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ARTICLE INFO                                                ABSTRACT 

 

 
Since ancient period, humans depend on coastal areas for their livelihood. Therefore, 
coastal monitoring process is necessary to detect contaminations. In the present 
investigation, distribution of bacteria including pathogens in water and sediments of 
different coastal habitats (mangrove, coral, seagrass and beach) of the Havelock Island, the 
Andamans, India, was studied. From nine stations, the study has found 47 total 
heterotrophic bacterial strains, belonging to 13 genera (Escherichia, Pseudomonas, Vibrio, 
Aeromonas, Enterococcus, corynebacterium, Salmonella, Klebsiella, Streptococcus, 
Staphylococcus, Flavobacterium, Micrococcus and Shigella). The genus Escherichia, was 
dominant with 21%, followed by Pseudomonas (13%) and Vibrio (13%). THB population 
density varied in water samples from 43 X105 CFU/ml to 182 X105 CFU/ml and in the 
sediment samples, it varied from 79 X105 CFU/mg to 259 X104CFU/mg. This study is 
significant as it would pave way for future workers to elucidate the importance of coastal 
sanitation, for keeping the environment clean. 

 
 
 

INTRODUCTION  
 

 

Microorganisms are cosmopolitan, diverse and distributed in 
open seawaters, sediments, estuaries, and hydrothermal vents. 
Marine ecosystems are governed by decomposition of organic 
matter to inorganic form and cycling of nutrients, mediated by 
microorganisms, which are responsible to sustain all the living 
things in the oceans (Cevera et al., 2005). Transformation of 
organic detritus through the mediation of microorganisms is 
now recognized as an important process in the sea (Surajit Das 
et al., 2007). Further, marine microbes are accountable for 
most of the benthic biomass and it is well known that they play 
a significant ecological and biogeochemical role in the marine 
environment by regulating the transformation of major 
bioactive elements (i.e. carbon, nitrogen, phosphorus, oxygen 
and sulfur) and by affecting the degradability of organic matter  
(Polymenakou et al., 2009).   
  
In general, sea bathing and consumption of seafoods from 
coastal waters contaminated by the discharge of urban wastes 
could cause human health problems (Shuval, 1999). 
Contaminants are received in the sea either by direct discharge 
of waste water flowing from communities or from the runoff 
of rivers and streams, carrying the wastes disposed off by the 
up-steam communities (Shuval, 2005). Also many pathogens 
are transferred to the sea from vegetable wastes and fecal 
matters (Sharma and Chaturvedi, 2007; Williams et al., 2007). 
Pathogens originating from such contaminations frequently 
cause a lot of diseases and sometimes menace even the human 
life (Elmanama et al., 2005). The pathogens can also cause  

 

major diseases in the marine organisms like corals (Banin et 
al., 2000; Kakim et al., 2012), fishes (Austin, 2005), etc.  
 

 

Humans have resided in close association with the coastal 
regions of the world for the past many years. So, a continuous 
monitoring of the marine environment (water and sediments) is 
necessary to detect the presence of THB and pathogenic 
bacteria for the betterment of coastal people. This will also 
help create public awareness on the health management for the 
coastal dwellers. In this context, present investigation focuses 
attention on THB and pathogenic bacteria occurring in both 
water and sediments of the Havelock island, the Andamans, 
India. 
 

MATERIALS AND METHODS 
 

Study area 
 

The Andaman group of Islands in the Bay of Bengal, lie 
between the latitude 11°97’ N and longitude 93°00’ E. In these 
island groups, Havelock island clinch with mangrove, coral, 
seagrass and beach habitats was taken as our study area. The 
sample sites around this island were selected based on the 
different habitats: Station 1 (Mangrove I, Lat. 12˚02’ 27.9” N 
and Long. 92˚ 58’ 41.5” E), Station 2 (Coral I, Lat. 12˚ 02’ 
28.5 N and Long. 92˚ 58’ 47.1” E) Station 3 (Beach I, Lat. 12˚ 
02’ 32.5” N and Long. 92˚58’ 56.9” E), Station 4 (Mangrove 
II, Lat. 12˚02’ 00.0” N and Long 92˚59’ 52.7” E), Station 5 
(EL Dorado - Coral II, Lat 12˚ 01’ 31.6” N andLong93˚ 
00’13.8” E), Station 6 (Dive India - Beach II, Lat 12˚ 01’ 38.5” 
N and Long 93˚ 00’ 15.8” E), Station 7 (Kalapathar – 

Available Online at http://www.recentscientific.com 
 International Journal 

of Recent Scientific 
Research 

 
International Journal of Recent Scientific Research 

Vol. 4, Issue, 5, pp. 506- 514, May, 2013 
 

Article History: 
 
 

Received 12th, March, 2013 
Received in revised form 15th, April, 2013 
Accepted 25th, May, 2013 
Published online 28th May, 2013 
 
Key words: 
 

Havelock Island; microbial 
contamination; total heterotrophic 
bacteria; pathogens; population 
density  

               © Copy Right, IJRSR, 2013, Academic Journals. All rights reserved.                  
 



