

Available Online at http://www.recentscientific.com

International Journal of Recent Scientific Research Vol. 4, Issue, 10, pp.1512-1515, October, 2013 International Journal of Recent Scientific Research

Individual

RESEARCH ARTICLE

IMPACT OF GROWTH PROMOTERS ON THE GROWTH OF TWO CYANOBACTERIA (Nostoc entophytum and Hapalosiphon stuhlamanii)

B.S. Giriyappanavar

Phycology Research Laboratory, Department of Botany, Karnatak University's , Karnatak Science College, Dharwad, India

ARTICLE INFO

ABSTRACT

Article History:

Received 17th, September, 2013 Received in revised form 27th, September, 2013 Accepted 13th, October, 2013 Published online 28th October, 2013

Key words:

Growth promoters, Effect, Blue Green Algae

application of both growth promoters showed a marked stimulation of fresh weight and chlorophyll-content at all concentrations on these blue-green algae. Interaction of Gibberllic acid and Kinetin on both algae noticed with increasing concentration has synergistic response on growth of *N. entophytum* and *H. stuhlmanni*.

The present investigation emphasizes the effects of Gibberllic Acid and Kinetin on growth

of blue-green algae Nostoc entophytum and Haplosiphon stuhlmanni.

INTRODUCTION

Living organisms, especially micro-organisms, are exposed to various types of natural stresses, such as nutrient limitation, pesticides, pollution, drought, salinity, temperature, pH, light intensity and quality, etc. Cyanobacteria, a group of prokaryotic, oxygen-evolving, photosynthetic Gram-negative bacteria, survive in a wide variety of extreme environmental conditions (Giriyappanavar, 2012). Most paddy soils have a natural population of cyanobacteria which provides a potential source of nitrogen fixation at no or low cost. These cyanobacteria are exposed to growth hormones which are indispensable to the modern agricultural practice. However, the use of these hormones over the years has resulted in problems caused by their interactions with the biological systems in the environment and has deleterious effects on cyanobacteria. Although considerable information exists concerning the effects of growth substances on several blue-green algae (Ahamad and Winter, 1973; Bharati and Bongale, 1975; Anand 1982; Giriyappanavar and Bharati, 1989). However, the role of growth substances in the blue-green algae is not yet completely understood so far. Therefore, the present communication describes the response of Gibberllic acid and Kinetin on the growth and Chlorophyll-a content of Nostoc entophytum and Haplosiphon stuhlmanni; blue-green algae.

MATERIALS AND METHODS

Methods of isolation and culture of *Nostoc entophytum* and *Haplosiphon stuhlmanni* is same as already have been described (Giriyappanavar and Bharati, 1989). The growth promoters Gibberllic acid (G_{19} H₂₂ O₆) and Kinetin (6-Fufury lexinopurinepuriss CHR, G_{10} H₉ N₅ O) both obtained from Loba-Chemico Industrial Company, Bombay, India. These growth promoters stock solution was prepared in sterilized distilled water. The chemical dose response was obtained by treating algal suspensions with 5, 25, 50 and 100ppm concentrations. 10 ml suspension of two alga were treated with growth promoters in

© Copy Right, IJRSR, 2013, Academic Journals. All rights reserved.

graded concentrations for each concentration a set of four flasks were used and also one set as control. All cultures were incubated at $28 + 2^{\circ}$ C and illuminated at 2000 lux and kept facing north window for 28 days and were agitated manually twice per day. The derivations followed here are based on a modified method of Colby (1967) for calculation of interaction of Gibberllic acid and Kinetin has been used. This method facilitates calculating "Expected" response of various chemical combinations. The "Expected" response for a given combination of two compounds can be calculated using the formula E = XY/100 where, 'E' is the expected value as a percent of control: 'X' is the value as a percent of control when exposed to Gibberllic acid 'Y' is the value as a percent of control when treated with the Kinetin. When the observed response is greater than expected, the combination is synergistic: When the observed response is less than expected, the effect is antagonistic. If the observed and expected responses are equal, the combination is additive. Many workers who have used different chemicals as combination which need to be mentioned here Mc. Rae et. al., (1953), Stone and Stahler (1954) and Datta and Baines (1960). Growth of the blue-green alga was measured in terms of fresh weight and chlorophyll-a on every 7 day interval till 28th day. Chlorophyll-a was determined following the proposed formula by Talling and Driver (1963).

