E L z   cannot be obtained.  

However, the numerical solution for ( ( ))LE L   and   

( ( ))UE L   at different possibility levels can be collected to 
approximate the shapes of L(z) and R(z) that is, the set of 
intervals 
 { ( ( ))LE L   , ( ( ))UE L  / [0,1]  } shows the shape of 

( ) ( )E L z  , although the exact function is not known explicitly.  

Note that the membership functions for the expected waiting 
time of the customer in the orbit can be expressed in a similar 
manner. 
 
 Numerical example. 
 
Consider an organisation’s online recruitment policy in which 
candidates arrive in batches.  Using α-cuts,the trapezoidal 
arrival size is trapezoidal fuzzy number [1,2,3,4] and the 
interval of confidence be represented by [1+α ,4-α].  Using (2) 
and (3), it is easy to find E(K) and E(K2).  There are two 
stages of interview stage1 is technical interview and the stage2 
is personal interview.  The group calling rate for interview and 
the service times for two stages are trapezoidal fuzzy numbers 

represented by  = [0.2,0.3,0.4,0.5] 1S  = 

[0.25,0.26,0.27,0.28] , 2S  = [0.22,0.23,0.24,0.25].  As soon as 
the interview is completed, the interviewer may go for a 
vacation of random length S3 with probability p = 0.5 or may 
continue to interview the next candidate if any with 
probability q = 0.5.  S3 represented by the trapezoidal fuzzy 
number 3S  = [0.21, 0.22, 0.23, 0.24].  The retrial rate is 
represented by the trapezoidal number = [0.1, 0.2, 0.3, 0.4].  
The system manager wants to evaluate the performance 
measures of the system such as expected number of candidates 
in the orbit and expected waiting time of the candidate in the 
orbit. 
Following (8),  
     
   E(L)=   2 2 2

2( ( )) ( ( )) / ( ) ( ( ) 1)
2(1 ) (1 )

x E k E k E k x E k
r

  
 

  


 

  E(W) = E(L) / λE(X)   

 
It is clear that in this example the steady state condition ρ = 
λE(X)(E(S1) + E(S2) + pE(S3)) < 1 is satisfied, thus the 
performance measure of interest can be constructed. 
First it is easy to find 
 

[ , ]L Ux x   = [0.2 0.1 ,0.5 0.1 ]    

[ , ]L Uu u   = [0.25 0.01 ,0.28 0.01 ]    

[ , ]L Uv v    = [0.22 0.01 ,0.25 0.01 ]                                               

[ , ]L Uw w   =  [0.21 0.01 ,0.5 24 0.01 ]     

[ , ]L Ur r   = [0.1 0.1 ,0.4 0.1 ]    

Next it is obvious that when x = Lx  and r = Ur , the expected 
number of candidates in orbit attains its minimum value and 
when x =  Ux  and r = Lr  the expected number of candidates 
attains its maximum value. 
 

Table 1 The α-cuts of the performance measures of 11 α 
values 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1 Membership function of expected number 
of candidates in the orbit 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2 Membership function of expected  
waiting time of an employee in the orbit 

 
 

With the help of MATLAB 7.04, we perform α-cuts of  fuzzy 
expected number of candidates in the orbit and expected 
waiting time of a candidate in the orbit at eleven distinct α 
levels 0,0.1,0.2,…..1.0.  Crisp intervals for fuzzy expected 
number of candidates in orbit and expected waiting time of a 
candidate in the orbit are presented in table 1.  Fig 1 depicts 

 

 

α ( ( ))LE L   ( ( ))UE L   ( ( ))LE W   ( ( ))UE W   

0.0 1.9686 53.8815 3.9372 43.1052 
0.1 2.1547 45.9402 4.1042 37.5022 
0.2 2.3573 38.2473 4.286 31.8728 
0.3 2.5778 32.7816 4.4831 27.8992 
0.4 2.8182 28.2658 4.697 24.5790 
0.5 3.081 24.3981 4.9296 21.6872 
0.6 3.3691 21.5161 5.1832 19.5601 
0.7 3.6842 18.9219 5.4581 17.6018 
0.8 4.0328 16.7474 5.7611 15.9499 
0.9 4.4172 14.8687 6.0927 14.5060 
1.0 4.8403 13.2529 6.4537 13.2529 
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the rough shape of ( )E L  .  The rough shape turns out rather 

fine and looks like a continuous function. The α-cut represent 
the probability that these two performance measure will lie in 
the associated range.  Specially, α = 0 the range, the 
performance measures could appear and for α = 1 the range, 
the performance measure are likely to be.  For example, while 
these two performance measures are fuzzy, the most likely 
value of the expected length of the orbit falls between 4.8403 
and 13.2529 , and its value is impossible to fall outside the 
range of 1.9686 and 53.8815; it is definitely possible that the 
expected waiting time in the orbit falls between 6.4537 and 
13.2529 time units approximately, and it will never fall below 
3.9372 and above 43.1052 time units. 
 
CONCLUSION 
 

Single server batch arrival retrial queuing models with 
heterogeneous service and generalised vacation have wider 
applications in communication system to evaluate system 
performance.  This paper applies the concept of α-cuts and 
zadeh’s extension principle and constructs the membership 
functions of the expected number of customers in the orbit and 
expected waiting time of the customer in the orbit using the 
paired NLP models.  Following the proposed approach, the α-
cuts of the membership functions are found to attain explicit 
closed form expression for the system characteristics.  Since 
the performance measure is expressed by the membership 
function rather than by a crisp value, it maintains the fuzziness 
of input information and the results can be used to represent 
the fuzzy system more accurately. 
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