International Journal of Recent Scientific Research, Vol. 4, Issue, 5, pp. 524 -529, May, 2013 

525 
 

Mangrove  III, Lat 11˚ 57’ 37.9” N and Long  93˚ 00 46.6” E), 
Station 8 (Silver sand – Coral + Seagrass I, Lat 12˚ 00’ 36.1”N 
and Long 93˚ 00’ 31.0” E) and Station 9 (Radha Nagar, Beach 
III, 11˚ 59’ 04.2” N and 92˚ 57’ 04.0” E) (Fig. 1). 

 
Fig.1 Map showing the study area and sampling stations in the 

Havelock Island 
Sampling 
 

Field collections were carried out in January 2011(non-
monsoon) at the above nine stations.  Surface water samples 
were collected in 100 ml sterile screw cap bottles for 
bacteriological assessment. Sediment samples were collected 
by employing an alcohol rinsed and air- dried small Peterson’s 
grab. The central portion of the collected sediments was 
aseptically transferred into sterile polythene bags using sterile 
spatula. All samples were brought to the field laboratory (at 
Havelock Island) in portable icebox within 4 hours. 
Immediately after arrival, inoculations were made using 
suitable media with necessary dilutions and pure cultures were 
established.   
 

Bacterial enumeration  
 

Total heterotrophic bacterial (THB) population was 
enumerated by using spread plate method with Marine Agar 
medium. The plates after inoculation were incubated in an 
inverted position at a temperature of 28 ± 2°C for 24 to 48 
hours. After incubation, colonies in the triplicate samples were 
counted and expressed as colony forming units in water 
(CFU/ml) and sediments (CFU/mg). Bacterial colonies were 
picked out from the petridishes and restreaked in appropriate 
nutrient agar plates and pure cultures were stored in agar slants 
for further identification. Specific media were used for 
Escherichia coli (MacConkey agar), Vibrio cholera and V. 
parahaemolyticus (TCBS agar), Species of Salmonella, 
Shigella and Klebsilla (XLD agar), Pseudomonous aeruginosa 
(Cetrimide agar), Streptococcus faecalis (M-enterococcus 
agar), Aeromonas hydrophila (AMB agar) and Staphylococcus 
aureus (Monnitol Salt agar). Different morphological and 
biochemical characteristics of the isolates were studied 
according to the Bergey’s Manual of Determinative 

Bacteriology. All the chemicals and media were purchased 
from Hi-media, Mumbai. 
 

RESULTS 
 

Generic composition of Total Heterotrophic Bacteria (THB) 
 

A total of 13 genera [Escherichia (21%), Pseudomonas (13%), 
Vibrio (13%), Aeromonas (11%), Enterococcus (9%), 
corynebacterium (7%), Salmonella (6%), Klebsiella (6%), 
Streptococcus (4%) Staphylococcus (4 %), Flavobacterium 
(2%), Micrococcus (2%) and Shigella (2%)] were identified 
(Fig. 2) from 47 total heterotrophic bacterial strains, isolated 
from the  water and sediment samples of nine stations of the 
Havelock island. Among them, 8 genera viz. Escherichia, 
Pseudomonas, Salmonella, corynebacterium, Vibrio, 
Klebsiella, Enterococcus and Aeromonas, from 22 strains, 
were isolated from the water samples, and 13 genera viz. 
Escherichia, Pseudomonas, Flavobacterium, Salmonella, 
Vibrio, Shigella, Klebsiella, Micrococcus, Cornybacterium, 
Enterococcus, Aeromonas, Streptococcus and Staphylococcus, 
from 25 strains, were isolated from the sediment samples. In 
the water and sediment samples, gram negative bacteria were 
more (64.36%) as compared to the gram positive bacteria  
(35.64%). 

 
Fig. 2  Percentage composition of THB genera isolated from the water and 

sediment samples of the Havelock island 
 

Population density of THB and pathogenic bacteria 
 

Population density of THB in water samples varied from 43 
X105 CFU/ml (Station 9) to 182 X105 CFU/ml (Station 7). In 
the case of the sediment samples, It varied from 79 X105 

CFU/mg (station 9) to 259 X104CFU/mg (station 7) (Fig.3). 

 
Fig.3 Population density of THB in the water and sediment samples of the 

Havelock island. 
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Population density of E. coli was lower in water (3 X105 

CFU/ml) and sediments (8 X104CFU/mg) at station 3. While, 
station 7 recorded higher density both in water (83 X105 

CFU/ml) and sediments (195 X104CFU/mg) (Fig.4). 