RESULTS

Nostoc entophytum

Gibberllic acid is found to be of significance on *N. entophytum* atvaried concentrations (Table 1). At treatment levels of 5ppm it has an effect in increasing the fresh weight from 5ppm to 100ppm on the 7th day, so also on 28^{th} day. On 14^{th} and 21^{st} day it behavior on this alga seems to be quite irregular. Nevertheless the growth on the 14^{th} day and 21^{st} day is well marked while on 28^{th} day the growth seems to have been reduced. The effect of Kinetin is also well marked on the growth of *N. entophytum*.

^{*} Corresponding author: Giriyappanavar. B.S

Effect of two growth promoters on fresh weight of Nostoc entophytum (gms/10ml) Table 1 Interaction of Gibberlic acid and Kinetin on fresh weight of Nostoc entophytum (gms/10ml) Interaction of Gibberlic acid and Kinetin on fresh weight of Nostoc entophytum (gms/10ml)

Days	7 th day	14 th day	21 st day	28 th day	Days	Concentration (ppm)	Observed values	Expected values	Difference
CONTROL	0.125	0.113	0.109	0.215			(%)	(%)	
Conc.(ppm)						5	92	80	-12
Gibberlic acid						25	92	81	-11
5	085	814	106	058	7 th day	50	126	91	-35
25	087	779	096	096		100	155	893	738
50	110	823	899	121		5	119	806	687
100	790	088	131	069		25	89	748	695
Kinetin					14 th day	50	87	765	678
5	094	099	101	068		100	96	083	-13
25	093	096	117	088		5	890	107	-783
50	083	093	124	123		25	156	112	-44
100	113	095	156	112	21 st day	50	158	114	-44
Gibberlic acid + Kinetin						100	153	204	051
5	092	119	890	064		5	064	039	-25
25	092	089	156	085		25	086	084	-01
50	126	087	158	160	28 th day	50	160	149	-11
100	155	096	153	184		100	184	077	-107

All values are expressed as percent of control

** = Values above thousand

Table 2

Effect of two Growth promoters on the Chl-a of *Nostoc entophytum* (ugl⁻¹)

Interaction of Gibberllic acid and Kinetin on the Chl-a of Nostoc entophytum (ugl⁻¹)

Days	7 th day	14 th day	21 st day	28 th day	Days	Concentration (ppm)	Observed values	Expected values	Difference
CONTROL	0.322	0.462	0.392	1.505			(%)	(%)	
Conc.(ppm)						5	089	078	-11
Gibberlic acid						25	059	070	+11
5	107	080	113	122	7 th day	50	089	178	+89
25	696	012	094	131		100	111	043	-68
50	105	012	097	124		5	147	077	- 70
100	686	086	095	131		25	130	030	- 100
Kinetin					14 th day	50	108	092	- 16
5	882	012	101	144		100	092	071	- 21
25	882	012	115	113		5	057	126	+ 69
50	100	011	115	108		25	100	210	+ 110
100	113	013	123	148	21 st day	50	266	234	- 32
<u>Gibberlic acid + Kinetin</u>					-	100	213	347	+ 134
5	833	012	116	131		5	045	045	0
25	110	012	118	145		25	090	093	+ 03
50	637	012	096	113	28 th day	50	218	237	+ 19
100	125	012	213	195		100	195	077	- 118

All values are expressed as percent of control

Table 3

Effect of two growth promoters on fresh weight of Hapalosiphon stuhlmanii (gms/10ml)

Interaction of Gibberlic acid and Kinetin on fresh weight of Hapalosiphon stuhlmanii(gms/10ml)