 
Fig.4  Population density of E.coli in the water and sediment 

samples of the Havelock island 
 
Population density of both V. cholerae and V. parahaemolyticus 
was estimated in both water and sediment samples at all the nine 
stations. In the water, V. cholerae showed the maximum (21 X105 

CFU/ml) at station 9 and the minimum (1 X105 CFU/ml), at 
station 3. V. parahaemolyticus registered lower population density 
(2 X105 CFU/ml) at station 3 and higher population density (28 
X105 CFU/ml), at station 4. In the sediments, V.parahaemolyticus 
recorded the maximum density (41 X104CFU/mg) at station 7 and 
the minimum (3 X104CFU/mg), at station 3. V. cholerae showed 
the maximum (55 X104CFU/mg) at station 7 and the minimum (5 
X104CFU/mg), at station 3 (Fig. 5). 

 
Fig.5  Population density of Vibrio spp. in the water and 

sediment samples of the Havelock island 
 

 

In water, lower population density of S. typhimurium (2 X105 

CFU/ml) was recorded at stations 3, 5 and 9 and higher density 
(31 X105 CFU/ml), at station 4. S. paratyphi recorded the 
maximum density (19 X105 CFU/ml) at station 4 and the 
minimum (1 X105 CFU/ml), at stations 3 and 5. S. dysenteriae 
recorded the maximum (24 X105 CFU/ml) at station 7 and the 
minimum (1 X105 CFU/ml), at stations 3 and 5. In K. 
pneumonia, the density was minimum (1 X105 CFU/ml) at 
stations 5 and 9, and maximum (23 X105 CFU/ml) at station 4. 
In the case of sediments, lower population density of S. 

typhimurium (6 X104CFU/mg) was recorded at station 5 and 
higher density (53 X104CFU/mg), at station 7. S. paratyphi 
recorded the maximum (39 X104CFU/mg) at station 7 and the 
minimum (2 X104 CFU/mg), at station 5. S. dysenteriae 
showed the maximum (26 X104CFU/mg) at station 7 and the 
minimum (2 X104CFU/mg), at station 3. K. pneumonia showed 
the minimum (3X104CFU/mg) at stations 3, 5 and 9 and the 
maximum (24 X104CFU/mg), at station 7 (Fig.6). 

 
Fig.6  Population density of the species of Salmonella, 

Shigella and Klebsiella in water and sediment samples of the 
Havelock island. 

 
Population density of P. aeruginosa in water was lower (1 
X105 CFU/ml) at station 6 and higher (47 X105 CFU/ml) at 
station 7. While in the sediments, lower density (7 
X104CFU/mg) was noticed at station 6 and higher density (63 
X104CFU/mg), at station 7 (Fig.7). 

 
Fig.7. Population density of P. aeruginosa in the water and 

sediment samples of the Havelock island. 
  
In the water samples, population density of S. faecalis was 
lower (5X105 CFU/ml) at station 5 and higher (49X105 

CFU/ml), at station 1. In the sediments, lower population 
density (11 X104CFU/mg) was noticed at station 5 and higher 
density (106 X104CFU/mg), at station 4 (Fig.8). 
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Fig.8  Population density of S. faecalis in the water and 

sediment samples of the Havelock island. 
 

Population density of A. hydrophila in water was lower (2 
X105 CFU/ml) at station 9 and higher (23 X105 CFU/ml) at 
station 7. In the sediments, lower density (5 X104CFU/mg) at 
station 9 and higher density (34 X104CFU/mg) at station 7 
were recorded (Fig.9). 

 
Fig.9  Population density of A. hydrophila in the water and 

sediment samples of the Havelock island. 
 

In water, population density of S. aureus was found to be 
lower (4 X105 CFU/ml) at station 3 and higher (33X105 

CFU/ml) at station 7. In the sediments, lower density of           
9X104 CFU/mg at station 3 and higher density of 49 X104 

CFU/mg at station 7 were recorded (Fig.10). 
 

 
Fig.10  Population density of S. aureus in the water and 

sediment samples of the Havelock island 
 

DISCUSSION  
 

Many researchers have reported on the marine bacterial 
diversity from various parts of the world, such as Coast of 
Spitsbergen, Arctic Ocean (Ravenschlag et al., 1999), Balltic 
Sea, Mediterranean Sea, Southern CaMornia Bight, Skagerrak, 
Weddell Sea and Andaman Sea (Hagstrom et al., 2000), 
Southern Baltic Sea coast (Mudryk, 2005), Bay of Bengal 
(Surajit  Das et al., 2007), East and South China Sea (Hailian 
Du et al., 2006), Northern Baffin Bay (Fouilland  et al., 2007), 
Wadden Sea of  the German North Sea coast (Stevens et al., 
2007), Northeastern Pacific Ocean (Hongxiang et al., 2008) 
and Sindh and Baluchistan coast of Pakistan (Uzair et al., 
2009), Eastern Antarctica (Yong Yu et al., 2011), 
Kottaipattinam, Southeast coast of India (Ramkumar et al., 
2011) and Muthukuda Mangroves, Southeast Coast of India 
(Govindasamy et al., 2011).  
 