Days	7 th day	14 th day	21 st day	28 th day	Days	Concentration (ppm)	Observed values	Expected values	Difference
CONTROL	0.102	0.95	0.110	0.130			(%)	(%)	
Conc.(ppm)						5	833	944	+111
Gibberlic acid						25	110	**	+**
5	107	080	113	122	7 th day	50	637	105	-532
25	696	012	094	131		100	125	775	+650
50	105	012	097	124		5	12	10	-02
100	686	086	095	131		25	12	01	-11
<u>Kinetin</u>					14 th day	50	12	01	-11
5	882	012	101	144	-	100	12	11	-01
25	882	012	115	113		5	116	114	-02
50	100	011	115	108		25	118	108	-10
100	113	013	123	148	21 st day	50	96	112	+16
Gibberlic acid + Kinetin					-	100	129	117	-12
5	833	012	116	131		5	131	176	+45
25	110	012	118	145		25	145	148	+03
50	637	012	096	113	28 th day	50	113	134	+21
100	125	012	129	152	·	100	152	194	+52
ATT 1 1							1 1		

All values are expressed as percent of control

** = Values above thousand

					l able-4				
of two Growth promoters Iapalosiphon stuhlmanii(u	on the Igl ⁻¹)	Chl-a	Interaction of Gibberllic acid and Kinetin on t of <i>Hapalosiphon stuhlmanii</i>						
Days	7 th day	14 th day	21 st day	28 th day	Days	Concentration (ppm)	Observed values	Expected values	Difference
CONTROL	0.254	0.357	0.322	0.497			(%)	(%)	
Conc.(ppm)						5	74	53	-21
Gibberlic acid						25	61	37	-24
5	088	090	143	086	7 th day	50	100	99	-01
25	061	129	143	137	-	100	100	74	-26
50	113	129	143	121		5	100	57	-43
100	074	080	176	100		25	71	116	+45
Kinetin					14 th day	50	149	103	-46
5	061	063	122	144	-	100	99	80	-19
25	061	090	165	107		5	122	174	+52
50	088	080	089	130		25	165	236	+71
100	100	100	165	168	21 st day	50	122	127	+05
<u>Gibberlic acid + Kinetin</u>					•	100	187	290	+103
5	074	100	122	114		5	114	124	+10
25	061	071	165	168		25	168	147	-21
50	100	149	122	114	28 th day	50	114	157	+43
100	100	099	187	093		100	93	168	+75

All values are expressed as percent of control

The fresh weight at all concentrations on 21st to 28th day indicates that there is gradual increase from 5 to 100ppm, while on the earlier period of the growth (7th and 14thday) there is gradual decrease from 5 to 100 ppm. The growth at all concentrations generally increases from the 7th day to 21st day while on the 28th day the growth decreases. The interaction of Gibberllic acid and Kinetin on the growth of *N. entophytum* shows that on the 7th day the effect is antagonistic upto 50ppm, while at 100ppm there is synergistic effect on the 28th day at all concentrations of both the growth promoters. There is also an antagonistic effect which is true on the 21st day. It is only on the 14th day the interaction seems to be synergistic. Probably 25ppm concentration on the 28th day indicates an additional effect is very meager. In general Gibberllic acid and Kinetin interact to produce more antagonism on N. entophytum. The effect of both growth promoters on percent Chla of N. entophytum shows that at all concentrations on day 7 and day 21 the Chl-a decreases from 5 to 100 ppm, while on 28th day the pigment gradually increases at 50 ppm. On the 14th day there seems to be no definite relation at all concentrations. Kinetin shows a marked behavior on 21st day where in percent Chl-a of this alga gradually increases from 5 to 100 ppm. On all other days, at all concentrations the growth promoters do not have significant effect. However, at certain concentrations it does show a slight decrease from 5 to 50 ppm concentrations. Interaction of these growth promoters on the percent Chl-a content of N. entophytum shows that, on day 14 at all concentrations the effect is antagonistic. 21st day to 28th day the effect is synergistic with additive effect on 28th day at 5 ppm. The 7th day however, shows antagonism at 5 and 100ppm while at 25 and 50 ppm it shows synergistic effect. In general the interaction of these two growth promoters on percent Chl-a of N. entophytumshows more synergistic effect.