Present investigation highlights the occurrence of THB and 
pathogenic bacteria in the water and sediment samples, 
collected from nine stations along the Havelock island, the 
Andamans, covering mangrove, coral, seagrass and beach 
habitats. THB and pathogenic bactera were more in the 
sediments than the water samples due to the rich organic 
content of the former and lesser residential time of the 
microorganisms in the water column than the sediments 
(Anon, 1997), in addition to the sediments retaining substantial 
amounts of naturally occurring organic matter such as sugars, 
amino acids, phenolic substances, lipids, polypepdides, 
polysaccharides and other constituents of living organisms 
(Premuzic et al., 1982); especially sediment CO2 and pH 
(Yanagowa et al., 2012) were favourable for microbial growth. 
Further, coastal and shelf sediments play a significant role in 
the demineralization of organic matter (Swarnakumar et al., 
2008) which would enhance the microbial load in the 
sediments.  
 

Swarnakumar et al. (2008) reported that Vibrio was dominant 
followed by Pseudomonas and Escherichia in the Little 
Andaman island. Sahu et al. (2006) also isolated Vibrio spp. 
from the sediments of the coral reef environment of the Little 
Andaman island. In the present study, a total of 13 bacterial 
genera  were identified: Escherichia Pseudomonas, Vibrio, 
Aeromonas, Enterococcus, Cornybacterium, Salmonella, 
Klebsiella, Streptococcus, Staphylococcus, Flavobacterium, 
Micrococcus and Shigella. Escherichia (21%) followed by 
Pseudomonas (13%) and Vibrio (13%) contributed more than 
the other genera in the Havelock island. But, Mohapatra et al. 
(2003) isolated 102 bacterial strains from three sedentary 
organisms of Havelock and among them Bacillus, 
Flavobacterium and Micrococcus were found to be dominant. 
Thus, this coastal area thronged by tourists with higher 
anthropogenic activity might contribute to the THB and 
pathogenic bacteria in addition to the other processes, 
indicating a higher risk of pathogens being present, as 
suggested by Fujioka (2001) in his study from Hawaii. 
 

Mangrove ecosystems are the major ecosystems along the 
tropical coastlines. They play a vital role in regulation and 
optimization of marine environments (Zhang et al., 2009). In 
this investigation, most of the THB and pathogenic bacterial 
communities were more at stations 1, 4 and 7, the mangrove 
sites (as compared to coral, seagrass and beach sites), which 
might act as a major nutrients transformation system 
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responsible for microbial activity (Alongi et al., 1993; Holguin 
et al., 2001). Further, bacterial colonies, after the mangrove 
litter fall, can appear shortly, grow quickly and reach very high 
densities (Kathiresan, 2007). As homeland of microbes, 
mangrove area also offers the major substrate for the 
proliferation of bacteria by providing with favorable 
conditions, due to the presence of rich sources of nutrients 
(Sahoo and Dhal, 2009; Lakshmipriya and Sivakumar, 2012). 
 

Escherichia has a great genetic diversity and is disseminated 
all over the world (Korfmann et al., 1983): Atlantic Ocean 
(76.8 %) (Regine et al., 1998), South China Sea (55.1%) and 
Spain Sea (32-34%) (Barcina et al., 1990). In this 
investigation, only 21% of Escherichia was found, suggesting 
that the coastal region of Havelock island is less polluted with 
Escherichia as compared to other parts of the world. 
Continuous water exchange with the oceanic waters might 
reduce the pathogenic bacterial density, as opined by 
Nallathambi et al. (2002) form their study from the Port Blair 
Bay, the Andamans. 
 

Presence of S. faecalis  suggests that the occurrence of such 
microbes in seawater could exist anytime as sewage from 
human or animal origin is discharged into the coast (Metcalf, 
1982) and the higher THB population density (Hatha et al., 
2008) and fecal coliform density (Shehane et al., 2005) could 
be due to the land run off from various sources after the 
rainfall. Similarly, Cheung et al. (1990) from the Hong Kong 
beach area observed the presence of Streptococci and used 
them as indicators of fecal pollution. 
 

In conclusion, this study, to the best of our knowledge, is the 
first of its kind in the Havelock coast of India and this study is 
significant as it would pave way for future workers to elucidate 
the importance of coastal sanitation, for keeping the 
environment clean. 
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