Haplosiphon stuhlmannii

The individual effect of Gibberllic acid on the growth of *H. stuhlmannii* is not definite, although on 7th day at 25 and 100 ppm there is an excess growth but at most of the observation days during the experiment, the fresh weight does not follow the regular pattern of growth. Kinetin influences the growth of the alga *N. entophytum* 14th, 21st, and 28th day at all concentrations and shows no meager change on fresh weight of *H. stuhlmannii*.

A noteworthy observation is that on 7th day the growth is more which gradually reduces on 28th day. It is interesting to note that when both the growth promoters are treated simultaneously the effect is synergistic where at nearly all concentrations on 7th,21st and 28th day the effect is synergistic it is only on the 14th day the effect is slightly antagonistic which values are closer to additive effect. It may be generalized that individual effect of Gibberllic acid and Kinetin on H. stuhlmannii not significant, where as their interaction has synergistic effect. The individual effect of Gibberllic acid on the percent Chl-a content of this alga shows similar behavior as that observed for its effect on fresh weight. The only difference observed here is that the Chl-a content remains almost constant at all concentrations on 21st day. Kinetin also behaves in a similar way as that of Gibberllic acid on Chl-a content of this alga. At all concentrations of Kinetin the percent Chl-a content gradually increases on all the days except at 25 ppm where a slight reduction in the amount of Chl-a is observed. It is evident from Table-4that the interaction of two growth promoters on the Chl-a content of H. stuhlmanniishows that the effect becomes synergistic on 21st day onwards till the end of experiment except at 25 ppm where the effect is partially antagonistic. It may therefore be said that the overall effect of the interactions of these growth promoters on percent Chl-a content of H. stuhlmannii is partially synergistic and more antagonistic.

DISCUSSION

The studies already made with IAA, there is considerable increase in the growth of Nostocmuscorum(Ahamad and ChlorogloeaFristschii, Tolypothrixtenuis, winter1971). Anacystis, inoculants and Phormidiumfeveloarum (Ahamad and winter1968) at lower concentrations and at higher concentrations, it was inhibitory. The present work showed that individual application of Gibberllic acid and kinetin appears to enhance fresh weight and Chl-a at all concentrations in C. membrancea and A. fertilissima(except on day 14 onwards at 50 ppm, at high concentrations it inhibited Chl-a content in C. membrane). Whereas in case of A. fertilissima stationary phase was attained soon after the treatment with these growth promoters. On day 21 onwards the exponential phase continued at 25 to 50 ppm concentrations till the last day similar to this Giriyappanavar and Bharati (1989) have observed the increase fresh weight and productions of heterocyst number along with the beneficial effect on total nitrogen fixation of blue-green algae at various doses of 3indole butyric acid and vipul treatment. Bharati and Bongale (1975) have reported that Adenosine triphosphate (ATP) enhances the growth of Hapalosiphonwelwitschii at 5, 10 and 15 ppm. In the present study the combined action of Gibberllic acid and Kinetin with increasing concentration has synergistic effect on percent fresh weight and Ch1-a in N. entophytum(except in H. stuhlmanniiwhichshows antagonistic effect on the Chl-a content). Adhikary and Pattnaik (1979) reported that chlorophyll content of Kinetin treated Westiellopsissps. was found to be much less on algal growth. However, work of Bharati and Bongale (1975) demonstrated that at lower concentrations (0.1-0.3%) of glucose, sucrose and lactose favour the growth of Hapalosiphonwelwitschil. It is evident from these findings that the differential physiological response of the hormones may be due to the ecophysiology of algal growth conditions and hormones specificity of the algae.

References

- Abou-Waly, H., Abou-Setta, M.M., Nigg, H.N. and Mallory, L. 1991. Growth response of fresh-water algae, *Anabaena flos-aquae*and *Selenasrumcapricormutum*to atrazine and hexazinone herbicides. *Bull. Environ. Contam. Toxicol.* 46: 223-229.
- Adhikary, S.P. Das, P. and Pattnaik, H. 1984. Effect of carbamate insecticide Sevin on *Anabaena* sp. and *Westiellopsisprolifica*. J. Gen. Appl. Microbiol. 35: 335-338.
- 3. Adikary, S.P. and Pattnaik, H. 1979. Effect of Hormones on the growth and chlorophyll content of *Westillopsisprolifica*Janet *Curr Sci*.48: 23.
- 4. Ahamad, M.R. and Winter, A. 1968. Studies on the hormonal relationship of algae I pure culture. I. The effect of blue green algae. *Plantar (Berl)* 78: 277.
- 5. Ahamad, M.R. and Winter, A. 1973. The effect of Gibberllic acid, kinetin and idole-3acetic acid on the growth fo blue green algae in culture. *Revue Algologique*. 11:154.
- 6. Ahamad, M.R. and Winter, A. Z. 1971. Short and long term effects of indole-3-acetic acid on the growth of *Nostocmuscorum. Pflanzenphysiol.* Bol 64:175
- 7. Anand, N. 1982. Response of some *Anabaena* species to IBA. *Curr Sci.* 51: 245-247.
- 8. Bennett, A. and Bogorad, L. 1973. Complementary chromatic adaptation in a filamentous blue-green alga. *The J of Cell Biol.* 58: 419-435.

- Bharati. S.G. and Bongale, U.D. 1975. Effect of Glucose, Sucrose and Lactose on the growth and heterocyst formation in a blue green alga *Hapalosiphonwelwitschii* W. and G.S.West strain 27. *Curr. Sci.* 44(19): 710-711
- 10. Bharati. S.G. and Bongale, U.D. 1975. Effect of adenosine-5-triphosphate on the growth of *Hapalosiphonwelwitsbhii*, a nitrogen fixing blue-green alga. *Beit. Biol. Pttanzen.* 51: 117-119.
- Eladel, H.H., William, J.H. and Kobbia, I.A. 1999. Effect of thiobencarb on growth and photosynthesis of the soil alga *Protosiphonbotryoides*(Chlorophyta). J ApplPhycol. 10: 547-554
- El-Ayouty, Y.M. and Ezzat, S.M. 1991. Effect of the herbicide prometryn on the metabolic activity of the Cyanobacterium*Nostocmusocorum. Egypt J Microbiol.* 26(2): 195-208.
- Giriyappanavar, B.S. and Bharati, S.G. 1989. Response of Nitrogen fixing Blue-Green Algae to the Growth Promoters 3-Indole Butyric Acid and Vipul. Envi. & Eco. 7(2): 423-426.
- Giriyappanavar, B.S. 2012. Comparison of Dosage-Response for Assessing the Joint Action of Gibberllic Acid and Kinetin on the Growth of Blue-Green Algae. *Online International Interdisciplinary Research Journal*. 2(6):25-33.
- 15. Jeffrey, S.W. and Humphrey, G.F. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural populations. *BiochemPhysioPflanzen*. 167: 191-194.
- Kapoor, K. Leenta. and Arora 1996. Observations on growth responses of cyanobacteria under the influence of herbicides. *Poll Res.* 15(4): 343-351.
- 17. Mostafa, F.I. and Helling, C.S. 2002. Impact of four pesticides on the growth and metabolic activities of two photosynthetic algae. *J Environ Sci Health.* 37: 417-444.
- 18. Suresh Babu, G., Hans, R.K., Singh, J., Vishwanathan, P.N. and Joshi, P.C. 2001. Effect of lindane and growth and metabolic activity of cyanobacteria. *EcotoxicolEnvSaf*. 48(2): 219-221.
- 19. Talling. J.F. and Driver, D. 1963. In proceeding, conference of Primary productivity measurement, marine and fresh water, Hawaii, U.S. Atomic Energy, Comm. TID 7633.
